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1. Introduction
This paper has its origin in two unexpected phenomena that I encountered

while constructing certain almost-complex manifolds. First, I noticed that,
although a smooth, oriented manifold M may admit an almost-complex (or
even a complex) structure, the manifold -M obtained from it by reversing
its orientation may not. Secondly, I noticed that although two smooth,
oriented manifolds M1 and M may admit almost-complex (or even complex)
structures, their connected sum M1 -t- M2 may not.

Indeed, complex projective 2-space, CP, with the standard smoothness
structure and orientation, exemplifies both phenomena, for neither -CP nor
CP CP admit almost-complex structures. Simple obstruction-theoretic
arguments, using the calculations, of, say, [11], confirm this assertion. More-
over, these arguments indicate where the trouble lies. Briefly, it is possible
to show that, when open 4-discs are deleted from -CP and CP -t- CP, the
resulting manifolds-with-boundary admit almost-complex structures. Ac-
cording to [11], the obstruction to extending such a structure over -CP or
CP - CP is a linear combination of certain characteristic numbers (Chern,
Pontrjagin, Euler), which, with one exception, are all additive (that is, they
respect orientation and connected sum). Thus, the obstruction is not addi-
tive, which means that its vanishing for CP does not imply its vanishing for
--CP or CP + CP; indeed, it definitely does not vanish for these latter.
The exceptional characteristic number is the Euler characteristic, x, which,
for any smooth, oriented, n-manifolds M and M’ satisfies the following well-
known relations-

(1) x[-M] x[M] -x[M] -+- x[M]x[Sn]

(2) x[M’

where S is the standard, oriented n-sphere. Relation (1) is trivial. Rela-
tion (2) is most easily verified by triangulating M and M’, deleting the
interior of an n-simplex from each and matching them along the resulting
simplex boundaries, thus obtaining M q- M=, and calculating x on the sim-
plex chain level.
The main point of this paper is to generalize relations (1) and (2) (Theo-

rems 1 and 2) and to show that their "semi-additivity" is (in a sense to be
clarified in 2) an unstable phenomenon. Central to the generalization is
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the concept of an almost-X-structure, which, together with other definitions
and the main results, is presented in 2.

In 3, we present some applications of these results. For example, we
obtain some of the results of Massey [11, Theorem II] on obstructions to the
existence of almost-complex structures (Corollary 2 and subsequent remarks).
We also obtain a special case of a result of Milnor (proof unpublished, but see
[3, pp. 122-127])" namely, every stably Mmost-eomplex manifold is eomplex-
eobordant to an almost-complex manifold (equivalently, every stably almost-
complex manifold has the same Chern numbers as some almost-complex mani-
fold). Finally, in Corollary 6, we show that, for every/c >_ 1, there exist two
(smooth, closed, compact, connected, oriented) 8/c-manifolds, both of the
same oriented-homotopy type, only one of which admits an almost-complex
structure. For another application, which will appear in [81, we construct
pairs of manifolds of the same oriented homotopy type but not eomplex-
eobordant. These enable us to answer attirmatively the following unpub-
lished conjecture of Milnor: a rational, linear combination of Chern numbers is
an oriented-homotopy-type invariant for almost-complex manifolds if and only
if it is a rational linear combination of the Euler characteristic and the Index.

In 4, we present proofs of the results stated in 2, as well as definitions of
more local interest.

2. Main definitions and results
Throughout this paper, we shall deal simultaneously with two situations in

both of which feature a topological group G, a principal G-bundle (, and a
topological space X on which there is defined a fixed, not necessarily effective
G-action. We shall be interested in cross-sections or partial cross-sections of
the bundle ((X) associated to with fibre X.

In one situation, G SOn, n >_ 2, and rM, the principal SOn tangent
bundle of an oriented, smooth n-manifold Mn. In the other, G SO, the
stable orthogonal group, and is the principal SO tangent bundle of M,
n >_ 2, which we still denote by rM. In both cases, we require M to be
closed, compact, connected, and we require X to be pathwise connected and
(n- 1)-simple.
Although, by and large, we deal with both cases at once, we shall occa-

sionally want to sort one out. We do so by appropriate use of the words
"unstable" (to indicate the first case) or "stable" (to indicate the second).

DEFINITION 2.1. An X-structure on M is a cross-section of r(X).
Two X-structures on M are said to be homotopic if, as maps, they are homo-
topic through cross-sections of r(X). (Compare [10, p. 4] and [14].)

Examples. (a) X is arbitrary, the G-action is trivial. In this case, an
X-structure on M corresponds simply to a map M -- X.

Actually, our methods and results can easily be modified to apply to manifolds-with-
boundary. For simplicity however, we restrict ourselves to the unbounded case.
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In the other two examples that interest us, X is a homogeneous space
G/H, H a closed subgroup of G, with G acting on X by left translation. A
cross-section of rM(X) corresponds to a reduction of the group of rM to H
(cf. [16, p. 44]).

(b) G SO, and H S0,_1. Then X S-1, the standard sphere in
Euclidean n-space, r(X) is the tangent sphere bundle of M, and an X-
structure corresponds to a non-singular vector field on M.

(c) G S02k and H Uk (imbedded in SO in the standard way).
An X-structure on M, in this case, is commonly known as an almost-complex
structure. When G SO and H U c SO, then a cross-section of r(X)
is called a stable almost-complex structure.

In this paper, the word "almost" is also used in a different sense.

DEFINITION 2.2. An almost X-structure on M is an X-structure on
M%interior D where D is some closed n-disc smoothly imbedded in M

We show, in the Appendix, that for most questions involving almost
X-structures, the particular choice of imbedded disc D is irrelevant.
Now, let N M%interior D, where D is as above, and let s be an X-

structure on N. The obstruction to extending s over M is a class

cx(M, s) e (M, N; v,_l(X) ’n_(X)

Let tMeH(M, N) be the image of the orientation generator of Hn(M)
under the inclusion-induced isomorphismH(M) --- H M, N), and let
denote the Kronecker evaluation pairing

Hn(M, N; r_(X) X H,(M, N) -- -,_(X).

DEFINITION 2.3. For M and s as above, let

cx[M, s] (cx(M, s), t) e r,_(X).

Examples. We refer by letter to the examples given above.
(a) In this case, the classes cx[M, s] e rn_(X) are those represented by

maps OD S- ---, X that extend over N. For a special case of some in-
terest, take M to be a r-manifold (closed, compact, connected, n odd) and
suppose that X is (]c 1)-connected, 2/c >_ n. Then, using surgery, one can
easily show that cx[M, s] 0 [2, p. 87].

(b) In this case, it is a classical result of Hopf [5] that each class

cx[M, s]e T’n--1 t,n-1

equals the Euler characteristic x[M] (under the standard identification of
r_(S-1) with Z). In the stable case, non-zero cross-sections of vector-
bundle representatives of r always exist, so that it makes sense to define

x[rM] x[M] in the unstable case,

0 in the stable case.
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(c) In this case, Theorem II of [11] calculates cx[M2k, s] under certain cir-
cumstances. For example, when ]c 2 (mod 4), the group vk-l(S0.) --- Z,
and the integer cx[M, s] is given by

-(+-_ 1)cici[s] 1) p[r])
where 21 /c, p[r] is the top Pontrjagin number of M, cic[s], i, j l, is
the Chern number obtained by evaluating the cup product of Chern classes of
s, ci(s) t c(s), on the orientation generator of H(M), and ck[s] x[r].
(Cf. Corollary 2, 3.)
Now, let S be the unit sphere in Euclidean (n 1)-space, endowed with

the standard orientation. Since S-point is contractible, S admits almost
X-structures, and any two such structures with the same domain are homo-
topic. Moreover, for any two smoothly imbedded discs D1 S andD S",
there is a degree-one homeomorphism S -- S taking D onto D. From
these facts it follows easily that c[S’, s] is independent of the almost X-struc-
ture s. Henceforth, we write it as cx[S’]. It can be regarded as the ob-
struction to the existence of an X-structure on S. In the stable case,
cx[S’] 0 because S is a r-manifold.

If M, M, and M’ are oriented, smooth n-manifolds, then, as in the in-
troduction, we denote the connected sum of M and M’ by M[’ -t- M’ and
by -M the oriented manifold obtained from M" by reversing its orientation.

LEMMA 1. Let M M and M be as above, and suppose that they admit
almost X-structures. Then, -M and M M admit almost X-structures.

Part of Lemmu 1 is an immediate consequence of the following result,
proved in 4.1.
LEMMA 2. Let M be as above, and let N M%interior D, where D is a

closed n-disc smoothly imbedded in M’. Then rM[N is equivalent in G to

To deduce part of Lemma 1, notice that Lemma 2 implies that r(X) IN
is equivalent to r_(X) IN, so that if the former has a cross-section, so does
the latter. Indeed, the equivalence establishes a 1-1 correspondence between
the cross-sections of these two bundles.
Now, in general, there are, even up to homotopy, many equivalences be-

tween these bundles, so that there is no preferred correspondence between
their cross-sections. However, there is a particularly good, non-empty class
of equivalences, which we call admissible equivalences (see 4.1), such that
almost X-structures that correspond to one another under such an equiva-
lence have obstructions that are related by a simple formula.

THEOREM 1. Let M and N be as in Lemma 2, and let s and -s be cross-
sections of rM(X) N and r_M(X) N respectively, corresponding under some
admissible equivalence. Then,

(3) cx[-i’, --s] -cx[M, s) - x[r]cx[S’]
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Next, note that the notation "M /’". for the connected sum ofM and
M’ is, a priori, ambiguous, since the connected-sum construction depends on
the choice of imbedded discs D M, a 1, 2 (see 4.4). Nevertheless,
one can show that, up to orientation-preserving diffeomorphism, the resulting
sum is independent of this choice (see [13]).
Now when we are given almost X-structures s. on M., a 1, 2, it is nat-

ural to form the connected sum M[’ - M with respect to the discs D. M.
defined by M.-lntenor" D domain s. We do so and then define (in
4.4) what it means for an almost X-structure on M M to be compatible
with s and s. Such almost X-structures always exist (see 4.4).

THEOREM 2. Given almost X-structures s. on M, 1, 2, we form the
connected sum M M as above and let s s be an almost X-structure on
M M compatible with s and s.. Then,

(4) cx[M -t M, s -- s] cx[M, s] + cx[M, s2] cx[S’]

Applying Theorems i and 2 to example b) above, we immediately obtain
1 and (2), so that (3) and (4) are the desired generalizations.
Finally, it is easy to see that the semi-additivity in (3) and (4) are unstable

phenomena, for in the stable case cx[Sn] 0, so that (3) and (4) become
additive.

3. Applications

We begin by obtaining a result (Lemma 6) that enables us to characterize
cx under certain circumstances. We apply this result in the case X SO/U
to clculate cx (Corollary 2). We conclude by applying the calculation to the
construction of certain almost-complex manifolds (Corollaries 4-6) as de-
scribed in 1. Unless stated otherwise, we deal exclusively with the unstable
case and with manifolds of dimension n > 3.

Consider pairs (M,, s,), a 1, 2, of closed, compact, connected, oriented
n-manifolds M,, and X-structures s, defined on M-interior D,, as in 2.
A map

f (M, s) ---> (M, s)

is a continuous function f (M, M -interior D) - (M, M-interior D)
covered by some map of principal tangent bundles that pulls s back to s
(see 4.2). We let (X) denote the category of all such pairs and maps,
and we let a be an arbitrary, full subcategory of (X) satisfying the follow-
ing conditions"

(i) If (S, s) )V(X), then (S, s) e e.
(ii) If f (M, s) -- (M., s) is a map in (X), and if (M, s) e e,

then (M,s)ee.
(iii) If (M.,s.)ee, a 1,2, then (-M, -s)ee and (M1 + M,
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(iv) If (M, sl) eC and if sl is homotopic tos,., then (M,s,.)eC. Of
course, 91Z (X) itself satisfies these conditions.

Suppose that is an arbitrary function from the objects of a to r_l(X)
when we want to emphasize that the domain of
we write it as " a. It may possess some of the following properties.

(1) Naturality. For any map f" (M1, s) --+

(M, s) (degreef)(M, 81).

(2) Homotopy Invariance. If (M, s)e C, and if s is homotopic to s2,
then (M, sl) o(M, s2).

If satisfies (1) and (2), (S, s) is independent of s, so that we may write
it as o(S’). In this case, may additionally satisfy the following"

(3) Semi-additivity. Suppose that (M, s) e e, a 1, 2.
Then

(a) (-M, -sl) -(M1, s) q- x[M](S")
(b) (M1 -- M, s -t- s) (M, s) -t- (M, s) q(S).
(4) Normalization.

It is not hard to show that cx’gE(X) satisfies (1)-(4).
So far, we only have objects in a of the form (S, s) at our disposal. Choose

any such and suppose that s has domain S%interior D. Let M be any
r-manifold (closed, compact, connected, oriented), let D be any closed n-disc
smoothly imbedded in M, and let N M%interior D. By the "Gauss
mp" construction (see [2], p. 86), we can obtain a map

f" (M", N) - (S, S%interior D)

and covering bundle map
pull-back of s by ], f is
We now have

LEM 3. Let M be any closed, compact, connected, oriented r-manifold.
Then there is an almost X-structure on M and an integer K, such that
(M’, t) e e and, for any " satisfying (1) and (2), (M, t) K(S).
When n is even, K 1/2x[M].

Proof. Let and s be as above. By (1) and (2)

q(M, t) (degree f)o(S", s) (degreef)(S").

Specializing to o cx x (example (b), 2) when n is even,

x[M] (degree f). 2, Q.E.D.
Remartc. When n is odd and n # 1, 3, 7, f can be chosen so that degree f

is any prescribed integer within a congruence class modulo two. This class,
according to [2] and [9], is represented by the semi-characteristic of



342 PETER, J. KAHN

M’(n 1, 3, 7)"

x*[M"] - rank H,(M’, Z.), n=2r-1.

LEMMA 4. Suppose that M is parallelizable. Then, there is an almost X-
structure s such that (M’, s) e and such that, for every ’ satisfying (1),
(M, s) O.

Proof. When M is parallelizable, the trivial map

(M, N) S", S%interior D

can be covered by a tangent bundle map. Apply (1), Q.E.D.

COROLLARY. Sp X Sq admits an almost X-structure
(S X Sq, t) e e and, for all " satisfying 1 and (2),

such that

,p( S X Sq, t) 2(S+q), p and q even

0, otherwise.

Proof. S X Sq is a r-manifold. When p and q are even, x[S )< Sq] 4.
When p or q is odd, Sr X Sq is parallelizable. Apply Lemma 3 or Lemma 4,

Q.E.D.
LEMMA 5. Suppose that " satisfies (1)-(4) and consider any M, s)

for which q(M, s) A(S’). Then (i) if A >_ O, there is a (P, t) such
that o(i + A P, s + A It) 0;(ii) IfA < O, there is a (P, t) e such
that q(-i + A P, -s + A It) 0.

(Explanation. A is the absolute value of the integer A, +/-M -t- A
is the connected sum of +/-M and A copies of P, +/- s W A is the almost
X-structure on +/-M + AIP obtained by gluing together +/-s and
copies of t, as described in 4.4. Finally, (+/-M W A P, +/-s @ [A It)
by property (iii) of .)

Proof. An easy extension of property (3) yields

,p(+/-M + IA [P, :i:s + ]A it)
(+/-M, +/-s) -t- [A I(P, t) ]A I(

IfA >_ 0, we let

and if A < 0, we let
(P, t) (S X n--1, t),

(P,t) (S X S’- t)
where is as in the above corollary. Then, if A > O,

,(M + [A IP, s / [A It) ]A [(S’) + 0 -IA (s") o,
whereas if A < 0 and n even,

(M + AlP,s+ lAir)
-[A ](S) + 2[A [(S=) -{A ](S") 0.
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When n is odd, x[M] O, so that (-M, -s) -q(M, s). Therefore,
when, in addition, A < O,

(--M -t-IA IF, s -t- IA It)
[AI(S) +0-IA[(S) 0, Q.E.D.

Note that the choice of (P, t) depends only on A.
Now, let 9Tt0(X) be the full subcategory of 9Tt(X) whose objects are

pairs (M, s) for which cx[M, s] is a multiple of cx[S,‘]. It is not hard to
show that 9t0(X) satisfies (i)-(iv). Property (i) is obvious, (ii) follows
from the fact that c satisfies (1), (iii) follows from the fact that c satisfies
(3), and (iv) follows from the fact that cx satisfies (2).

LEMMA 6. Suppose that ’9o(X) satisfies (1)-(4) and that null space
null space c:r. Then,

(Explanation. By "null space ," we mean all objects sent to zero by
By "cxl 9o(X)," we mean the restriction of cx to objects of 9t0(X).) This
lemma is, of course, an analogue of a standard algebraic fact.

Proof. Choose (M, s)e 0(X) and suppose that cx[M, s]
By Lemma 5, we may choose a product of spheres P and an almost X-structure
t, depending only on A, so that

(P, t) egTt0(X) and cx[:M + A IF, s -b A it] 0.

Thus (M + AIP, -+-s + lAir) O. Since e:0(X) satisfies (3)
and (4), we may expand this last relation to solve for (M, s)"

(M, s) A(S) Acx[S] cx[M, s], Q.E.D.

To apply Lemma 6, we need some more information about cx[S,‘]. Let
-x’G-- X be defined by rx(g) g’o, where x0 is some arbitrary point
chosen in X. We now state a result, proved in 4.2, that applies to both the
stable and unstable cases.

LEMMA 7. Let fc" S’-1 ---> G be a characteristic map for rs, (see 4.2 or [16,
p. 97]). Then, x o represents

Next, let the pair of spaces (X, Y) be either (SO,,, SO), n >_ 3, or
(SOk/Uk, SO >_ 1. In either case, there is a standard inclusion map
i:X --+ Y. In the second case, let n

LEMMA 8. Cx[Sn] generates kernel (i." r,_l(X) -+ r,‘_i(Y) ).

Proof. When (X, Y) (S0,‘, SO), the result follows from the facts that
Cso[S,‘] is represented by a characteristic map for rs (Lemma 7, together
with the observation that vso" SO,, -- SO, is homotopic to the identity) and
that this map represents a generator of kernel i. (23.2 of [16]). In the rest
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of the proof, we consider the second case. There is a commutative diagram,

U SO ’: SO/U,

U SO SO/U

in which all the maps are standard inclusions or projections. Thus, the in-
duced diagram, in which the rows are exact and the columns are epimorph-
isms, commutes"

7r2_x Uk

.!
Therefore, by standard diagram chasing, kernel i, (rx), (kernel z,). By

.!
the first case considered, kernel z, is generated by Cso,[S’], which is repre-
sented by a characteristic map of Tsn. Therefore, x o represents a genera-
tor of kernel i,. Apply Lemma 7, Q.E.D.

For the convenience of the reader, we present the following tables (cf. [18,
p. 171], for the first two, and [11] for the third). Note that, for (X, Y)
(SO, SO), n # 1, 3, 7, kernel i, has infinite order or order two according as
n is even or odd. In the second case, kernel i, is the entire group r2k-l(X)
except when ]c 0 (mod 4).

TABLE 1

(X, Y) (,SO,, SO), n # 1,2,3,7.

n 1 (mod 8)

7n-1 (Z)

n-l(Y)

Z2 + Z

Z2

Z+Z2

Z2

Z2 z+z

TABLE 2

’n-(Y) Z2
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TABLE 3

(X, Y) (S02k/U, SO

k (mod 4)

Z/Z2

Z,,r= (k-- 1)!

Z/r, r (k 1)!

Z2

The relationship between these considerations and Lemma 6 comes from
the following observation. Let (X, Y) and i:X - Y be as above. The map
i determines, for each manifold M, a fibre-preserving map i0 rM(X) --- rM(Y)that sends each almost X-structure s to an almost Y-structure io(s). Clearly

cr[M, i0(s)] i.(cx[M, s]).

Since kernel i. is generated by cx[Sn], 0(X) consists precisely of those pairs
(M, s) e 9Z(X) for which io(s) extends over M. When (X, Y) (SOn, SO),
n 1, 3, 7, the first member M of each pair (M, s) e 9qZ0(X) must, then, be a
v-manifold. Lemma 3 shows that every v-manifold is so obtained. When
(X, Y) (SO.k/Uk, SO/U), the first memberM of each pair (M, s) e 9Z0(X)
admits a stable almost-complex structure (e.g., some extension of io(s)).
Now, it is not hard to show, using the fact that M2k-interior D has the homo-
topy type of a (2/c 1)-dimensional complex, that the association s io(s)
determines a 1-1 correspondence on homotopy classes, so that every M ad-
mitting a stable almost-complex structure appears as a first member of some
pair in YlZ0(X).
We now let (X, Y) (SOn, SO), n 1, 3, 7, and define ’iIZ0(X) as

follows-
(M, s) 1/2x[M]cx[SOn], n even,

x*[M]cx[SO], n odd

(see the remark following Lemma 3). It is easily verified that :0(X) satis-
fies (2)-(4). When n is even, the classical characterization of x by Hopf
implies immediately that :0(X) satisfies (1) and that null space null
space Cx. When n is odd, these facts can be proved by the methods of [2] or
[9]. Thus, Lemma 6 implies that cx o(X), from which it immediately
follows that a r-manifold Mn, n 1, 3, 7, is parallelizable if and only if
x[Mn] O, if n is even, or x*[Mn] 0 (rood 2), if n is odd (see [2, Theorem2]).
However, when n is even, these results are obtained much more directly by
the methods of Lemma 3, and when n is odd, the verification of the crucial



properties of (in [2] or [9]) amounts to showing that cx o(X).
we state only the following"

Thus

COROLLARY 1. Let X SO,,, n 1, 3, 7, and define ’9o(X) by

(M, s) 1/2x[M], n even

x*[M] (mod 2), n odd.

Properties (1)-(4) are satisfied by and uniquely characterize it. (Here’
(M, s) 9o(X) if and only ifM is a r-manifold and s is an almost-framing of
M that extends as a stable framing over M.)

In the remainder of this section, we deal with the case

(X, Y) (SOk/Uk, SO/U).

Unless stated otherwise,/c > 1.
Recall that (M2, s) e o(X) if and only if io(s) (the stable structure de-

termined by s) extends over M. Let so be any extension. There are then
defined Chern classes ci(s) H2i(M), i 1, k 1, and c(so) e Hi(M),
i 1, ,/. Since they are stable invariants, c(s) ci(so), i 1,
/c 1. We denote by ck[s0], the evaluation of ck(so) on the orientation class
of M. We now define :i)0(X) by

(i2, s) 1/2(x[/] c[so])cx[S:].
LEMMA 9. 9o X is well-defined.

Proof. We must show that (M, s) does not depend on the choice of
extension So. When ] 21, this is an immediate consequence of the well-
known formula

1)p[M2] 2c[s0] + - 1)cc_[s0]
2c[s0] -t- - 1)cck-[s].

Here, p[M] is the evaluation of the top Pontrjagin class of M on the
orientation generator, and cc_[So] (resp., cc_[s]) is the evaluation of
ci(so) t c_i(So) (resp., c(s) t c_(s)). Clearly, these values depend only on M
and s. Thus, so does the value 1/2(x[M] c[s0]).
When ] is odd and > 3, the conclusion follows from the next lemma.

LEMMA 10. Suppose that ]c is odd and >3, that (M, s) e 9o(X), and that
So and Sl are two stable extensions of s over M. Then

c[s0] c[s] (mod 2-order c[S]).

Proof. Note that

2. order c:[S] 2[(] 1) !], /c---- l(mod4)

(k 1)!, /c 3 (mod 4).
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Let N domain s, and let p"M2k -- S2k be the degree-one map obtained by
collapsing N to a point. Let aie U(M) be the classes determined by
s, i 0, 1, respectively. Since the restrictions of ci to N are equal, there
is a/ e RU(S) such that a0 a p*(). (To see this, use for example,
the exact U sequence of the pair (M:, N).) According to Atiyah and
Hirzebruch [1], c() is divisible by ( 1)!. Thus

c(a0) c() (mod ( 1)!),

which proves the desired result for 3 (mod 4).
When k 1 (mod 4) we make use of the fact that RU(S) Z, that

O(S) Z and that realification r’U(S) O(S) is, in this case,
an epimorphism. The hypotheses imply that the equivalence a01 N a N
extends over M2k as a real equwlence, so that fl satisfies r() 0. Thus,

is an even class in U(S), and so

c(a0) c(a) (mod 2 [( 1)!]). Q.E.D.

When 3, 2_(X) 0, so that ’0(X) is well-defined in this case too.
It is easy to verify that satisfies (1)-(4). Now, suppose that c[M, s] O,

and let be un (unstable) extension of s. Then, io(t) is an extension of io(s).
By standard results, (e.g. see [4] or [12, p. 65]), c[io(t)] x[M], so that
(M, s) 0, that is, null space null space c. Thus we have

COROLLARY 2. For any k 1, let M be a smooth, closed, compact, con-
nected, oriented manifold, admittgng an almost X-structure s, X SO2/U,
that extends over M as a stable structure So. Then

rM2kcxt s] (x[M1 c[so])C[S].

Proof. For k 1, 3, this follows from Lemma 6. When
1, 3, v_(X) 0, so that the result holds in these cases as well, Q.E.D.

Remark. When k 2 (mod 4), this result is equivalent to Theorem II of
[11]. (Cf. Example c), 2). When 0 (mod 4), Theorem II of [11] can be
obtained by considering, for any (M, s) e (X), the pir (M W M, s s)
e 0(X) nd applying Corollary 2 to it. That io(s s) extends over M M
follows from the equalities

cr[M + M, io(s + s)] i.(cx[M + M, s + s]) 2i.(cx[M, s])

and the fct that v_x(Y) Z.
We allow 1 in the remaining results.

Coaov 3. A stable almost-complex structure on M admits a reduction
to an almost-complex structure, if and only if c[t] x[M].

We abuse terminology here by identifying a with complex vector bundles of high
fibre dimension.
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Remarlc. This result is known, but I know of no proof in the literature.

Proof. The necessity of the relation is standard (see [4] or [12, p. 65]).

Let s be an almost X-structure (X S02k/Uk) on M2k such that io(s) has
an extension So homotopic to t. By the remarks preceding Corollary 1, such
an s always exists. Then,

cx[M, s] 1/2(x[M] ck[so])Cx[S]
1/2(x[M] c[t])cx[S2] O,

so that s extends to an almost-complex structure sx. Let a, a2 RU(M)
be determined by s and t, respectively, and let N domain s. Then, al and
a2 have the same restriction to N; moreover, c[ax] x[M] c[a.]. As in
the proof of Lemma 10, there is a 3 e/U(S) with p*() a a., where
p’M2 ---> S is the degree-one map obtained by collapsing N to a point.
But, then, satisfies p*(c()) 0, so that Chk() 0. Since

Ch. KU*(S2) ____> H*(S2; Q)

is injective, it follows that f 0, so that a a., Q.E.D.

COnOLLAnY 4. Suppose that M admits an almost X-structure. When
]c 0 (mod 4), M is oriented-cobordant to an almost-complex manifold.
When k 0 (rood 4), M M is oriented-cobordant to an almost-complex
manifold.

Proof. Let s be an almost X-structure on M2k. When/ 0 (mod 4),
cx[M, s] is a multiple of cx[S2], so that Lemma 5 applies. There exists a prod-
uct of spheres P: and a non-negative integer B, such that M + BP
admits an almost-complex structure. Clearly, M is oriented-cobordant to
M BP. When ]c 0 (mod 4), cx[M - M, s + s] is a multiple of
c:[S]. Apply Lemma 5 again. (When /c 1, all oriented 2k-manifolds
have complex structures.) Q.E.D.

COROLAnY 5. Every even-dimensional stably almost-complex manifold is
complex-cobordant to an almost-complex manifold.

Proof. It suffices to show that, given any manifold M1 with stable almost-
complex structure sl, there exists a manifold M with stable almost-complex
structure s admitting a reduction to an almost-complex structure, such that
the Chern numbers determined by sl and s2 are the same (see [3]).

Given M and s, as above, let A 1/2(x[M] c[s]). By Lemma 5 and
Corollary 2, there exists a product of spheres P such that Mk M -t- A P
admits an almost-complex structure, whose stabilization we call s. It is
easy to show that Chern numbers involving non-top-dimensional Chern
classes are unchanged by connected-summation with P. Moreover, ck[s]
x[M] x[MI] 2A c[s], Q.E.D.
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Remark. Corollary 5 is a special case of a result of Milnor (see [3, pp.
122-127]), no proof of which appears in print.

COROILARY 6. For every ] >_ 1, there are closed, compact, connected
oriented 8t-manifolds, M1 and M. such that

(i) MI has the same oriented homotopy type as M.
(ii) M admits an almost-complex structure, whereas M does not.

Proof. Suppose that N8k admits a stable almost-complex structure s, and
suppose that c(s) 0, unless i 2/c, 4/. Then, the Chern classes c2k(s)
and c4(s) can be expressed in terms of the Pontrjagin classes of N8, p(N)
and p2k(NS). Therefore, by Corollary 3, s reduces to an almost-complex
structure if and only if

l[Ns] x[NS],
where l[Ns] is a certain linear combination of the Pontrjagin numbers
and p2[Ns] of Ns. Note that this relation is independent of s. Thus,
Ns admits an almost-complex structure if and only if l[Nski x[NSk].
Now, consider two (4k-1)-connected 8k-manifolds N and N that have the

same oriented-homotopy type and satisfy l[N] - l[N.]. Examples of such
manifolds are constructed in [6], [7], and in [17]. Obstructions to the exist-
ence of an almost X-structure s on N wnish trivially, i 1, 2. Thus
s + s is n almost X-structure on N + N the remark following Corol-
lary 2 shows that s + s extends to a stable almost-complex structure on
2N N + N Let

A x[N]- l[N]- 1,

and letP S X Ssk-,ifA >_ 0, andP S X S8-,ifA <0. P, being
a r-manifold, admits a trivial stable almost-complex structure, so that
M 2N + A P admits a stable almost-complex structure with
c(M) O, unless 2/, 4/. We compute x[M].

x[M,] x[2N] 2A

2x[N] 2 2x[N] + 2 + 2/[N]

l[M],

the last equality coming from the facts that x[N1] x[N2] and that 21[N]
/[2N1] l[2N + [A P] l[M]. Therefore, x[M] l[M], so that M ad-
mits an almost-complex structure, whereas x[M] l[M] liMa.I, so that
M does not, Q.E.D.

4. Proofs
4.1. Proof of Lemma 2. We must show that rg IN r_[ N, where

N M interior D’.
Let be the unstable, oriented tangent vector bundle of M. Since N has

the homotopy type of CW complex of dimension strictly less than n, IN



350 PETER $. K:AHN

dmits cross-section c, which determines splitting @ of/1 N. Here
is trivial, oriented line bundle. Let I nd I be the identity mps of a

ad , respectively. Then h I @ (-I) is n orientation-reversing bundle
equivalence tlN - IN, which implies the desired result, Q.E.D.

Remark. Let h0 be the unstable principal bundle equiwlence determined by
h, nd let hi be the stable principal bundle equivalence determined by h. For
ny trivial, oriented/-plane bundle vk over Mn, let Ik be the identity map of

IN. Then, the self-equiwlence I @ h of (R) ] N determines the same
stable equivalence hi.
We my regard s a sub-bundle of @ and c s a cross-section of k @ t.

If/ >_ 1, c extends over M s cross-section of (R) . This implies that the
equivalence I (R) h extends over @ .

Thus, h0 hs the property that the stable principal bundle equivalence
corresponding to it extends over the entire stable tangent bundle.
When n is odd, c extends s a cross-section of , so that, in this cse, h0

itself extends over the entire unstable tangent bundle.

DEFINITION. Let h" TMI N -- r-, N be a principal bundle equivalence.
We cll h admissible if (i) for even n, the stable equivalence corresponding to
h extends over the entire stable tangent bundle; (ii) for odd n, h itself extends
over TM

In the stable case, this definition implies that h is admissible if and only if
it extends.
Note that our proof of Lemma 2 shows that there lways exists an dmissible

equivalence r IN --+ r_, IN.
4. 2. Pull-backs. Let f" Y -- Y be a continuous map covered by a

bundle mp]" -- . If there exist partial cross-sections s of =, a 1, 2,
such that s f domain s ] s, then we call sl a pull-bact of s.. If ] is a
principal bundle map inducing ], we may say that s is a pull-back of s de-
termined by ]. Note that we do not, in general, require that domain s f-
(domain s).
We now specialize to the case in which s is n almost X-structure with do-

for some closed disc D smoothly imbedded in M’,main M-mterlor D
and f is map of pirs

(M, M-interior D[’) --+ (M’, M-interior D’)

covered by some principal bundle map r, --+ r,. This principal bundle
mp determines bundle mp rl(X) --+ rM(X) nd a corresponding pull-
back

s" M-interior D -- r,(X)I M-interior D
of s. The definition of sl is obvious. Note that if s extends over D’,
then sl extends over D[’.
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We can describe cx[M, s] by means of pull-backs. Let s be an almost X-
structure defined on M-interior D, as before. Orient D concordantly with
M and OD concordantly with D. We identify rD with D G. There is a
bundle equivalence D G -- rl D that determines a pull-back

so OD--OD X X

of s. Then, cx[M, s] is represented by the composition of So with the projec-
tion OD X X X. Note that the class is independent of the initial choice of
equivalence D X G ---+ rM D.
Now, suppose that sl OD OD X X is the pull-back of So determined by

a bundle equivalence/c OD X G -- OD X G. Let OD -- G be the map
given by k(x, g) (x, (x).g), and recall that vx G -- X is defined by
"x(g) g.xo, for some fixed x0 e X. Let cx[t] denote the homotopy class of
rx o . The following easy result is well known"

LEMMA 11.

represents

The composition

OD. sl OD X X X

cx[M, s] cx[tc].

We use this to prove Lemma 7.
Divide S into hemispheres D and D oriented concordantly with it, and

orient OD OD. concordantly with D. Let

ha D X G-- rs,[D
be bundle maps, a 1, 2, and let t hXo h] OD X G. The corresponding
map

" ODtG
is clled characteristic map for rs (cf. [16, p. 97]) ny two such characteris-
tic mps re homotopic.

Proof of Lemma 7. We must show that x represents cx[S]. For ny
cross-section s D r(X) IDa, let s OD OD X be the pull-bck
of s by h OD X G, a 1, 2. The composition

OD.. s,. OD X X X

represents Cx[S, s] Cx[S].
With k s bove, it is esily checked that s is the pull-bck of s deterned

by k. Thus, by Lemma 11, the composition

OD s ODX XX

represents cx[S] cx[k]. Since s extends over D, so does s, so
cx[S] cx[k] 0, as desired, Q.E.D.
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4.3. Proof of Theorem 1. Let s and -s be almost X-structures of M and
-M, respectively, with domain N M%interior D, and suppose that s is
the pull-back of -s determined by some admissible bundle equivalence

h:

In the stable case, or when n is odd, h extends over r so that, by naturality
of obstructions, cx(M, s) cx( M, s Thus,

cx[-M, s] (cx(--M, s), } (cx(M, s), } -cx[M, s],

as desired.
In the unstable case with n even, we hve commutative diagram of bundle

equivalences

hrIODr_MIOD

OD N SO OD N SO.

Indeed, g and are chosen so ha hey exend over D N SO, and is
chosen go be h . Leg , as usual, be given by (z, ) (z, (z).).
Orie OD cocordlg wih -M. Noe hag, since he sgable equivalence
corresponding o h exends over ghe entire sable angen bundle, he homo-
opy class of lies in kernel (i.

_
(S0)

_
(SO)), and so, by Lemma

7, his class is of he form mcso[S], for some integer m depending only on h.
Le be he pull-back of deermined by g, and le be ghe pull-back of- deermined by g. Then, is he pull-back of deermined by . Le
be he homoopy elass of ghe composition

Then
OD s OD XX--X, 1,2.

o-1 cx[M, s], o-2 cx[-M, s],

o-1 o’2 Cx[]C] o’2 mhCX[n].

Therefore, we have

Cx[-MI s] cx[M, s] "-k mh cx[S’].

Since mh is independent of :ks and X, we may specialize to the case cx x
(example (b), 2). Thus,

x[--M] --x[M] + 2m.

Since x[-M] x[M], the desired result follows, Q.E.D.

4.4. Connected sums. Let D(r) be the closed disc of radius r in Euclidean
n-space and S-(r) its boundary, both given the standard Euclidean orienta-



OBSTRUCTIONS TO EXTENDING ALMOST X-STRUCTURES 353

tion. Let

A Dn(2) interior D(1/2),

and define p" A’-+ A by p(x) R(x)/II x , where R is reflection through
the hyperplane x 0. The map p is an orientation-preserving diffeomorph-
ism whose differential determines a bundle map A X G -- A X G. No-
tice that p sends Sn-1 (1/2) to S-1(2) with degree 1.

Given orientation-preserving imbeddings is Dn(2) --+ interior M,",
a 1, 2, we form subspaces Na P, M by defining

P M,-interior i(D’(1/2))
and

N, M,-interior i,(Dn(2)).

We then take the disjoint union P1 o P. and identify i(x) with i(p(x)), for
all x e A n, obtaining a topological manifold M’ + M. This manifold admits
a smoothness structure characterized up to diffeomorphism by the property
that the inclusions P, c M + N are smooth imbeddings. We call M
M with such a smoothness structure the connected sum of M and M. For
further details, see [13].

It is easy to show that rm+. is obtained from rl P o r P. by
identifying rl ]i(A’) with r. ]i.(A n) via the bundle map induced by the
differential of

-1. i(A’) ---+ i2(A n)i2opo

An analogous construction yields r..+.(X), for any X. It follows that

r,(Z) IN1 u rM(X) N. M+M.(X) N U N..

Completion of the proof ofLemma 1. Suppose s, is an almost X-structure on
Ms. with domain N,, a 1, 2. Then, sl u s can be regarded as a cross-sec-
tion of rm+.(X) N u N..

Notice that

M -k M (N u N.) i(interior A n) i.(interior A n)
(cf. the diagram below), and that r+.(X)li(A’) is trivial. Let
p (1, 0, ..., 0) e Dn(2), and let c A be the radial line joining 2p and
1/2 p. Since X is connected, s u s. extends to a cross-section of

r,,,+,,(X) N u N u i(1).

Any closed disc D imbedded in the complement of N, u N= u i,(1) has the
property that N u N.. u i,(1) is a deformation retract of M’ q- M’-interior
D (cf. the diagram below). Thus, sl u s,. extends to an almost X-structure
of M -b M,

DEFINITION. We call any almost X-structure of M -t- M extending
s u s compatible with s and s, and we label it s -b s.
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The proof given above shows that for given Sl and s2, a compatible almost
X-structure onM -t- M always exists.

4.5. Proof of Theorem 2. Using the connectedness and (n 1)-simplicity
of X, it is not hard to show that the class cx[M1 + M., sl s.] is independent
of the particular choice of D and extension of sl o s..

Indeed, it is clear that when we use the bundle map

A X G ru,+u i(A)

induced by the differential of i to pull back s to a cross-section

t "-(2) "-(2) x
and s to cross-section

t "-() "-() X X,

then, letting c e ._(X) be represented by t followed by projection onto X,
a 1, 2, we hve

c[M + M, + ] c c.

Since k, viewed s & bundle mp A" X G r ix(A"), extends to

D"(2) X G -- rM, i1(D"(2)),
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it follows that cl cx[M, s], so that

cx[M + M2, s + s2] cx[M, sl] c.

Now, let k A X G -- rMI+M i.(A) be the bundle map induced by the
differential of i, and note that kl lc. ]c (where ]c is as in 4.4). There-
fore, t: can be obtained by pulling back s2 by k, getting the cross-section

tt2 sn-l(2) sn-l(2) X X,

nd then pulling t back by ]c. Since lc2, viewed s bundle mp

A" a
extends to

Dn(2) }( G ’Me i2(Dn(2) ),

it follows that the composition

S,_(2) t ,_
(2)x x

represents cx[M s].
Therefore, reclling that/ S"-I(1/2) G covers the map o S"- (1/2), which

has degree -1, slight modification of Lemm 11 yields

where cx(k), as usual, is represented by rx nd/(x, g) (p(x), (x).g).
Combining this with our previous equality, we obtain,

cx[M1 -- M2, 81 -- 82] cx[M1, 81] "JU cx[M2, 82] cx[],

We could evaluate cx[k] directly by examining lc. Instead, we make use of
the simple observation that cx[lc] is independent of M1, M,, s, and s, so that
we may specialize" let M," S", a 1, 2, and let s, be arbitrary. Then,
since M -[- M S",

cx[M1 Jr- M2,81 -}- 82] cx[M, 81] cx[M, s] cx[S’],

which, together with the above equality, yields the desired value for cx[t],
Q.E.D.

APPENDIX

As specified in Definition 2.2, an almost X-structure on a manifold M is an
X-structure on Mn-interior Dn, where D is some closed n-disc smoothly im-
bedded in Mn. The purpose of this section is to sketch a justification for the
following assertion: For purposes of studying: (i) the question of existence of
almost X-structures, (ii) the homotopy classification problem for almost X-struc-
tures, (iii) the extension problem for almost X-structures (e.g., possible values of
obstructions to extending), (iv) the homotopy classification problem for extensions



of a fixed almost X-structure;--the particular choice of the imbedded disc D
interior M is irrelevant.
The principal tool that we use to justify the bove statement is the following

result due to Palais nd Cerf [15].
Let M be a closed, compact, oriented, connected n-manifold, and let

f, g D’[O, 2]-- M be orientation-pereserving imbeddings. Then, there exists
a diffeomorphism H M ---> M, diffeotopic to the identity, with H f g.

Thus, there are diffeomorphisms M-M tking ny one disc imbedded in M
onto ny other. The differentials of such diffeomorphisms determine bundle
maps r.(X) -- r(X) which cn be used to pull bck almost X-structures
defined on the complement of one open disc to lmost X-structures defined on
the complement of nother. Such u pull-bck procedure determines 1-1
correspondence between structures over one complement and structures over
nother; the correspondence preserves homotopy classes, sends extendible
structures to extendible ones, and extensions to extensions. Indeed, corre-
sponding extensions are homotopic us cross-sections M -- r(X), the homo-
topy determined by the diffeotopy to the identity. Finally, the naturlity of
the obstruction classes c:(M, s) and the fact that the diffeomorphisms used
hve degree one imply that if s and are ulmost X-structures that correspond
as described above, then cx[M, s] cx[M, t].
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