OBSTRUCTIONS TO EXTENDING ALMOST X-STRUCTURES

BY
Peter J. Kahn ${ }^{1}$

1. Introduction

This paper has its origin in two unexpected phenomena that I encountered while constructing certain almost-complex manifolds. First, I noticed that, although a smooth, oriented manifold M may admit an almost-complex (or even a complex) structure, the manifold $-M$ obtained from it by reversing its orientation may not. Secondly, I noticed that although two smooth, oriented manifolds M_{1} and M_{2} may admit almost-complex (or even complex) structures, their connected sum $M_{1}+M_{2}$ may not.

Indeed, complex projective 2 -space, $C P^{2}$, with the standard smoothness structure and orientation, exemplifies both phenomena, for neither $-C P^{2}$ nor $C P^{2}+C P^{2}$ admit almost-complex structures. Simple obstruction-theoretic arguments, using the calculations, of, say, [11], confirm this assertion. Moreover, these arguments indicate where the trouble lies. Briefly, it is possible to show that, when open 4 -discs are deleted from $-C P^{2}$ and $C P^{2}+C P^{2}$, the resulting manifolds-with-boundary admit almost-complex structures. According to [11], the obstruction to extending such a structure over $-C P^{2}$ or $C P^{2}+C P^{2}$ is a linear combination of certain characteristic numbers (Chern, Pontrjagin, Euler), which, with one exception, are all additive (that is, they respect orientation and connected sum). Thus, the obstruction is not additive, which means that its vanishing for $C P^{2}$ does not imply its vanishing for $-C P^{2}$ or $C P^{2}+C P^{2}$; indeed, it definitely does not vanish for these latter. The exceptional characteristic number is the Euler characteristic, χ, which, for any smooth, oriented, n-manifolds M_{1}^{n} and M_{2}^{n} satisfies the following wellknown relations:

$$
\begin{gather*}
\chi\left[-M_{1}^{n}\right]=\chi\left[M_{1}^{n}\right]=-\chi\left[M_{1}^{n}\right]+\chi\left[M_{1}^{n}\right] \chi\left[S^{n}\right] \tag{1}\\
\chi\left[M_{1}^{n}+M_{2}^{n}\right]=\chi\left[M_{1}^{n}\right]+\chi\left[M_{2}^{n}\right]-\chi\left[S^{n}\right] \tag{2}
\end{gather*}
$$

where S^{n} is the standard, oriented n-sphere. Relation (1) is trivial. Relation (2) is most easily verified by triangulating M_{1}^{n} and M_{2}^{n}, deleting the interior of an n-simplex from each and matching them along the resulting simplex boundaries, thus obtaining $M_{1}+M_{2}$, and calculating χ on the simplex chain level.

The main point of this paper is to generalize relations (1) and (2) (Theorems 1 and 2) and to show that their "semi-additivity" is (in a sense to be clarified in §2) an unstable phenomenon. Central to the generalization is

[^0]the concept of an almost- X-structure, which, together with other definitions and the main results, is presented in §2.

In §3, we present some applications of these results. For example, we obtain some of the results of Massey [11, Theorem II] on obstructions to the existence of almost-complex structures (Corollary 2 and subsequent remarks). We also obtain a special case of a result of Milnor (proof unpublished, but see [3, pp. 122-127]) : namely, every stably almost-complex manifold is complexcobordant to an almost-complex manifold (equivalently, every stably almostcomplex manifold has the same Chern numbers as some almost-complex manifold). Finally, in Corollary 6, we show that, for every $k \geq 1$, there exist two (smooth, closed, compact, connected, oriented) $8 k$-manifolds, both of the same oriented-homotopy type, only one of which admits an almost-complex structure. For another application, which will appear in [8], we construct pairs of manifolds of the same oriented homotopy type but not complexcobordant. These enable us to answer affirmatively the following unpublished conjecture of Milnor: a rational, linear combination of Chern numbers is an oriented-homotopy-type invariant for almost-complex manifolds if and only if it is a rational linear combination of the Euler characteristic and the Index.

In $\S 4$, we present proofs of the results stated in §2, as well as definitions of more local interest.

2. Main definitions and results

Throughout this paper, we shall deal simultaneously with two situations in both of which feature a topological group G, a principal G-bundle ξ, and a topological space X on which there is defined a fixed, not necessarily effective G-action. We shall be interested in cross-sections or partial cross-sections of the bundle $\xi(X)$ associated to ξ with fibre X.

In one situation, $G=S O_{n}, n \geq 2$, and $\xi=\tau_{M}$, the principal $S O_{n}$ tangent bundle of an oriented, smooth n-manifold M^{n}. In the other, $G=S O$, the stable orthogonal group, and ξ is the principal $S O$ tangent bundle of M^{n}, $n \geq 2$, which we still denote by τ_{M}. In both cases, we require M^{n} to be closed, compact, ${ }^{2}$ connected, and we require X to be pathwise connected and ($n-1$)-simple.

Although, by and large, we deal with both cases at once, we shall occasionally want to sort one out. We do so by appropriate use of the words "unstable" (to indicate the first case) or "stable" (to indicate the second).

Definition 2.1. An X-structure on M^{n} is a cross-section of $\tau_{M}(X)$. Two X-structures on M^{n} are said to be homotopic if, as maps, they are homotopic through cross-sections of $\tau_{M}(X)$. (Compare [10, p. 4] and [14].)

Examples. (a) X is arbitrary, the G-action is trivial. In this case, an X-structure on M^{n} corresponds simply to a map $M^{n} \rightarrow X$.

[^1]In the other two examples that interest us, X is a homogeneous space $G / H, H$ a closed subgroup of G, with G acting on X by left translation. A cross-section of $\tau_{M}(X)$ corresponds to a reduction of the group of τ_{M} to H (cf. [16, p. 44]).
(b) $\quad G=S O_{n}$ and $H=S O_{n-1}$. Then $X=S^{n-1}$, the standard sphere in Euclidean n-space, $\tau_{M}(X)$ is the tangent sphere bundle of M, and an X structure corresponds to a non-singular vector field on M.
(c) $G=S O_{2 k}$ and $H=U_{k}$ (imbedded in $S O_{2 k}$ in the standard way). An X-structure on $M^{2 k}$, in this case, is commonly known as an almost-complex structure. When $G=S O$ and $H=U \subset S O$, then a cross-section of $\tau_{M^{n}}(X)$ is called a stable almost-complex structure.

In this paper, the word "almost" is also used in a different sense.
Definition 2.2. An almost X-structure on M^{n} is an X-structure on M^{n}-interior D^{n}, where D^{n} is some closed n-disc smoothly imbedded in M^{n}.

We show, in the Appendix, that for most questions involving almost X-structures, the particular choice of imbedded disc D^{n} is irrelevant.

Now, let $N=M^{n}$-interior D^{n}, where D^{n} is as above, and let s be an X structure on N. The obstruction to extending s over M is a class

$$
c_{X}(M, s) \in H^{n}\left(M, N ; \pi_{n-1}(X)\right) \cong \pi_{n-1}(X)
$$

Let $\mu_{M} \in H_{n}(M, N)$ be the image of the orientation generator of $H_{n}(M)$ under the inclusion-induced isomorphism $H_{n}(M) \cong H_{n}(M, N)$, and let 〈 , 〉 denote the Kronecker evaluation pairing

$$
H^{n}\left(M, N ; \pi_{n-1}(X)\right) \times H_{n}(M, N) \rightarrow \pi_{n-1}(X)
$$

Definition 2.3. For M and s as above, let

$$
c_{X}[M, s]=\left\langle c_{X}(M, s), \mu_{M}\right\rangle \in \pi_{n-1}(X)
$$

Examples. We refer by letter to the examples given above.
(a) In this case, the classes $c_{X}[M, s] \epsilon \pi_{n-1}(X)$ are those represented by maps $\partial D^{n}=S^{n-1} \rightarrow X$ that extend over N. For a special case of some interest, take M^{n} to be a π-manifold (closed, compact, connected, n odd) and suppose that X is $(k-1)$-connected, $2 k \geq n$. Then, using surgery, one can easily show that $c_{X}[M, s]=0[2, \mathrm{p} .87]$.
(b) In this case, it is a classical result of Hopf [5] that each class

$$
c_{X}[M, s] \epsilon \pi_{n-1}\left(S^{n-1}\right)
$$

equals the Euler characteristic $\chi[M]$ (under the standard identification of $\pi_{n-1}\left(S^{n-1}\right)$ with $\left.Z\right)$. In the stable case, non-zero cross-sections of vectorbundle representatives of τ_{M} always exist, so that it makes sense to define

$$
\begin{aligned}
\chi\left[\tau_{M}\right] & =\chi[M] & & \text { in the unstable case } \\
& =0 & & \text { in the stable case } .
\end{aligned}
$$

(c) In this case, Theorem II of [11] calculates $c_{X}\left[M^{2 k}, s\right]$ under certain circumstances. For example, when $k \equiv 2(\bmod 4)$, the group $\pi_{2 k-1}\left(S O_{2 k}\right) \cong Z$, and the integer $c_{x}\left[M^{2 k}, s\right]$ is given by

$$
\frac{1}{4}\left(\sum_{i+j=k}(-1)^{i} c_{i} c_{j}[s]-(-1)^{l} p_{l}\left[\tau_{M}\right]\right)
$$

where $2 l=k, p_{l}\left[\tau_{M}\right]$ is the top Pontrjagin number of $M^{2 k}, c_{i} c_{j}[s], i, j<k$, is the Chern number obtained by evaluating the cup product of Chern classes of $s, c_{i}(s)$ บ $c_{j}(s)$, on the orientation generator of $H_{2 k}(M)$, and $c_{k}[s]=\chi\left[\tau_{M}\right]$. (Cf. Corollary 2, §3.)

Now, let S^{n} be the unit sphere in Euclidean $(n+1)$-space, endowed with the standard orientation. Since S^{n}-point is contractible, S^{n} admits almost X-structures, and any two such structures with the same domain are homotopic. Moreover, for any two smoothly imbedded discs $D_{1} \subset S^{n}$ and $D_{2} \subset S^{n}$, there is a degree-one homeomorphism $S^{n} \rightarrow S^{n}$ taking D_{1} onto D_{2}. From these facts it follows easily that $c_{X}\left[S^{n}, s\right]$ is independent of the almost X-structure s. Henceforth, we write it as $c_{X}\left[S^{n}\right]$. It can be regarded as the obstruction to the existence of an X-structure on S^{n}. In the stable case, $c_{X}\left[S^{n}\right]=0$ because S^{n} is a π-manifold.

If M^{n}, M_{1}^{n}, and M_{2}^{n} are oriented, smooth n-manifolds, then, as in the introduction, we denote the connected sum of M_{1}^{n} and M_{2}^{n} by $M_{1}^{n}+M_{2}^{n}$ and by $-M^{n}$ the oriented manifold obtained from M^{n} by reversing its orientation.

Lemma 1. Let M^{n}, M_{1}^{n}, and M_{2}^{n} be as above, and suppose that they admit almost X-structures. Then, $-M^{n}$ and $M_{1}^{n}+M_{2}^{n}$ admit almost X-structures.

Part of Lemma 1 is an immediate consequence of the following result, proved in §4.1.

Lemma 2. Let M^{n} be as above, and let $N=M^{n}$-interior D, where D is a closed n-disc smoothly imbedded in M^{n}. Then $\tau_{M} \mid N$ is equivalent in G to $\tau_{-M} \mid N$.

To deduce part of Lemma 1, notice that Lemma 2 implies that $\tau_{M}(X) \mid N$ is equivalent to $\tau_{-M}(X) \mid N$, so that if the former has a cross-section, so does the latter. Indeed, the equivalence establishes a 1-1 correspondence between the cross-sections of these two bundles.

Now, in general, there are, even up to homotopy, many equivalences between these bundles, so that there is no preferred correspondence between their cross-sections. However, there is a particularly good, non-empty class of equivalences, which we call admissible equivalences (see §4.1), such that almost X-structures that correspond to one another under such an equivalence have obstructions that are related by a simple formula.

Theorem 1. Let M^{n} and N be as in Lemma 2, and let s and $-s$ be crosssections of $\tau_{M}(X) \mid N$ and $\tau_{-M}(X) \mid N$, respectively, corresponding under some admissible equivalence. Then,

$$
\begin{equation*}
c_{X}\left[-M^{n},-s\right]=-c_{X}\left[M^{n}, s\right]+\chi\left[\tau_{M}\right] c_{X}\left[S^{n}\right] \tag{3}
\end{equation*}
$$

Next, note that the notation " $M_{1}^{n}+M_{2}^{n}$ " for the connected sum of M_{1}^{n} and M_{2}^{n} is, a priori, ambiguous, since the connected-sum construction depends on the choice of imbedded discs $D_{\alpha}^{n} \subset M_{\alpha}^{n}, \alpha=1,2$ (see §4.4). Nevertheless, one can show that, up to orientation-preserving diffeomorphism, the resulting sum is independent of this choice (see [13]).

Now when we are given almost X-structures s_{α} on $M_{\alpha}^{n}, \alpha=1,2$, it is natural to form the connected sum $M_{1}^{n}+M_{2}^{n}$ with respect to the discs $D_{\alpha}^{n} \subset M_{\alpha}^{n}$ defined by M_{α}^{n}-interior $D_{\alpha}^{n}=$ domain s_{α}. We do so and then define (in $\S 4.4)$ what it means for an almost X-structure on $M_{1}^{n}+M_{2}^{n}$ to be compatible with s_{1} and s_{2}. Such almost X-structures always exist (see $\S 4.4$).

Theorem 2. Given almost X-structures s_{α} on $M_{\alpha}^{n}, \alpha=1,2$, we form the connected sum $M_{1}^{n}+M_{2}^{n}$ as above and let $s_{1}+s_{2}$ be an almost X-structure on $M_{1}^{n}+M_{2}^{n}$ compatible with s_{1} and s_{2}. Then,

$$
\begin{equation*}
c_{X}\left[M_{1}^{n}+M_{2}^{n}, s_{1}+s_{2}\right]=c_{X}\left[M_{1}^{n}, s_{1}\right]+c_{X}\left[M_{2}^{n}, s_{2}\right]-c_{X}\left[S^{n}\right] \tag{4}
\end{equation*}
$$

Applying Theorems 1 and 2 to example b) above, we immediately obtain (1) and (2), so that (3) and (4) are the desired generalizations.

Finally, it is easy to see that the semi-additivity in (3) and (4) are unstable phenomena, for in the stable case $c_{X}\left[S^{n}\right]=0$, so that (3) and (4) become additive.

3. Applications

We begin by obtaining a result (Lemma 6) that enables us to characterize c_{X} under certain circumstances. We apply this result in the case $X=S O_{2 k} / U_{k}$ to calculate c_{X} (Corollary 2). We conclude by applying the calculation to the construction of certain almost-complex manifolds (Corollaries 4-6) as described in §1. Unless stated otherwise, we deal exclusively with the unstable case and with manifolds of dimension $n \geq 3$.

Consider pairs (M_{α}, s_{α}), $\alpha=1,2$, of closed, compact, connected, oriented n-manifolds M_{α}, and X-structures s_{α} defined on M_{α}-interior D_{α}, as in $\S 2$. A map

$$
f:\left(M_{1}, s_{1}\right) \rightarrow\left(M_{2}, s_{2}\right)
$$

is a continuous function $f:\left(M_{1}, M_{1}\right.$-interior $\left.D_{1}\right) \rightarrow\left(M_{2}, M_{2}\right.$-interior $\left.D_{2}\right)$ covered by some map of principal tangent bundles that pulls s_{2} back to s_{1} (see $\S 4.2$). We let $\mathscr{T}(X)$ denote the category of all such pairs and maps, and we let \mathfrak{C} be an arbitrary, full subcategory of $\mathfrak{N}(X)$ satisfying the following conditions:
(i) If $\left(S^{n}, s\right) \in \mathfrak{M r}(X)$, then $\left(S^{n}, s\right) \in \mathbb{C}$.
(ii) If $f:\left(M_{1}, s_{1}\right) \rightarrow\left(M_{2}, s_{2}\right)$ is a map in $\mathfrak{M}(X)$, and if $\left(M_{2}, s_{2}\right) \in \mathbb{C}$, then $\left(M_{1}, s_{1}\right) \in \mathbb{C}$.
(iii) If $\left(M_{\alpha}, s_{\alpha}\right) \in \mathfrak{C}, \alpha=1,2$, then $\left(-M_{1},-s_{1}\right) \in \mathfrak{C}$ and $\left(M_{1}+M_{2}\right.$, $\left.s_{1}+s_{2}\right) \in \mathbb{C}$.
(iv) If $\left(M, s_{1}\right) \in \mathfrak{C}$ and if s_{1} is homotopic to s_{2}, then $\left(M, s_{2}\right) \in \mathfrak{C}$. Of course, $\mathfrak{T l}(X)$ itself satisfies these conditions.

Suppose that φ is an arbitrary function from the objects of \mathfrak{C} to $\pi_{n-1}(X)$; when we want to emphasize that the domain of φ is the class of objects of \mathcal{C}, we write it as $\varphi: \mathfrak{C}$. It may possess some of the following properties.
(1) Naturality. For any map $f:\left(M_{1}, s_{1}\right) \rightarrow\left(M_{2}, s_{2}\right)$ in \mathfrak{C},

$$
\varphi\left(M_{1}, s_{1}\right)=(\text { degree } f) \varphi\left(M_{2}, s_{1}\right)
$$

(2) Homotopy Invariance. If $\left(M, s_{1}\right) \in \mathfrak{C}$, and if s_{1} is homotopic to s_{2}, then $\varphi\left(M, s_{1}\right)=\varphi\left(M, s_{2}\right)$.
If φ satisfies (1) and (2), $\varphi\left(S^{n}, s\right)$ is independent of s, so that we may write it as $\varphi\left(S^{n}\right)$. In this case, φ may additionally satisfy the following:
(3) Semi-additivity. Suppose that $\left(M_{\alpha}, s_{\alpha}\right) \in \mathfrak{C}, \alpha=1,2$.

Then
(a) $\varphi\left(-M_{1},-s_{1}\right)=-\varphi\left(M_{1}, s_{1}\right)+\chi\left[M_{1}\right] \varphi\left(S^{n}\right)$
(b) $\varphi\left(M_{1}+M_{2}, s_{1}+s_{2}\right)=\varphi\left(M_{1}, s_{1}\right)+\varphi\left(M_{2}, s_{2}\right)-\varphi\left(S^{n}\right)$.
(4) Normalization. $\varphi\left(S^{n}\right)=c_{X}\left[S^{n}\right]$.

It is not hard to show that $c_{X}: \mathfrak{M r}(X)$ satisfies (1)-(4).
So far, we only have objects in \mathfrak{C} of the form $\left(S^{n}, s\right)$ at our disposal. Choose any such and suppose that s has domain S^{n}-interior D. Let M^{n} be any π-manifold (closed, compact, connected, oriented), let D_{1} be any closed n-disc smoothly imbedded in M^{n}, and let $N=M^{n}$-interior D_{1}. By the "Gauss map" construction (see [2], p. 86), we can obtain a map

$$
f:\left(M^{n}, N\right) \rightarrow\left(S^{n}, S^{n} \text {-interior } D\right)
$$

and a covering bundle map $\bar{f}: \tau_{M} \rightarrow \tau_{S^{n}}$. Then, letting $t: N \rightarrow N \times X$ be a pull-back of s by \bar{f}, f is a map $\left(M^{n}, t\right) \rightarrow\left(S^{n}, s\right)$ in $\mathfrak{T}(X)$, so that $\left(M^{n}, t\right) \in \mathbb{C}$. We now have

Lemma 3. Let M^{n} be any closed, compact, connected, oriented π-manifold. Then there is an almost X-structure t on M^{n} and an integer K, such that $\left(M^{n}, t\right) \in \mathfrak{C}$ and, for any $\varphi: \mathfrak{C}$ satisfying (1) and (2), $\varphi(M, t)=K \varphi\left(S^{n}\right)$. When n is even, $K=\frac{1}{2} \chi\left[M^{n}\right]$.

Proof. Let t and s be as above. By (1) and (2)

$$
\varphi(M, t)=(\text { degree } f) \varphi\left(S^{n}, s\right)=(\text { degree } f) \varphi\left(S^{n}\right)
$$

Specializing to $\varphi=c_{x}=\chi$ (example (b), §2) when n is even,

$$
\chi\left[M^{n}\right]=(\text { degree } f) \cdot 2
$$

Remark. When n is odd and $n \neq 1,3,7, f$ can be chosen so that degree f is any prescribed integer within a congruence class modulo two. This class, according to [2] and [9], is represented by the semi-characteristic of
$M^{n}(n \neq 1,3,7):$

$$
\chi^{*}\left[M^{n}\right]=\sum_{i=1}^{r-1} \operatorname{rank} H_{i}\left(M^{n}, Z_{2}\right), \quad n=2 r-1
$$

Lemma 4. Suppose that M^{n} is parallelizable. Then, there is an almost X structure s such that $\left(M^{n}, s\right) \in \mathfrak{C}$ and such that, for every $\varphi: \mathfrak{C}$ satisfying (1), $\varphi\left(M^{n}, s\right)=0$.

Proof. When M^{n} is parallelizable, the trivial map

$$
\left(M^{n}, N\right) \rightarrow\left(S^{n}, S^{n} \text {-interior } D\right)
$$

can be covered by a tangent bundle map. Apply (1),
Q.E.D.

Corollary. $S^{p} \times S^{q}$ admits an almost X-structure t such that ($\left.S^{p} \times S^{q}, t\right) \in \mathfrak{C}$ and, for all $\varphi: \mathcal{C}$ satisfying (1) and (2),

$$
\begin{aligned}
\varphi\left(S^{p} \times S^{q}, t\right) & =2 \varphi\left(S^{p+q}\right), & & p \text { and } q \text { even } \\
& =0, & & \text { otherwise. }
\end{aligned}
$$

Proof. $\quad S^{p} \times S^{q}$ is a π-manifold. When p and q are even, $\chi\left[S^{p} \times S^{q}\right]=4$. When p or q is odd, $S^{p} \times S^{q}$ is parallelizable. Apply Lemma 3 or Lemma 4,
Q.E.D.

Lemma 5. Suppose that φ : \mathfrak{C} satisfies (1)-(4) and consider any $(M, s) \in \mathfrak{C}$ for which $\varphi(M, s)=A \varphi\left(S^{n}\right)$. Then (i) if $A^{n} \geq 0$, there is a $(P, t) \in \mathbb{C}$ such that $\varphi(M+|A| P, s+|A| t)=0$; (ii) If $A^{n}<0$, there is $a(P, t) \in \mathbb{C}$ such that $\varphi(-M+|A| P,-s+|A| t)=0$.
(Explanation. $|A|$ is the absolute value of the integer $A, \pm M+|A| P$ is the connected sum of $\pm M$ and $|A|$ copies of $P, \pm s+|A| t$ is the almost X-structure on $\pm M+|A| P$ obtained by gluing together $\pm s$ and $|A|$ copies of t, as described in §4.4. Finally, $(\pm M+|A| P, \pm s+|A| t) \in \mathfrak{C}$, by property (iii) of \mathfrak{C}.)

Proof. An easy extension of property (3) yields

$$
\begin{aligned}
\varphi(\pm M+|A| P, \pm s+|A| t) & \\
& =\varphi(\pm M, \pm s)+|A| \varphi(P, t)-|A| \varphi\left(S^{n}\right)
\end{aligned}
$$

If $A \geq 0$, we let

$$
(P, t)=\left(S^{1} \times S^{n-1}, t\right)
$$

and if $A<0$, we let

$$
(P, t)=\left(S^{2} \times S^{n-2}, t\right)
$$

where t is as in the above corollary. Then, if $A \geq 0$,

$$
\varphi(M+|A| P, s+|A| t)=|A| \varphi\left(S^{n}\right)+0-|A| \varphi\left(S^{n}\right)=0
$$

whereas if $A<0$ and n even,

$$
\begin{aligned}
\varphi(M+|A| P, s+|A| t) & \\
& =-|A| \varphi\left(S^{n}\right)+2|A| \varphi\left(S^{n}\right)-|A| \varphi\left(S^{n}\right)=0
\end{aligned}
$$

When n is odd, $\chi[M]=0$, so that $\varphi(-M,-s)=-\varphi(M, s)$. Therefore, when, in addition, $A<0$,

$$
\begin{aligned}
\varphi(-M+|A| P,-s+|A| t) & \\
& =|A| \varphi\left(S^{n}\right)+0-|A| \varphi\left(S^{n}\right)=0, \quad \text { Q.E.D. }
\end{aligned}
$$

Note that the choice of (P, t) depends only on A.
Now, let $\mathfrak{T}_{0}(X)$ be the full subcategory of $\mathfrak{N}(X)$ whose objects are all pairs (M, s) for which $c_{X}[M, s]$ is a multiple of $c_{X}\left[S^{n}\right]$. It is not hard to show that $\mathscr{T}_{0}(X)$ satisfies (i)-(iv). Property (i) is obvious, (ii) follows from the fact that c_{x} satisfies (1), (iii) follows from the fact that c_{x} satisfies (3), and (iv) follows from the fact that c_{X} satisfies (2).

Lemma 6. Suppose that $\varphi: \mathfrak{M}_{0}(X)$ satisfies (1)-(4) and that null space $\varphi \supset$ null space $c_{X} . \quad$ Then, $\varphi=c_{X} \mid \mathscr{M}_{0}(X)$.
(Explanation. By "null space φ," we mean all objects sent to zero by φ. By " $c_{X} \mid \mathfrak{T}_{0}(X)$," we mean the restriction of c_{X} to objects of $\mathfrak{N}_{0}(X)$.) This lemma is, of course, an analogue of a standard algebraic fact.

Proof. Choose $(M, s) \in \mathscr{T}_{0}(X)$ and suppose that $c_{X}[M, s]=A c_{X}\left[S^{n}\right]$. By Lemma 5, we may choose a product of spheres P and an almost X-structure t, depending only on A, so that

$$
(P, t) \in \mathfrak{M}_{0}(X) \quad \text { and } \quad c_{x}[\pm M+|A| P, \pm s+|A| t]=0
$$

Thus $\varphi(\pm M+|A| P, \pm s+|A| t)=0$. Since $\varphi: \mathscr{I t}_{0}(X)$ satisfies (3) and (4), we may expand this last relation to solve for $\varphi(M, s)$:

$$
\varphi(M, s)=A \varphi\left(S^{n}\right)=A c_{X}\left[S^{n}\right]=c_{X}[M, s], \quad \text { Q.E.D. }
$$

To apply Lemma 6, we need some more information about $c_{X}\left[S^{n}\right]$. Let $\pi_{X}: G \rightarrow X$ be defined by $\pi_{X}(g)=g \cdot \lambda_{0}$, where x_{0} is some arbitrary point chosen in X. We now state a result, proved in §4.2, that applies to both the stable and unstable cases.

Lemma 7. Let $\hat{k}: S^{n-1} \rightarrow G$ be a characteristic map for $\tau_{S^{n}}$ (see $\S 4.2$ or $[16$, p. 97]). Then, $\pi_{X} \circ \hat{k}$ represents $c_{X}\left[S^{n}\right]$.

Next, let the pair of spaces (X, Y) be either $\left(S O_{n}, S O\right), n \geq 3$, or ($S O_{2 k} / U_{k}, S O / U$), $k \geq 1$. In either case, there is a standard inclusion map $i: X \rightarrow Y$. In the second case, let $n=2 k$.

Lemma 8. $\quad c_{X}\left[S^{n}\right]$ generates kernel $\left(i_{*}: \pi_{n-1}(X) \rightarrow \pi_{n-1}(Y)\right)$.
Proof. When $(X, Y)=\left(S O_{n}, S O\right)$, the result follows from the facts that $c_{S o_{n}}\left[S^{n}\right]$ is represented by a characteristic map for $\tau_{S^{n}}$ (Lemma 7, together with the observation that $\pi_{S o_{n}}: S O_{n} \rightarrow S O_{n}$ is homotopic to the identity) and that this map represents a generator of kernel $i_{*}(23.2$ of [16]). In the rest
of the proof, we consider the second case. There is a commutative diagram,

in which all the maps are standard inclusions or projections. Thus, the induced diagram, in which the rows are exact and the columns are epimorphisms, commutes:

Therefore, by standard diagram chasing, kernel $i_{*}=\left(\pi_{x}\right)_{*}$ (kernel i_{*}^{\prime}). By the first case considered, kernel i^{*} is generated by $c_{S o_{n}}\left[S^{n}\right]$, which is represented by a characteristic map \hat{k} of $\tau_{S^{n}}$. Therefore, $\pi_{x} \circ \hat{k}$ represents a generator of kernel i_{*}. Apply Lemma 7, Q.E.D.

For the convenience of the reader, we present the following tables (cf. [18, p. 171], for the first two, and [11] for the third). Note that, for $(X, Y)=$ ($S O_{n}, S O$), $n \neq 1,3,7$, kernel i_{*} has infinite order or order two according as n is even or odd. In the second case, kernel i_{*} is the entire group $\pi_{2 k-1}(X)$ except when $k \equiv 0(\bmod 4)$.

Table 1

$$
(X, Y)=\left(S O_{n}, S O\right), \quad n \neq 1,2,3,7
$$

$n-1(\bmod 8)$	0	1	$2,4,6$	5	3,7
$\pi_{n-1}(X)$	$Z_{2}+Z_{2}$	$Z+Z_{2}$	Z_{2}	Z	$Z+Z$
$\pi_{n-1}(Y)$	Z_{2}	Z_{2}	0	0	Z

Table 2

n	1	2	3
$\pi_{n-1}(X)$	0	Z	7
$\pi_{n-1}(Y)$	0	Z_{2}	0

Table 3
$(X, Y)=\left(S O_{2 k} / U_{k}, S O / U\right)$

$k(\bmod 4)$	$\pi_{2 k-1}(X)$	$\pi_{2 k-1}(Y)$
0	$Z+Z_{2}$	
1	$Z_{r}, r=(k-1)!$	Z_{2}
2	0 3	
$Z_{1 / 2 r}, r=(k-1)!$	0	

The relationship between these considerations and Lemma 6 comes from the following observation. Let (X, Y) and $i: X \rightarrow Y$ be as above. The map i determines, for each manifold M, a fibre-preserving map $i_{0}: \tau_{M}(X) \rightarrow \tau_{M}(Y)$ that sends each almost X-structure s to an almost Y-structure $i_{0}(s)$. Clearly

$$
c_{Y}\left[M, i_{0}(s)\right]=i_{*}\left(c_{X}[M, s]\right)
$$

Since kernel i_{*} is generated by $c_{X}\left[S^{n}\right], \mathscr{T r}_{0}(X)$ consists precisely of those pairs $(M, s) \in \mathfrak{M r}(X)$ for which $i_{0}(s)$ extends over M. When $(X, Y)=\left(S O_{n}, S O\right)$, $n \neq 1,3,7$, the first member M of each pair $(M, s) \in \mathfrak{T}_{0}(X)$ must, then, be a π-manifold. Lemma 3 shows that every π-manifold is so obtained. When $(X, Y)=\left(S O_{2 k} / U_{k}, S O / U\right)$, the first member M of each pair $(M, s) \in \mathfrak{T r}_{0}(X)$ admits a stable almost-complex structure (e.g., some extension of $i_{0}(s)$). Now, it is not hard to show, using the fact that $M^{2 k}$-interior D has the homotopy type of a $(2 k-1)$-dimensional complex, that the association $s \rightarrow i_{0}(s)$ determines a 1-1 correspondence on homotopy classes, so that every M admitting a stable almost-complex structure appears as a first member of some pair in $\mathscr{T}_{0}(X)$.

We now let $(X, Y)=\left(S O_{n}, S O\right), n \neq 1,3,7$, and define $\varphi: \mathscr{M}_{0}(X)$ as follows:

$$
\begin{aligned}
\varphi(M, s) & =\frac{1}{2} \chi[M] c_{X}\left[S O_{n}\right], & & n \text { even } \\
= & \chi^{*}[M] c_{X}\left[S O_{n}\right], & & n \text { odd }
\end{aligned}
$$

(see the remark following Lemma 3). It is easily verified that $\varphi: \mathfrak{N}_{0}(X)$ satisfies (2)-(4). When n is even, the classical characterization of χ by Hopf implies immediately that $\varphi: \mathscr{T}_{0}(X)$ satisfies (1) and that null space $\varphi \supset$ null space c_{X}. When n is odd, these facts can be proved by the methods of [2] or [9]. Thus, Lemma 6 implies that $\varphi=c_{X} \mid \mathfrak{M}_{0}(X)$, from which it immediately follows that a π-manifold $M^{n}, n \neq 1,3,7$, is parallelizable if and only if $\chi\left[M^{n}\right]=0$, if n is even, or $\chi^{*}\left[M^{n}\right] \equiv 0(\bmod 2)$, if n is odd (see [2, Theorem2]). However, when n is even, these results are obtained much more directly by the methods of Lemma 3, and when n is odd, the verification of the crucial
properties of φ (in [2] or [9]) amounts to showing that $\varphi=c_{X} \mid \mathfrak{T r}_{0}(X)$. Thus we state only the following:

Corollary 1. Let $X=S O_{n}, n \neq 1,3,7$, and define $\varphi: \mathfrak{M}_{0}(X)$ by

$$
\begin{aligned}
\varphi(M, s) & =\frac{1}{2} \chi[M], & & n \text { even } \\
& =\chi^{*}[M](\bmod 2), & & n \text { odd. }
\end{aligned}
$$

Properties (1)-(4) are satisfied by φ and uniquely characterize it. (Here, $(M, s) \in \mathscr{M}_{0}(X)$ if and only if M is $a \pi$-manifold and s is an almost-framing of M that extends as a stable framing over M.)

In the remainder of this section, we deal with the case

$$
(X, Y)=\left(S O_{2 k} / U_{k}, S O / U\right)
$$

Unless stated otherwise, $k>1$.
Recall that $\left(M^{2 k}, s\right) \in \mathfrak{T}_{0}(X)$ if and only if $i_{0}(s)$ (the stable structure determined by s) extends over M. Let s_{0} be any extension. There are then defined Chern classes $c_{i}(s) \in H^{2 i}(M), i=1, \cdots, k-1$, and $c_{i}\left(s_{0}\right) \in H^{2 i}(M)$, $i=1, \cdots, k$. Since they are stable invariants, $c_{i}(s)=c_{i}\left(s_{0}\right), i=1, \cdots$, $k-1$. We denote by $c_{k}\left[s_{0}\right]$, the evaluation of $c_{k}\left(s_{0}\right)$ on the orientation class of M. We now define $\varphi: \mathscr{T}_{0}(X)$ by

$$
\varphi\left(M^{2 k}, s\right)=\frac{1}{2}\left(\chi[M]-c_{k}\left[s_{0}\right]\right) c_{X}\left[S^{2 k}\right]
$$

Lemma 9. $\quad \varphi: \mathfrak{I g}_{0}(X)$ is well-defined.
Proof. We must show that $\varphi\left(M^{2 k}, s\right)$ does not depend on the choice of extension s_{0}. When $k=2 l$, this is an immediate consequence of the wellknown formula

$$
\begin{aligned}
(-1)^{l} p_{l}\left[M^{2 k}\right] & =2 c_{k}\left[s_{0}\right]+\sum_{i=1}^{k-1}(-1)^{i} c_{i} c_{k-i}\left[s_{0}\right] \\
& =2 c_{k}\left[s_{0}\right]+\sum_{i=1}^{k=1}(-1)^{i} c_{i} c_{k-i}[s] .
\end{aligned}
$$

Here, $p_{l}\left[M^{2 k}\right]$ is the evaluation of the top Pontrjagin class of $M^{2 k}$ on the orientation generator, and $c_{i} c_{k-i}\left[s_{0}\right]$ (resp., $c_{i} c_{k-i}[s]$) is the evaluation of $c_{i}\left(s_{0}\right) \cup c_{k-i}\left(s_{0}\right)$ (resp., $\left.c_{i}(s) \cup c_{k-i}(s)\right)$. Clearly, these values depend only on M and s. Thus, so does the value $\frac{1}{2}\left(\chi[M]-c_{k}\left[s_{0}\right]\right)$.

When k is odd and >3, the conclusion follows from the next lemma.
Lemma 10. Suppose that k is odd and >3, that $\left(M^{2 k}, s\right) \in \mathfrak{T r}_{0}(X)$, and that s_{0} and s_{1} are two stable extensions of s over $M^{2 k}$. Then

$$
c_{k}\left[s_{0}\right] \equiv c_{k}\left[s_{1}\right] \quad\left(\bmod 2 \cdot \operatorname{order} c_{X}\left[S^{2 k}\right]\right)
$$

Proof. Note that

$$
\begin{aligned}
2 \cdot \operatorname{order} c_{X}\left[S^{2 k}\right] & =2[(k-1)!], & & k \equiv 1(\bmod 4) \\
& =(\mathrm{k}-1)!, & & k \equiv 3(\bmod 4)
\end{aligned}
$$

Let $N=$ domain s, and let $p: M^{2 k} \rightarrow S^{2 k}$ be the degree-one map obtained by collapsing N to a point. Let $\alpha_{i} \in \widetilde{K} U\left(M^{2 k}\right)$ be the classes determined by $s_{i}, i=0,1$, respectively. Since the restrictions of α_{i} to N are equal, there is a $\beta \in \widetilde{K} U\left(S^{2 k}\right)$ such that $\alpha_{0}-\alpha_{1}=p^{*}(\beta)$. (To see this, use for example, the exact $\bar{K} U$ sequence of the pair $\left(M^{2 k}, N\right)$.) According to Atiyah and Hirzebruch [1], $c_{k}(\beta)$ is divisible by $(k-1)$!. Thus

$$
c_{k}\left(\alpha_{0}\right) \equiv c_{k}\left(\alpha_{1}\right) \quad(\bmod (k-1)!)
$$

which proves the desired result for $k \equiv 3(\bmod 4)$.
When $k \equiv 1(\bmod 4)$ we make use of the fact that $\widetilde{K} U\left(S^{2 k}\right) \cong Z$, that $\widetilde{K} O\left(S^{2 k}\right) \cong Z_{2}$, and that realification $r: \widetilde{K} U\left(S^{2 k}\right) \rightarrow \widetilde{K} O\left(S^{2 k}\right)$ is, in this case, an epimorphism. The hypotheses imply that the equivalence $\alpha_{0}\left|N \approx \alpha_{1}\right| N$ extends over $M^{2 k}$ as a real equivalence, ${ }^{3}$ so that β satisfies $r(\beta)=0$. Thus, β is an even class in $\widetilde{K} U\left(S^{2 k}\right)$, and so

$$
c_{k}\left(\alpha_{0}\right) \equiv c_{k}\left(\alpha_{1}\right) \quad(\bmod 2[(k-1)!])
$$

Q.E.D.

When $k=3, \pi_{2 k-1}(X)=0$, so that $\varphi: \mathfrak{T}_{0}(X)$ is well-defined in this case too.
It is easy to verify that φ satisfies (1)-(4). Now, suppose that $c_{X}[M, s]=0$, and let t be an (unstable) extension of s. Then, $i_{0}(t)$ is an extension of $i_{0}(s)$. By standard results, (e.g. see [4] or [12, p. 65]), $c_{k}\left[i_{0}(t)\right]=\chi[M]$, so that $\varphi(M, s)=0$, that is, null space $\varphi \supset$ null space c_{X}. Thus we have

Corollary 2. For any $k \geq 1$, let $M^{2 k}$ be a smooth, closed, compact, connected, oriented manifold, admitting an almost X-structure $s, X=S O_{2 k} / U_{k}$, that extends over M as a stable structure s_{0}. Then

$$
c_{X}\left[M^{2 k}, s\right]=\frac{1}{2}\left(\chi\left[M^{2 k}\right]-c_{k}\left[s_{0}\right]\right) c_{X}\left[S^{2 k}\right]
$$

Proof. For $k \neq 1,3$, this follows from Lemma 6. When $k=$ $1,3, \pi_{2 k-1}(X)=0$, so that the result holds in these cases as well, \quad Q.E.D.

Remark. When $k \equiv 2(\bmod 4)$, this result is equivalent to Theorem II of [11]. (Cf. Example $c), \S 2)$. When $k \equiv 0(\bmod 4)$, Theorem II of [11] can be obtained by considering, for any $(M, s) \epsilon \mathfrak{M r}(X)$, the pair $(M+M, s+s)$ $\epsilon \mathscr{T r}_{0}(X)$ and applying Corollary 2 to it. That $i_{0}(s+s)$ extends over $M+M$ follows from the equalities

$$
c_{Y}\left[M+M, i_{0}(s+s)\right]=i_{*}\left(c_{X}[M+M, s+s]\right)=2 i_{*}\left(c_{X}[M, s]\right)
$$

and the fact that $\pi_{2 k-1}(Y) \cong Z_{2}$.
We allow $k=1$ in the remaining results.
Corollary 3. A stable almost-complex structure t on $M^{2 k}$ admits a reduction to an almost-complex structure, if and only if $c_{k}[t]=\chi\left[M^{2 k}\right]$.

[^2]Remark. This result is known, but I know of no proof in the literature.
Proof. The necessity of the relation is standard (see [4] or [12, p. 65]).
Let s be an almost X-structure ($X=S O_{2 k} / U_{k}$) on $M^{2 k}$ such that $i_{0}(s)$ has an extension s_{0} homotopic to t. By the remarks preceding Corollary 1, such an s always exists. Then,

$$
\begin{aligned}
c_{X}[M, s] & =\frac{1}{2}\left(\chi[M]-c_{k}\left[s_{0}\right]\right) c_{X}\left[S^{2 k}\right] \\
& =\frac{1}{2}\left(\chi[M]-c_{k}[t]\right) c_{X}\left[S^{2 k}\right]=0
\end{aligned}
$$

so that s extends to an almost-complex structure s_{1}. Let $\alpha_{1}, \alpha_{2} \in \widetilde{K} U\left(M^{2 k}\right)$ be determined by s_{1} and t, respectively, and let $N=$ domain s. Then, α_{1} and α_{2} have the same restriction to N; moreover, $c_{k}\left[\alpha_{1}\right]=\chi\left[M^{2 k}\right]=c_{k}\left[\alpha_{2}\right]$. As in the proof of Lemma 10 , there is a $\beta \in \widetilde{K} U\left(S^{2 k}\right)$ with $p^{*}(\beta)=\alpha_{1}-\alpha_{2}$, where $p: M^{2 k} \rightarrow S^{2 k}$ is the degree-one map obtained by collapsing N to a point. But, then, β satisfies $p^{*}\left(c_{k}(\beta)\right)=0$, so that $C h_{k}(\beta)=0$. Since

$$
C h: K U^{*}\left(S^{2 k}\right) \rightarrow H^{*}\left(S^{2 k} ; Q\right)
$$

is injective, it follows that $\beta=0$, so that $\alpha_{1}=\alpha_{2}$,
Q.E.D.

Corollary 4. Suppose that $M^{2 k}$ admits an almost X-structure. When $k \not \equiv 0(\bmod 4), M^{2 k}$ is oriented-cobordant to an almost-complex manifold. When $k \equiv 0(\bmod 4), M^{2 k}+M^{2 k}$ is oriented-cobordant to an almost-complex manifold.

Proof. Let s be an almost X-structure on $M^{2 k}$. When $k \not \equiv 0(\bmod 4)$, $c_{X}\left[M^{2 k}, s\right]$ is a multiple of $c_{X}\left[S^{2 k}\right]$, so that Lemma 5 applies. There exists a product of spheres $P^{2 k}$ and a non-negative integer B, such that $M^{2 k}+B P^{2 k}$ admits an almost-complex structure. Clearly, $M^{2 k}$ is oriented-cobordant to $M^{2 k}+B P^{2 k}$. When $k \equiv 0(\bmod 4), c_{X}\left[M^{2 k}+M^{2 k}, s+s\right]$ is a multiple of $c_{X}\left[S^{2 k}\right]$. Apply Lemma 5 again. (When $k=1$, all oriented $2 k$-manifolds have complex structures.)
Q.E.D.

Corollary 5. Every even-dimensional stably almost-complex manifold is complex-cobordant to an almost-complex manifold.

Proof. It suffices to show that, given any manifold $M_{1}^{2 k}$ with stable almostcomplex structure s_{1}, there exists a manifold $M_{2}^{2 k}$ with stable almost-complex structure s_{2} admitting a reduction to an almost-complex structure, such that the Chern numbers determined by s_{1} and s_{2} are the same (see [3]).

Given $M_{1}^{2 k}$ and s_{1}, as above, let $A=\frac{1}{2}\left(\chi\left[M_{1}\right]-c_{k}\left[s_{1}\right]\right)$. By Lemma 5 and Corollary 2, there exists a product of spheres P such that $M_{2}^{2 k}=M_{1}^{2 k}+|A| P$ admits an almost-complex structure, whose stabilization we call s_{2}. It is easy to show that Chern numbers involving non-top-dimensional Chern classes are unchanged by connected-summation with P. Moreover, $c_{k}\left[s_{2}\right]=$ $\chi\left[M_{2}^{2 k}\right]=\chi\left[M_{1}^{2 k}\right]-2 A=c_{k}\left[s_{1}\right]$, Q.E.D.

Remark. Corollary 5 is a special case of a result of Milnor (see [3, pp. 122-127]), no proof of which appears in print.

Corollary 6. For every $k \geq 1$, there are closed, compact, connected oriented $8 k$-manifolds, M_{1} and M_{2} such that
(i) $\quad M_{1}$ has the same oriented homotopy type as M_{2}
(ii) $\quad M_{1}$ admits an almost-complex structure, whereas M_{2} does not.

Proof. Suppose that $N^{8 k}$ admits a stable almost-complex structure s, and suppose that $c_{i}(s)=0$, unless $i=2 k, 4 k$. Then, the Chern classes $c_{2 k}(s)$ and $c_{4 k}(s)$ can be expressed in terms of the Pontrjagin classes of $N^{8 k}, p_{k}\left(N^{8 k}\right)$ and $p_{2 k}\left(N^{8 k}\right)$. Therefore, by Corollary $3, s$ reduces to an almost-complex structure if and only if

$$
l\left[N^{8 k}\right]=\chi\left[N^{8 k}\right]
$$

where $l\left[N^{8 k}\right]$ is a certain linear combination of the Pontrjagin numbers $p_{c_{c}}^{2}\left[N^{8 k}\right]$ and $p_{2 k}\left[N^{8 k}\right]$ of $N^{8 k}$. Note that this relation is independent of s. Thus, $N^{8 k}$ admits an almost-complex structure if and only if $l\left[N^{8 k}\right]=\chi\left[N^{8 k}\right]$.

Now, consider two (4k-1)-connected 8k-manifolds N_{1} and N_{2} that have the same oriented-homotopy type and satisfy $l\left[N_{1}\right] \neq l\left[N_{2}\right]$. Examples of such manifolds are constructed in [6], [7], and in [17]. Obstructions to the existence of an almost X-structure s_{i} on N_{i} vanish trivially, $i=1,2$. Thus $s_{i}+s_{i}$ is an almost X-structure on $N_{i}+N_{i}$; the remark following Corollary 2 shows that $s_{i}+s_{i}$ extends to a stable almost-complex structure on $2 N_{i}=N_{i}+N_{i}$. Let

$$
A=\chi\left[N_{1}\right]-l\left[N_{1}\right]-1
$$

and let $P=S^{1} \times S^{8 k-1}$, if $A \geq 0$, and $P=S^{2} \times S^{8 k-2}$, if $A<0$. P, being a π-manifold, admits a trivial stable almost-complex structure, so that $M_{i}=2 N_{i}+|A| P$ admits a stable almost-complex structure with $c_{l}\left(M_{i}\right)=0$, unless $l=2 k, 4 k$. We compute $\chi\left[M_{i}\right]$.

$$
\begin{aligned}
\chi\left[M_{i}\right] & =\chi\left[2 N_{i}\right]-2 A \\
& =2 \chi\left[N_{i}\right]-2-2 \chi\left[N_{1}\right]+2+2 l\left[N_{1}\right] \\
& =l\left[M_{1}\right]
\end{aligned}
$$

the last equality coming from the facts that $\chi\left[N_{1}\right]=\chi\left[N_{2}\right]$ and that $2 l\left[N_{1}\right]=$ $l\left[2 N_{1}\right]=l\left[2 N_{1}+|A| P\right]=l\left[M_{1}\right] . \quad$ Therefore, $\chi\left[M_{1}\right]=l\left[M_{1}\right]$, so that M_{1} admits an almost-complex structure, whereas $\chi\left[M_{2}\right]=l\left[M_{1}\right] \neq l\left[M_{2}\right]$, so that M_{2} does not, Q.E.D.

4. Proofs

4.1. Proof of Lemma 2. We must show that $\tau_{M}\left|N \approx \tau_{-M}\right| N$, where $N=M^{n}-$ interior D^{n}.

Let β be the unstable, oriented tangent vector bundle of M^{n}. Since N has the homotopy type of CW complex of dimension strictly less than $n, \beta \mid N$
admits a cross-section c, which determines a splitting $\alpha \oplus \varepsilon$ of $\beta \mid N$. Here ε is a trivial, oriented line bundle. Let I_{α} and I_{ε} be the identity maps of α and ε, respectively. Then $h=I_{\alpha} \oplus\left(-I_{\varepsilon}\right)$ is an orientation-reversing bundle equivalence $\beta|N \rightarrow \beta| N$, which implies the desired result, Q.E.D.

Remark. Let h_{0} be the unstable principal bundle equivalence determined by h, and let h_{1} be the stable principal bundle equivalence determined by h. For any trivial, oriented k-plane bundle ε_{k} over M^{n}, let I_{k} be the identity map of $\varepsilon_{k} \mid N$. Then, the self-equivalence $I_{k} \oplus h$ of $\varepsilon_{k} \oplus \beta \mid N$ determines the same stable equivalence h_{1}.

We may regard β as a sub-bundle of $\varepsilon_{k} \oplus \beta$ and c as a cross-section of $\varepsilon_{k} \oplus \beta$. If $k \geq 1, c$ extends over M^{n} as a cross-section of $\varepsilon_{k} \oplus \beta$. This implies that the equivalence $I_{k} \oplus h$ extends over $\varepsilon_{k} \oplus \beta$.

Thus, h_{0} has the property that the stable principal bundle equivalence corresponding to it extends over the entire stable tangent bundle.

When n is odd, c extends as a cross-section of β, so that, in this case, h_{0} itself extends over the entire unstable tangent bundle.

Definition. Let $h: \tau_{M}\left|N \rightarrow \tau_{-M}\right| N$ be a principal bundle equivalence. We call h admissible if (i) for even n, the stable equivalence corresponding to h extends over the entire stable tangent bundle; (ii) for odd n, h itself extends over τ_{M}.

In the stable case, this definition implies that h is admissible if and only if it extends.

Note that our proof of Lemma 2 shows that there always exists an admissible equivalence $\tau_{M}\left|N \rightarrow \tau_{-M}\right| N$.
4. 2. Pull-backs. Let $f: Y_{1} \rightarrow Y_{2}$ be a continuous map covered by a bundle $\operatorname{map} \bar{f}: \xi_{1} \rightarrow \xi_{2}$. If there exist partial cross-sections s_{α} of $\xi_{\alpha}, \alpha=1,2$, such that $s_{2} \circ f \mid$ domain $s_{1}=\bar{f} \circ s_{1}$, then we call s_{1} a pull-back of s_{2}. If \tilde{f} is a principal bundle map inducing \bar{f}, we may say that s_{1} is a pull-back of s_{2} determined by f. Note that we do not, in general, require that domain $s_{1}=f^{-1}$ (domain s_{2}).

We now specialize to the case in which s_{2} is an almost X-structure with domain M_{2}^{n}-interior D_{2}^{n}, for some closed disc D_{2}^{n} smoothly imbedded in M_{2}^{n}, and f is a map of pairs

$$
\left(M_{1}^{n}, M_{1}^{n} \text {-interior } D_{1}^{n}\right) \rightarrow\left(M_{2}^{n}, M_{2}^{n} \text {-interior } D_{2}^{n}\right)
$$

covered by some principal bundle map $\tau_{M_{1}} \rightarrow \tau_{M_{2}}$. This principal bundle map determines a bundle map $\tau_{M_{1}}(X) \rightarrow \tau_{M_{2}}(X)$ and a corresponding pullback

$$
s_{1}: M_{1}^{n} \text {-interior } D_{1}^{n} \rightarrow \tau_{M_{1}}(X) \mid M_{1}^{n} \text {-interior } D_{1}^{n}
$$

of s_{2}. The definition of s_{1} is obvious. Note that if s_{2} extends over D_{2}^{n}, then s_{1} extends over D_{1}^{n}.

We can describe $c_{X}[M, s]$ by means of pull-backs. Let s be an almost X structure defined on M-interior D, as before. Orient D concordantly with M and ∂D concordantly with D. We identify τ_{D} with $D \times G$. There is a bundle equivalence $D \times G \rightarrow \tau_{M} \mid D$ that determines a pull-back

$$
s_{0}: \partial D \rightarrow \partial D \times X
$$

of s. Then, $c_{X}[M, s]$ is represented by the composition of s_{0} with the projection $\partial D \times X \rightarrow X$. Note that the class is independent of the initial choice of equivalence $D \times G \rightarrow \tau_{M} \mid D$.

Now, suppose that $s_{1}: \partial D \rightarrow \partial D \times X$ is the pull-back of s_{0} determined by a bundle equivalence $k: \partial D \times G \rightarrow \partial D \times G$. Let $\hat{k}: \partial D \rightarrow G$ be the map given by $k(x, g)=(x, \hat{k}(x) \cdot g)$, and recall that $\pi_{x}: G \rightarrow X$ is defined by $\pi_{X}(g)=g \cdot x_{0}$, for some fixed $x_{0} \in X$. Let $c_{X}[k]$ denote the homotopy class of $\pi_{X} \circ \hat{k}$. The following easy result is well known:

Lemma 11. The composition

$$
\partial D \xrightarrow{s_{1}} \partial D \times X \rightarrow X
$$

represents

$$
c_{X}[M, s]-c_{X}[k]
$$

We use this to prove Lemma 7.
Divide S^{n} into hemispheres D_{1} and D_{2} oriented concordantly with it, and orient $\partial D_{1}=\partial D_{2}$ concordantly with D_{1}. Let

$$
h_{\alpha}: D_{\alpha} \times G \rightarrow \tau_{S^{n}} \mid D_{\alpha}
$$

be bundle maps, $\alpha=1,2$, and let $k=h_{2}^{-1} \circ h_{1} \mid \partial D_{1} \times G$. The corresponding map

$$
\hat{k}: \partial D_{1} \rightarrow G
$$

is called a characteristic map for $\tau_{s^{n}}$ (cf. [16, p. 97]); any two such characteristic maps are homotopic.

Proof of Lemma 7. We must show that $\pi_{X} \circ \hat{k}$ represents $c_{X}\left[S^{n}\right]$. For any cross-section $s: D_{2} \rightarrow \tau_{S^{n}}(X) \mid D_{2}$, let $s_{\alpha}: \partial D \rightarrow \partial D_{\alpha} \times X$ be the pull-back of s by $h_{\alpha} \mid \partial D_{\alpha} \times G, \alpha=1,2$. The composition

$$
\partial D_{1} \xrightarrow{s_{1}} \partial D_{1} \times X \rightarrow X
$$

represents $c_{X}\left[S^{n}, s\right]=c_{X}\left[S^{n}\right]$.
With k as above, it is easily checked that s_{2} is the pull-back of s_{1} determined by k. Thus, by Lemma 11, the composition

$$
\partial D_{2} \xrightarrow{s_{2}} \partial D_{2} \times X \rightarrow X
$$

represents $c_{X}\left[S^{n}\right]-c_{X}[k]$. Since s extends over D_{2}, so does s_{2}, so $c_{X}\left[S^{n}\right]-c_{X}[k]=0$, as desired, Q.E.D.
4.3. Proof of Theorem 1. Let s and $-s$ be almost X-structures of M^{n} and $-M^{n}$, respectively, with domain $N=M^{n}$-interior D^{n}, and suppose that s is the pull-back of $-s$ determined by some admissible bundle equivalence

$$
h: \tau_{M}\left|N \rightarrow \tau_{-M}\right| N
$$

In the stable case, or when n is odd, h extends over τ_{M} so that, by naturality of obstructions, $c_{X}(M, s)=c_{X}(-M,-s)$. Thus,

$$
c_{X}[-M,-s]=\left\langle c_{X}(-M,-s),-\mu\right\rangle=-\left\langle c_{X}(M, s), \mu\right\rangle=-c_{X}[M, s]
$$

as desired.
In the unstable case with n even, we have a commutative diagram of bundle equivalences

Indeed, g_{1} and g_{2} are chosen so that they extend over $D \times S O_{n}$, and k is chosen to be $g_{2}^{-1} \circ h \circ g_{1}$. Let \hat{k}, as usual, be given by $k(x, g)=(x, \hat{k}(x) \cdot g)$. Orient ∂D concordantly with $-M^{n}$. Note that, since the stable equivalence corresponding to h extends over the entire stable tangent bundle, the homotopy class of \hat{k} lies in kernel ($i_{*}: \pi_{n-1}\left(S O_{n}\right) \rightarrow \pi_{n-1}(S O)$), and so, by Lemma 7 , this class is of the form $m_{h} c_{S o_{n}}\left[S^{n}\right]$, for some integer m_{h} depending only on h.

Let s_{1} be the pull-back of s determined by g_{1}, and let s_{2} be the pull-back of $-s$ determined by g_{2}. Then, s_{1} is the pull-back of s_{2} determined by k. Let σ_{α} be the homotopy class of the composition

$$
\partial D \xrightarrow{s_{\alpha}} \partial D \times X \rightarrow X, \quad \alpha=1,2 .
$$

Then

$$
\begin{gathered}
\sigma_{1}=-c_{X}[M, s], \quad \sigma_{2}=c_{X}[-M,-s], \\
\sigma_{1}=\sigma_{2}-c_{X}[k]=\sigma_{2}-m_{h} c_{X}\left[S^{n}\right] .
\end{gathered}
$$

Therefore, we have

$$
c_{X}\left[-M_{1}-s\right]=-c_{X}[M, s]+m_{h} c_{X}\left[S^{n}\right]
$$

Since m_{h} is independent of $\pm s$ and X, we may specialize to the case $c_{X}=\chi$ (example (b), §2). Thus,

$$
\chi[-M]=-\chi[M]+2 m_{h} .
$$

Since $\chi[-M]=\chi[M]$, the desired result follows, Q.E.D.
4.4. Connected sums. Let $D^{n}(r)$ be the closed disc of radius r in Euclidean n-space and $S^{n-1}(r)$ its boundary, both given the standard Euclidean orienta-
tion. Let

$$
A^{n}=D^{n}(2)-\text { interior } D^{n}\left(\frac{1}{2}\right)
$$

and define $\rho: A^{n} \rightarrow A^{n}$ by $\rho(x)=R(x) /\|x\|^{2}$, where R is reflection through the hyperplane $x_{n}=0$. The map ρ is an orientation-preserving diffeomorphism whose differential determines a bundle map $k: A^{n} \times G \rightarrow A^{n} \times G$. Notice that ρ sends $S^{n-1}\left(\frac{1}{2}\right)$ to $S^{n-1}(2)$ with degree -1 .

Given orientation-preserving imbeddings $i_{\alpha}: D^{n}(2) \rightarrow$ interior M_{α}^{n}, $\alpha=1,2$, we form subspaces $N \alpha \subset P_{\alpha} \subset M_{\alpha}^{n}$ by defining

$$
P_{\alpha}=M_{\alpha}^{n} \text {-interior } i_{\alpha}\left(D^{n}\left(\frac{1}{2}\right)\right)
$$

and

$$
N_{\alpha}=M_{\alpha}^{n} \text {-interior } i_{\alpha}\left(D^{n}(2)\right)
$$

We then take the disjoint union P_{1} u P_{2} and identify $i_{1}(x)$ with $i_{2}(\rho(x))$, for all $x \in A^{n}$, obtaining a topological manifold $M_{1}^{n}+M_{2}^{n}$. This manifold admits a smoothness structure characterized up to diffeomorphism by the property that the inclusions $P_{\alpha} \subset M_{1}^{n}+N_{2}^{n}$ are smooth imbeddings. We call $M_{1}^{n}+$ M_{2}^{n} with such a smoothness structure the connected sum of M_{1}^{n} and M_{2}^{n}. For further details, see [13].

It is easy to show that $\tau_{M_{1}+M_{2}}$ is obtained from $\tau_{M_{1}}\left|P_{1} \cup \tau_{M_{2}}\right| P_{2}$ by identifying $\tau_{M_{1}} \mid i_{1}\left(A^{n}\right)$ with $\tau_{M_{2}} \mid i_{2}\left(A^{n}\right)$ via the bundle map induced by the differential of

$$
i_{2} \circ \rho \circ i_{1}^{-1}: i_{1}\left(A^{n}\right) \rightarrow i_{2}\left(A^{n}\right)
$$

An analogous construction yields $\tau_{M_{1}+M_{2}}(X)$, for any X. It follows that

$$
\tau_{M_{1}}(X)\left|N_{1} \cup \tau_{M_{2}}(X)\right| N_{2}=\tau_{M_{1}+M_{2}}(X) \mid N_{1} \cup N_{2}
$$

Completion of the proof of Lemma 1. Suppose s_{α} is an almost X-structure on M_{α}^{n} with domain $N_{\alpha}, \alpha=1,2$. Then, $s_{1} \cup s_{2}$ can be regarded as a cross-section of $\tau_{M_{1}+M_{2}}(X) \mid N_{1} \cup N_{2}$.

Notice that

$$
M_{1}^{n}+M_{2}^{n}-\left(N_{1} \cup N_{2}\right)=i_{1}\left(\text { interior } A^{n}\right)=i_{2}\left(\text { interior } A^{n}\right)
$$

(cf. the diagram below), and that $\tau_{M_{1}+M_{2}}(X) \mid i_{1}\left(A^{n}\right)$ is trivial. Let $p=(1,0, \cdots, 0) \in D^{n}(2)$, and let $l \subset A^{n}$ be the radial line joining $2 p$ and $\frac{1}{2} p$. Since X is connected, $s_{1} \cup s_{2}$ extends to a cross-section of

$$
\tau_{M_{1}+M_{2}}(X) \mid N_{1} \cup N_{2} \cup i_{1}(l)
$$

Any closed disc D^{n} imbedded in the complement of N_{1} u N_{2} U $i_{1}(l)$ has the property that $N_{1} \cup N_{2} \cup i_{1}(l)$ is a deformation retract of $M_{1}^{n}+M_{2}^{n}$-interior D^{n} (cf. the diagram below). Thus, $s_{1} \cup s_{2}$ extends to an almost X-structure of $M_{1}^{n}+M_{2}^{n}$,

Definition. We call any almost X-structure of $M_{1}^{n}+M_{2}^{n}$ extending $s_{1} \cup s_{2}$ compatible with s_{1} and s_{2}, and we label it $s_{1}+s_{2}$.

The proof given above shows that for given s_{1} and s_{2}, a compatible almost X-structure on $M_{1}^{n}+M_{2}^{n}$ always exists.
4.5. Proof of Theorem 2. Using the connectedness and ($\mathrm{n}-1$)-simplicity of X, it is not hard to show that the class $c_{X}\left[M_{1}+M_{2}, s_{1}+s_{2}\right]$ is independent of the particular choice of D^{n} and extension of $s_{1} \cup s_{2}$.

Indeed, it is clear that when we use the bundle map

$$
k_{1}: A^{n} \times G \rightarrow \tau_{M_{1}+M_{2}} \mid i_{1}\left(A^{n}\right)
$$

induced by the differential of i_{1} to pull back s_{1} to a cross-section

$$
t_{1}: S^{n-1}(2) \rightarrow S^{n-1}(2) \times X
$$

and s_{2} to a cross-section

$$
t_{2}: S^{n-1}\left(\frac{1}{2}\right) \rightarrow S^{n-1}\left(\frac{1}{2}\right) \times X
$$

then, letting $c_{\alpha} \in \pi_{n-1}(X)$ be represented by t_{α} followed by projection onto X, $\alpha=1,2$, we have

$$
c_{X}\left[M_{1}+M_{2}, s_{1}+s_{2}\right]=c_{1}-c_{2}
$$

Since k_{1}, viewed as a bundle map $A^{n} \times G \rightarrow \tau_{M_{1}} \mid i_{1}\left(A^{n}\right)$, extends to

$$
D^{n}(2) \times G \rightarrow \tau_{M_{1}} \mid i_{1}\left(D^{n}(2)\right),
$$

it follows that $c_{1}=c_{X}\left[M_{1}, s_{1}\right]$, so that

$$
c_{X}\left[M_{1}+M_{2}, s_{1}+s_{2}\right]=c_{X}\left[M_{1}, s_{1}\right]-c_{2}
$$

Now, let $k_{2}: A^{n} \times G \rightarrow \tau_{M_{1}+M_{2}} \mid i_{2}\left(A^{n}\right)$ be the bundle map induced by the differential of i_{2}, and note that $k_{1}=k_{2} \circ k$ (where k is as in §4.4). Therefore, t_{2} can be obtained by pulling back s_{2} by k_{2}, getting the cross-section

$$
t_{2}^{\prime}: S^{n-1}(2) \rightarrow S^{n-1}(2) \times X
$$

and then pulling t_{2}^{\prime} back by k. Since k_{2}, viewed as a bundle map

$$
A^{n} \times G \rightarrow \tau_{M_{2}} \mid i_{2}\left(A^{n}\right)
$$

extends to

$$
D^{n}(2) \times G \rightarrow \tau_{M_{2}} \mid i_{2}\left(D^{n}(2)\right)
$$

it follows that the composition

$$
S^{n-1}(2) \xrightarrow{t_{2}^{\prime}} S^{n-1}(2) \times X \rightarrow X
$$

represents $c_{X}\left[M_{2}, s_{2}\right]$.
Therefore, recalling that $k \left\lvert\, S^{n-1}\left(\frac{1}{2}\right) \times G\right.$ covers the map $\rho \left\lvert\, S^{n-1}\left(\frac{1}{2}\right)\right.$, which has degree -1 , a slight modification of Lemma 11 yields

$$
-c_{2}=c_{X}\left[M_{2}, s_{2}\right]-c_{X}[k]
$$

where $c_{X}(k)$, as usual, is represented by $\pi_{X} \circ \hat{k}$ and $k(x, g)=(\rho(x), \hat{k}(x) \cdot g)$. Combining this with our previous equality, we obtain,

$$
c_{X}\left[M_{1}+M_{2}, s_{1}+s_{2}\right]=c_{X}\left[M_{1}, s_{1}\right]+c_{X}\left[M_{2}, s_{2}\right]-c_{X}[k]
$$

We could evaluate $c_{X}[k]$ directly by examining k. Instead, we make use of the simple observation that $c_{x}[k]$ is independent of M_{1}, M_{2}, s_{1}, and s_{2}, so that we may specialize: let $M_{\alpha}^{n}=S^{n}, \alpha=1,2$, and let s_{α} be arbitrary. Then, since $M_{1}^{n}+M_{2}^{n}=S^{n}$,

$$
c_{X}\left[M_{1}+M_{2}, s_{1}+s_{2}\right]=c_{X}\left[M_{1}, s_{1}\right]=c_{X}\left[M_{2}, s_{2}\right]=c_{X}\left[S^{n}\right]
$$

which, together with the above equality, yields the desired value for $c_{X}[k]$, Q.E.D.

Appendix

As specified in Definition 2.2, an almost X-structure on a manifold M^{n} is an X-structure on M^{n}-interior D^{n}, where D^{n} is some closed n-dise smoothly imbedded in M^{n}. The purpose of this section is to sketch a justification for the following assertion: For purposes of studying: (i) the question of existence of almost X-structures, (ii) the homotopy classification problem for almost X-structures, (iii) the extension problem for almost X-structures (e.g., possible values of obstructions to extending), (iv) the homotopy classification problem for extensions
of a fixed almost X-structure;--the particular choice of the imbedded disc $D^{n} \subset$ interior M^{n} is irrelevant.

The principal tool that we use to justify the above statement is the following result due to Palais and Cerf [15].

Let M be a closed, compact, oriented, connected n-manifold, and let $f, g: D^{n}[0,2] \rightarrow M$ be orientation-pereserving imbeddings. Then, there exists a diffeomorphism $H: M \rightarrow M$, diffeotopic to the identity, with $H \circ f=g$.

Thus, there are diffeomorphisms $M \rightarrow M$ taking any one disc imbedded in M onto any other. The differentials of such diffeomorphisms determine bundle maps $\tau_{M}(X) \rightarrow \tau_{M}(X)$ which can be used to pull back almost X-structures defined on the complement of one open disc to almost X-structures defined on the complement of another. Such a pull-back procedure determines a 1-1 correspondence between structures over one complement and structures over another; the correspondence preserves homotopy classes, sends extendible structures to extendible ones, and extensions to extensions. Indeed, corresponding extensions are homotopic as cross-sections $M \rightarrow \tau_{M}(X)$, the homotopy determined by the diffeotopy to the identity. Finally, the naturality of the obstruction classes $c_{X}(M, s)$ and the fact that the diffeomorphisms used have degree one imply that if s and t are almost X-structures that correspond as described above, then $c_{X}[M, s]=c_{X}[M, t]$.

References

1. M. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Differential Geometry, Proc. Sympos. Pure Math., vol. 3, Amer. Math. Soc., Providence, R. I., 1961.
2. G. Bredon and A. Kosinski, Vector fields on t-manifolds, Ann. of Math., vol. 84 (1966), pp. 85-90.
3. F. Hirzebruch, Komplexe Mannigfaltigkeiten, Proc. International Congress of Math., 1958, pp. 119-136.
4. -_, Topological Methods in algebraic geometry, Springer, New York, 1966.
5. H. Hopf, Vectorfelder in Mannigfaltigkeiten, Math. Ann., vol. 95 (125), pp. 340-367.
6. W. C. Hsiang, A note on free differentiable actions of S^{1} and S^{3} on homotopy spheres, Ann. of Math., vol. 83 (1966), pp. 266-272.
7. P. J. Kahn, Characteristic numbers and oriented homotopy type, Topology, vol. 3 (1965), pp. 81-95.
8. - Chern numbers and oriented homotopy type, Topology, vol. 7 (1968), pp. 69-93.
9. M. Kervaire, Courbure Integrale generalisée et homotopie, Math. Ann., vol. 131 (1956), pp. 219-252.
10. R. Lashoff, Some theorems of Browder and Novikov, mimeographed notes, University of Chicago.
11. W. Massex, Obstructions to the existence of almost complex structures, Bull. Amer. Math. Soc., vol. 67 (1961), pp. 559-564.
12. J. Milnor, Lectures on characteristic classes, mimeographed notes, Princeton University, 1957.
13. -Differentiable manifolds which are homotopy spheres, mimeographed notes, Princeton University.
14. -, A survey of cobordism theory, Enseignement Math., vol. VIIT. (1962), pp. 16-23.
15. R. Palais, Extending diffeomorphisms, Proc. Amer. Math. Soc., vol. 11 (1960), pp. 274-277.
16. N. Steenrod, The topology of fibre bundles, Princeton University Press, Princeton, N. J., 1951.
17. I. Tamura, Remarks on differentiable structures on spheres, J. Math. Soc. Japan, vol. 13 (1961), pp. 383-386.
18. C. T. C. Wall, Classification of $(n-1)$-connected $2 n$-manifolds, Ann. of Math. (2), vol. 75 (1962), pp. 163-182.

Cornell University
Ithaca, New York

[^0]: Received August 15, 1967.
 ${ }^{1}$ The author was partially supported by a National Science Foundation grant.

[^1]: ${ }^{2}$ Actually, our methods and results can easily be modified to apply to manifolds-withboundary. For simplicity however, we restrict ourselves to the unbounded case.

[^2]: ${ }^{3}$ We abuse terminology here by identifying α_{i} with complex vector bundles of high fibre dimension.

