HARMONIC FUNCTIONS ON THE DISK AND REGULAR MATRIX SUMMABILITY

BY
A. K. SNYDER
\section*{1. Introduction}

Let $\left\{x_{n}\right\}$ be a sequence of points in a topological space X, and let \mathbb{Q} be a space of real or complex continuous functions on X. Under what conditions is the sequence space $\left\{\left\{f\left(x_{n}\right)\right\}: f \in \mathbb{Q}\right\}$ summable by a regular matrix? This question was considered by Rudin in [4] for $X=\beta N$, the Čech compactification of the integers, and $\mathbb{Q}=C^{*}(X)$, the space of bounded real-valued continuous functions on X. Rudin's work was extended somewhat by the present writer in [6]. Henriksen and Isbell in [2] and the present writer in [5] considered the summability of $C^{*}(X)$, where X is an arbitrary countable space.

Here the question is examined in the context of certain families of harmonic functions on the open unit disk D of the complex plane. Suppose $\left|z_{n}\right|<1$ for $n=1,2,3, \cdots$. If $\left\{z_{n}\right\}$ has a limit point in D or if $\left\{z_{n}\right\}$ approaches the boundary exponentially, then for H^{∞}, for example, the problem is easy. In the first case, $\left\{\left\{f\left(x_{n}\right)\right\}: f \in H^{\infty}\right\}$ is summable by a submethod of the identity. In the latter case, no regular matrix sums $\left\{\left\{f\left(z_{n}\right)\right\}: f \in H^{\infty}\right\}$.

Suppose $\left|z_{n}\right|<1$ and $\left|z_{n}\right| \rightarrow 1$. In §3 it is proved that regular summability of $\left\{\left\{f\left(z_{n}\right)\right\}: f\right.$ is bounded and harmonic on $\left.D\right\}$ implies that the set of limit points of $\left\{z_{n}\right\}$ has positive Lebesgue measure on the circle. In $\S 4$ the positive regular summability of $\left\{\left\{f\left(z_{n}\right)\right\}: f \in H^{1}\right\}$ is characterized in terms of boundedness of certain convex combinations of members of the Poisson kernel. Finally, in $\S 5$ it is proved that if $0 \leqq r_{n}<1$ and $\sum_{n=1}^{\infty}\left(1-r_{n}\right)=\infty$, then there exists $\left\{\theta_{n}\right\}$ such that $\left\{\left\{f\left(r_{n} e^{i \theta_{n}}\right)\right\}: f \in H^{1}\right\}$ is summable by a positive regular matrix, and that the condition $\sum_{n=1}^{\infty}\left(1-r_{n}\right)=\infty$ is necessary.

2. Preliminaries

Let $A=\left(a_{n k}\right)$ be a complex infinite matrix. The matrix A may be considered as a linear transformation of complex sequences $x=\left\{x_{k}\right\}$ by the formula

$$
(A x)_{n}=\sum_{k=1}^{\infty} a_{n k} x_{k} .
$$

A is called regular if $\lim A x=\lim x$ for all convergent sequences x. It is well known that A is regular if and only if $\lim _{n} a_{n k}=0$ for each $k, \lim _{n} \sum_{k=1}^{\infty} a_{n k}=1$ and $\|A\|=\sup _{n} \sum_{k=1}^{\infty}\left|a_{n k}\right|<\infty$. See [8, p. 57]. If the sequence $A x$ is convergent, then A is said to sum the sequence x. A matrix $A=\left(a_{n k}\right)$ is called positive if $a_{n k} \geqq 0$ for all n and k.

It is known that no regular matrix sums every sequence of zeros and ones. See [8, p. 54].

For sets S and T with $S \subset T$, let $\chi(S)$ denote the characteristic function of S; i.e. $\chi(S)(x)=1$ if $x \in S, \chi(S)(x)=0$ otherwise.

Throughout this article let D denote the open unit disk and C the unit circle in the complex plane.

The Poisson kernel is the family of functions P_{r} for $0 \leqq r<1$ defined by

$$
P_{r}(\theta)=\frac{1-r^{2}}{1-2 r \cos \theta+r^{2}}
$$

The Poisson kernel satisfies the following:
(i) $\quad P_{r}(\theta) \geqq 0$;
(ii) $1 / 2 \pi \int_{-\pi}^{\pi} P_{r}(\theta) d \theta=1$;
(iii) if $0<\delta<\pi$ then $\lim \sup _{r \rightarrow 1|\theta| \geqq \delta} P_{r}(\theta)=0$.

Let f be a Lebesgue integrable function on C. The harmonic function g on D defined by

$$
g\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) P_{r}(\theta-t) d t
$$

is called the Poisson integral of f. The basic properties of the Poisson kernel and integral may be found in [3]. Note that the $n^{\text {th }}$ Fourier coefficient of P_{r} is $r^{|n|}$.

For $p \geqq 1$ let L^{p} be the usual Banach space of complex-valued functions on C with

$$
\|f\|_{p}=\left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(\theta)|^{p} d \theta\right\}^{1 / p}
$$

L^{∞} is the space of bounded measurable functions on C with the essential supremum norm $\|f\|_{\infty}=\operatorname{ess}_{\sup }^{\theta} \boldsymbol{| f (\theta) |}$. Recall that the conjugate space of L^{1} is L^{∞}. Let H^{p} denote the closed subspace of L^{p} consisting of those functions f such that

$$
\int_{-\pi}^{\pi} f(\theta) e^{i n \theta} d \theta=0 \quad \text { for } n=1,2,3, \ldots
$$

Then H^{p} consists of all functions in L^{p} whose Poisson integrals are analytic on D. In fact, H^{p} may be identified via the Poisson integral with the Banach space of analytic functions on D such that the functions $f_{r}(\theta)=f\left(r e^{i \theta}\right)$ are bounded in L^{p}-norm as $r \rightarrow 1$. See [3, p. 39] for details.

Note that functions on C are frequently identified for convenience with functions on the interval $[-\pi, \pi]$.

A sequence $\left\{z_{n}\right\}$ in D is called an interpolating seguence if $\left\{\left\{f\left(z_{n}\right)\right\}: f \in H^{\infty}\right\}$ is precisely the set of all bounded complex sequences. By [3, p. 203], if

$$
\frac{1-\left|z_{n}\right|}{1-\left|z_{n-1}\right|}<c<1
$$

then $\left\{z_{n}\right\}$ is an interpolating sequence.

Let m denote normalized Lebesgue measure on $[-\pi, \pi]$. For $E \subset C$, let

$$
m(E)=m\left(\left\{\theta: e^{i \theta} \epsilon E\right\}\right) .
$$

3. Measure of the set of limit points

Assume that $\left\{z_{n}\right\} \subset D,\left|z_{n}\right| \rightarrow 1$, and that the set E of limit points of $\left\{z_{n}\right\}$ has Lebesgue measure zero on the circle. A certain regular matrix B corresponding to $\left\{z_{n}\right\}$ will now be constructed. The existence of B solves the summability question in the negative.

Using the regularity of Lebesgue measure, choose a sequence $\left\{F_{k}\right\}$ of disjoint closed subsets of C such that $\bigcup_{k=1}^{\infty} F_{k} \subset C \sim E$ and $\sum_{k=1}^{\infty} m\left(F_{k}\right)=1$. Let f_{k} be the Poisson integral of $\chi\left(F_{k}\right)$. Define a matrix $B=\left(b_{n k}\right)$ by $b_{n k}=f_{k}\left(z_{n}\right)$.

3.1 Lemma. The matrix B is regular.

Proof. For each k the closed sets F_{k} and E are disjoint. Let $z_{n}=r_{n} e^{i \theta_{n}}$. There exists $\delta>0$ and N such that $\left|\theta_{n}-t\right| \geqq \delta$ for all $t \epsilon F_{k}$ and $n \geqq N$. It follows from property (iii) of the Poisson kernel that

$$
b_{n k}=f_{k}\left(z_{n}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

for each k. Also, note that for n fixed,

$$
P_{r_{n}}\left(\theta_{n}-t\right) \sum_{k=1}^{\infty} \chi\left(F_{k}\right)(t)=P_{r_{n}}\left(\theta_{n}-t\right)
$$

almost everywhere. By the monotone convergence theorem [1, p. 112] and properties (i) and (ii) of the Poisson kernel,

$$
\sum_{k=1}^{\infty} b_{n k}=\sum_{k=1}^{\infty} f_{k}\left(z_{n}\right)=1
$$

for each n. Finally, B is positive, so $\|B\|<\infty$. The result follows.
3.2 Theorem. Assume that $\left\{z_{n}\right\} \subset D,\left|z_{n}\right| \rightarrow 1$, and $m(E)=0$ where E is the set of limit points of $\left\{z_{n}\right\}$. Then no regular matrix can sum all bounded harmonic functions on D restricted to $\left\{z_{n}\right\}$.

Proof. Assume that the regular matrix A does sum $\left\{\left\{f\left(z_{n}\right)\right\}: f\right.$ is bounded and harmonic\}. Construct a regular matrix B as in 3.1. Then the matrix $A B$ is regular.

Let S be an arbitrary set of positive integers. Then

$$
A B \chi(S)=A\left(\left\{\sum_{k \epsilon s} b_{n k}\right\}\right)=A\left(\left\{\sum_{k e s} f_{k}\left(z_{n}\right)\right\}\right)
$$

But $\sum_{k \epsilon s} f_{k}$ is the Poisson integral of $\chi\left(\mathrm{U}_{k \in s} F_{k}\right)$, so $\sum_{k \in S} f_{k}$ is a bounded harmonic function. It follows that $A B$ sums $\chi(S)$. But this is a contradiction since no regular matrix sums every sequence of zeros and ones.

Note that the condition $m(E)>0$ is not sufficient for regular matrix summability. In fact, there is an interpolating sequence $\left\{z_{n}\right\}$ such that $C=E$.

4. The principal result

4.1 Theorem. Assume that $\left\{z_{n}\right\} \subset D, z_{n}=r_{n} e^{i \theta_{n}}$, and $r_{n} \rightarrow 1$. Let $P_{k}(t)=P_{r_{k}}\left(\theta_{k}-t\right)$ and $C_{n}=$ convex hull of $\left\{P_{k}: k \geqq n\right\}$. Then $\left\{\left\{f\left(z_{n}\right)\right\}: f \in H^{1}\right\}$ is summable by a positive regular matrix if and only if there exists $Q_{n} \in C_{n}$ for each n such that $\left\{\left\|Q_{n}\right\|_{\infty}\right\}$ is bounded.

Proof. Let $A=\left(a_{n k}\right)$ sum $\left\{\left\{f\left(z_{n}\right)\right\}: f \in H^{1}\right\}$ with A positive regular. Now

$$
\begin{aligned}
A\left(\left\{f\left(z_{k}\right)\right\}\right)_{n} & =\sum_{k=1}^{\infty} a_{n k} f\left(z_{k}\right) \\
& =\sum_{k=1}^{\infty} a_{n k}\left[\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) P_{r_{k}}\left(\theta_{k}-t\right) d t\right] \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t)\left[\sum_{k=1}^{\infty} a_{n k} P_{r_{k}}\left(\theta_{k}-t\right)\right] d t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) K_{n}(t) d t, \text { say, }
\end{aligned}
$$

using the monotone convergence theorem. Let

$$
\hat{K}_{n}(f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) K_{n}(t) d t
$$

By the Banach-Steinhaus closure theorem [7, p. 117], each \hat{K}_{n} is a bounded linear functional on H^{1}. Also, $\left\{\hat{K}_{n}(f)\right\}$ converges for each f in H^{1}. By the uniform boundedness principle [7, p. 116, Theorem 1], $\left\|\hat{K}_{n}\right\|=\left\|K_{n}\right\|_{\infty} \leqq M$, say, for all n. Now for each positive integer m choose p_{m} and q_{m} such that

$$
\sum_{k=1}^{m-1} a_{p_{m}, k}+\sum_{k=q_{m}+1}^{\infty} a_{p_{m}, k} \leqq 1 / 2 .
$$

Let $Q_{m}=\left(\sum_{k=m}^{q_{m}} a_{p_{m}, k}\right)^{-1} \sum_{k=m}^{q_{m}} a_{p_{m}, k} P_{k}$. Then $\left\{Q_{m}\right\}$ is the required sequence of functions.

Conversely, choose $Q_{n}=\sum_{k=1}^{\infty} a_{n k} P_{k} \in C_{n}$ for each n such that $\left\{\left\|Q_{n}\right\|_{\infty}\right\}$ is bounded. Using a typical diagonal process, it may be assumed that

$$
\hat{Q}_{p_{n}}(f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) Q_{p_{n}}(t) d t \text { converges as } n \rightarrow \infty
$$

for each $f(t)=e^{i m t}, m \geqq 0$. Hence, $\hat{Q}_{p_{n}}(P)$ converges for each polynomial P. By [7, p. 118], it follows that $\hat{Q}_{p_{n}}(f)$ converges for all f in H^{1}, since the polynomials are dense in H^{1} and $\left\{\left\|\hat{Q}_{n}\right\|\right\}$ is bounded. But

$$
\hat{Q}_{p_{n}}(f)=\sum_{k=1}^{\infty} a_{p_{n}, k} f\left(z_{k}\right)
$$

so the matrix $A=\left(a_{p_{n}, k}\right)$ sums $\left\{\left\{f\left(z_{n}\right)\right\}: f \in H^{1}\right\}$.
4.2 Corollary. If $\left\{\left\{f\left(z_{n}\right)\right\}: f \in H^{1}\right\}$ is summable by a positive regular matrix, then so is the family of restrictions to $\left\{z_{n}\right\}$ of the Poisson integrals of L^{1} functions on C.

Proof. Just modify the second half of the proof of 4.1 by requiring that $\hat{Q}_{p_{n}}\left(e^{i m t}\right)$ converges for negative m as well.
4.3 Example. Let $\theta_{k}^{n}=2 k \pi / n$ for integers n and k satisfying $0 \leqq k<n$, and let $r_{n}=1-1 / n$. Let $\left\{z_{n}\right\}$ be the sequence

$$
\left\{r_{1} e^{i \theta_{0} 1}, r_{2} e^{i \theta_{0}{ }^{2}}, r_{2} e^{i \theta_{1} 2}, r_{3} e^{i \theta_{0}{ }^{3}}, r_{3} e^{i \theta_{1}^{3}}, r_{3} e^{i \theta_{2} 3}, \cdots\right\}
$$

in D. It follows from 4.1 that $\left\{\left\{f\left(z_{n}\right)\right\}: f \in H^{1}\right\}$ is summable by a positive regular matrix, for consider

$$
Q_{n}(t)=(1 / n) \sum_{k=0}^{n-1} P_{r_{n}}\left(\theta_{k}^{n}-t\right)
$$

Now

$$
\begin{aligned}
Q_{n}(t) & =\frac{1}{n} \sum_{k=0}^{n-1} \sum_{p=-\infty}^{\infty}\left[r_{n}^{|p|} e^{i p \theta_{k} n}\right] e^{-i p t} \\
& =\sum_{p=-\infty}^{\infty} \frac{r_{n}^{|p|}}{n}\left[\sum_{k=0}^{n-1} e^{2 \pi i p k / n}\right] e^{-i p t} .
\end{aligned}
$$

Let c_{p}^{n} be the $p^{\text {th }}$ Fourier coefficient of Q_{n}. Note that if p is not a multiple of n, then $c_{p}^{n}=0$, whereas if $p=m n$, then $c_{p}^{n}=r_{n}^{|p|}$. Hence,

$$
\left\|Q_{n}\right\|_{\infty} \leqq \sum_{m=-\infty}^{\infty} r_{n}^{|m| n}=\frac{2}{1-r_{n}^{n}}-1 \rightarrow \frac{e+1}{e-1}
$$

In particular, $\left\{\left\|Q_{n}\right\|_{\infty}\right\}$ is bounded. The boundedness of $\left\{\left\|Q_{n}\right\|_{\infty}\right\}$ will follow also from the considerations of $\S 5$.

5. Behavior of the moduli

5.1 Theorem. If $\left\{\left\{f\left(z_{n}\right)\right\}: f \in H^{1}\right\}$ is summable by a positive regular matrix, then $\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right)=\infty$.

Proof. Using 4.1 let $Q_{n}=\sum_{k=n}^{\infty} a_{n k} P_{k} \in C_{n}$ such that $\left\|Q_{n}\right\|_{\infty} \leqq M$, say, for all n. Now

$$
a_{n k} \frac{1+\left|z_{k}\right|}{1-\left|z_{k}\right|}=\left\|a_{n k} P_{k}\right\|_{\infty} \leqq\left\|Q_{n}\right\|_{\infty} \leqq M
$$

so

$$
1=\sum_{k=n}^{\infty} a_{n k} \leqq M \sum_{k=n}^{\infty} \frac{1-\left|z_{k}\right|}{1+\left|z_{k}\right|} .
$$

Therefore,
so

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{1-\left|z_{k}\right|}{1+\left|z_{k}\right|} & =\infty \\
\sum_{k=1}^{\infty}\left(1-\left|z_{k}\right|\right) & =\infty
\end{aligned}
$$

By a sequence of lemmas involving estimates of the Poisson kernel, it will be shown that the requirement $\sum_{k=1}^{\infty}\left(1-\left|z_{k}\right|\right)=\infty$ cannot be strengthened.
5.2 Lemma. Assume that $n \theta \leqq \sqrt{6}, \theta=1-r$, and $r \geqq 1 / 2$. Then

$$
P_{r}(n \theta) \leqq\left(12 / n^{2}\right) P_{r}(\theta)
$$

Proof.

$$
\begin{aligned}
\frac{P_{r}(n \theta)}{P_{r}(\theta)} & =\frac{1-2 r \cos \theta+r^{2}}{1-2 r \cos n \theta+r^{2}} \\
& \leqq \frac{1-2 r\left(1-\frac{\theta^{2}}{2}-\frac{\theta^{4}}{24}\right)+r^{2}}{1-2 r\left(1-\frac{n^{2} \theta^{2}}{2}+\frac{n^{4} \theta^{4}}{24}\right)+r^{2}} \\
& =\frac{(1-r)^{2}+2 r\left(\frac{\theta^{2}}{2}+\frac{\theta^{4}}{24}\right)}{(1-r)^{2}+2 r\left(\frac{n^{2} \theta^{2}}{2}-\frac{n^{4} \theta^{4}}{24}\right)} \\
& \leqq \frac{(1-r)+2 r \theta^{2}}{(1-r)^{2}+\frac{r n^{2} \theta^{2}}{2}} \\
& =\frac{1+2 r}{1+\frac{r n^{2}}{2} \leqq \frac{12}{n^{2}}} .
\end{aligned}
$$

5.3 Lemma. Assume that
$\sum_{k=1}^{n}\left(1-r_{k}\right) \leqq \sqrt{6} / 2, \quad 1 / 2 \leqq r_{1} \leqq r_{2} \leqq \cdots \leqq r_{n}, \quad$ and

$$
1-r_{n} \geqq\left(1-r_{1}\right) / 2
$$

Let $\theta_{k}=k\left(1-r_{1}\right)$ for $1 \leqq k \leqq n$. Let

$$
R(t)=\sum_{k=1}^{n}\left(1-r_{k}\right) P_{r_{k}}\left(\theta_{k}-t\right)
$$

Then there exists a constant M such that $\|R\|_{\infty} \leqq M$, independent of the choice of $\left\{r_{k}\right\}$ satisfying the above conditions.

Proof. Let $\theta=1-r_{1}$. Note that

$$
n \theta=n\left(1-r_{1}\right) \leqq 2 n\left(1-r_{n}\right) \leqq 2 \sum_{k=1}^{n}\left(1-r_{k}\right) \leqq \sqrt{6} .
$$

Also, note that in general $(1-r) P_{r}(\theta) \leqq 2$.
Suppose first that $(n+1) \theta \leqq t \leqq 2 \pi$. Then $\cos \left(\theta_{1}-t\right) \leqq \cos \theta$ and $\cos \left(\theta_{n}-t\right) \leqq \cos \theta ; \cos \left(\theta_{2}-t\right) \leqq \cos 2 \theta$ and $\cos \left(\theta_{n-1}-t\right) \leqq \cos 2 \theta ;$ etc. Therefore,

$$
\begin{aligned}
R(t)= & \sum_{k=1}^{n}\left(1-r_{k}\right) P_{r_{k}}\left(\theta_{k}-t\right) \\
\leqq & \left(1-r_{1}\right) P_{r_{1}}(\theta)+\left(1-r_{2}\right) P_{r_{2}}(2 \theta) \\
& +\cdots+\left(1-r_{n-1}\right) P_{r_{n-1}}(2 \theta)+\left(1-r_{n}\right) P_{r_{n}}(\theta)
\end{aligned}
$$

$$
\begin{aligned}
\leqq & \left(1-r_{1}\right) P_{r_{1}}\left(1-r_{1}\right)+\left(1-r_{2}\right) P_{r_{2}}\left(2\left(1-r_{2}\right)\right) \\
& +\cdots+\left(1-r_{n-1}\right) P_{r_{n-1}}\left(2\left(1-r_{n-1}\right)\right)+\left(1-r_{n}\right) P_{r_{n}}\left(1-r_{n}\right) \\
\leqq & \left(1-r_{1}\right) P_{r_{1}}\left(1-r_{1}\right)+\left(12 / 2^{2}\right)\left(1-r_{2}\right) P_{r_{2}}\left(1-r_{2}\right) \\
& +\left(12 / 3^{2}\right)\left(1-r_{3}\right) P_{r_{3}}\left(1-r_{3}\right)+\cdots+\left(1-r_{n}\right) P_{r_{n}}\left(1-r_{n}\right) \\
\leqq & 48 \sum_{k=1}^{\infty} k^{-2} .
\end{aligned}
$$

Now suppose $\left|\theta_{p}-t\right|<\theta$. Then $\cos \left(\theta_{p+2}-t\right) \leqq \cos \theta$ and $\cos \left(\theta_{p-2}-t\right) \leqq \cos \theta ; \cos \left(\theta_{p+3}-t\right) \leqq \cos 2 \theta$ and $\cos \left(\theta_{p-3}-t\right) \leqq \cos 2 \theta ;$ etc. Therefore, as above,

$$
\begin{aligned}
R(t) & =\sum_{k=p-1}^{p+1}\left(1-r_{k}\right) P_{r_{k}}\left(\theta_{k}-t\right)+\sum_{|k-p|>1}\left(1-r_{k}\right) P_{r_{k}}\left(\theta_{k}-t\right) \\
& \leqq 6+48 \sum_{k=1}^{\infty} k^{-2} .
\end{aligned}
$$

5.4 Lemma. Let $R(t)$ be defined as in 5.3. If

$$
n \theta+2 \sqrt{ }\left(1-r_{1}^{2}\right) \leqq t \leqq 2 \pi+\theta-2 \sqrt{ }\left(1-r_{1}^{2}\right),
$$

then

$$
R(t) \leqq \sum_{k=1}^{n}\left(1-r_{k}\right)
$$

Proof. For each $k, \cos \left(\theta_{k}-t\right) \leqq \cos \left(2 \sqrt{ }\left(1-r_{k}^{2}\right)\right) \leqq r_{k}$, so

$$
P_{r_{k}}\left(\theta_{k}-t\right)=\frac{1-r_{k}^{2}}{1-2 r_{k} \cos \left(\theta_{k}-t\right)+r_{\mathbf{k}}^{2}} \leqq 1
$$

and the result follows.
5.5 Lemma. There exists a constant N such that for any $\left\{r_{1}, r_{2}, \cdots, r_{n}\right\}$ satisfying
(i) $63 / 64 \leqq r_{1} \leqq r_{2} \leqq \cdots \leqq r_{n}<1$ and
(ii) $\quad \sum_{k=1}^{n}\left(1-r_{k}\right) \leqq 1$,
there exists $\left\{\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right\}$ such that $\|S\|_{\infty} \leqq N$ where

$$
S(t)=\sum_{k=1}^{n}\left(1-r_{k}\right) P_{r_{k}}\left(\theta_{k}-t\right) .
$$

Proof. For each positive integer p let

$$
I_{p}=\left\{r_{k}: 2^{-p-6}<1-r_{k} \leqq 2^{-p-5}\right\}
$$

Renumber the sets I_{p} deleting those which are empty. Let R_{p} be the function constructed in 5.3 for the members of I_{p}. Then define the following:
(i) $m_{p}=\min \left\{k: r_{k} \in I_{p}\right\} ;$
(ii) $n_{p}=$ cardinality of $\left\{k: r_{k} \in I_{p}\right\}$;
(iii) $\alpha_{p}=n_{p}\left(1-r_{m_{p}}\right)+2 \sqrt{ }\left(1-r_{m_{p}}^{2}\right)$;
(iv) $S_{p}(t)=R_{p}\left(t-\sum_{k=1}^{p-1} \alpha_{k}\right)$;
(v) $S(t)=\sum_{p} S_{p}(t)$.

Note that

$$
\begin{aligned}
\sum_{p} \alpha_{p} & =\sum_{p}\left[n_{p}\left(1-r_{m_{p}}\right)+2 \sqrt{ }\left(1-r_{m_{p}}^{2}\right)\right] \\
& \leqq \sum_{p}\left[2 \sum_{r_{k} \in I_{p}}\left(1-r_{k}\right)+2 \sqrt{ } 2 \sqrt{ }\left(1-r_{m_{p}}\right)\right] \\
& \leqq 2 \sum_{k=1}^{n}\left(1-r_{k}\right)+\sum_{p=1}^{\infty} 2^{(-p-2) / 2} \\
& \leqq 2+2^{-3 / 2} /\left(1-2^{-1 / 2}\right)<2 \pi
\end{aligned}
$$

Therefore, by 5.3 and $5.4,\|S\|_{\infty} \leqq M+\sum_{k=1}^{n}\left(1-r_{k}\right) \leqq M+1$, where M is the constant for 5.3.
5.6 Theorem. Assume that $\sum_{k=1}^{\infty}\left(1-r_{k}\right)=\infty$ where $0 \leqq r_{k}<1$ and $r_{k} \rightarrow 1$. Then there exists $\left\{\theta_{k}\right\}$ such that $\left\{\left\{f\left(r_{k} e^{i \theta} k\right)\right\}: f \in H^{1}\right\}$ is summable by a positive regular matrix.

Proof. Choose an increasing sequence $\left\{p_{n}\right\}$ of positive integers such that

$$
1 / 2 \leqq \sum_{k=p_{n}}^{p_{n}+1}\left(1-r_{k}\right) \leqq 1
$$

for each n. Of course, it may be assumed that $r_{1} \geqq 63 / 64$ and $\left\{r_{k}\right\}$ is increasing.

For each n let S_{n} be the function constructed in 5.5 for

$$
\left\{r_{p_{n}}, r_{p_{n}+1}, \cdots, r_{p_{n+1}}\right\}
$$

Then $\left\|S_{n}\right\|_{\infty} \leqq N$ for each n as in 5.5. Let

$$
Q_{n}=\left(\sum_{k=p_{n}}^{p_{n+1}}\left(1-r_{k}\right)\right)^{-1} S_{n}
$$

Then $\left\|Q_{n}\right\|_{\infty} \leqq 2 N$ for each n, and the result follows from 4.1.

References

1. P. R. Halmos, Measure theory, Van Nostrand, Princeton, 1950.
2. M. Henriksen and J. R. Isbell, Averages of continuous functions on countable spaces, Bull. Amer. Math. Soc., vol. 70 (1964), pp. 287-290.
3. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
4..W. Rudin, Averages of continuous functions on compact spaces, Duke Math. J., vol. 25 (1958), pp. 197-204.
4. A. K. Snyder, Some remarks on heavy points in countable spaces, J. Analyse Math., vol. 20 (1967), pp. 271-279.
6.——The Čech compactification and regular matrix summability, Duke Math. J., to appear June 1969.
5. A. Wilansky, Functional analysis, Blaisdell, New York, 1964.
6. K. Zeller, Theorie der Limitierungsverfahren, Springer, Berlin, 1958.

Lehigh University
Bethlehem, Pennsylvania

