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In the development of the proof of the prime number theorem, the relation

(A) d<=xf(x/d) ax log x -k bx + E(x)

where a and b are constants has been frequently discussed. In particular
should be mentioned Landau [6, pp. 597-604] and Ingham [4]. The theorem
that if f(x) is positive non-decreasing and E(x) o(x), then f(x) ax as
x --+ , has been attributed by Karamata [5] to Jakimovski, using the fact
(deeper than a mere asymptotic form of the prime number theorem) that
,<= (n) O(x/log x) where (n) is the M6bius function. However, in
[4] Ingham had shown how (using Wiener’s Tauberian theory), one could
deduce from (A), and f(x) positive nondecreasing, that f(x) ax, by appeal-
ing only to the fact that the Riemann zeta-function has no zeros on the line

1; thus providing an independent proof of the prime number theorem.
In this note we develop Ingham’s procedure to consider the more general

convolution

(B) ,<=k(d)f(x/d) ax <_z. (l(d))/d + bx % o(x)

where k(d) is subject to certain restrictions. Recently ErdSs and Ingham [2]
have considered the convolution

f(x) -{-- f(x/a,) (1 -k (1/a,)x --k o(z)

where the a are real numbers 1 < al =< a2 =<- subject to the condition
(l/an) converges. If the a are integers this reduces to the form (B)

where k(d) takes only the values 0 and 1; however, there is no overlap be-
tween the results of [2] and those discussed here. Although the proof of the
theorem below follows the method introduced by Ingham in [4], there is per-
haps some interest in elucidating those properties of [x] __<, 1 which play
a role in Tauberian deductions from (A).
Throughout this paper,/(d) is an arithmetic function with k(1) 1 and

l*(d) is the "Dirichlet inverse" of k(d) defined by

,1,, k (d) t*(n/d) 1, n 1

0, otherwise.

Empty sums are interpreted as 0. s is a complex variable and z Re (s).
x is a real variable and all functions of x are real-valued. All error terms are
as the variable -- . All unexplained terminology or notation is as in [3].
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THEOREM. Suppose k(d) is a non-negative arithmetic function with k (i) 1
which enjoys the following properties"

(i) d<=,k(d) Ax q- E(x)

where E(x) o(x), and f (] E(t) ]/t")dt converges as x --+ , and A is a

positive constant;

(ii) lira 0+ k(d)d--- 0 for all real x O.

Then, ill(x) is a positive, non-decreasing function for x 1, which satiates (B),
and f(x) O(x), then

f(x) ax + o(x) as x .
Proof. For convenience, define f(x) 0 for 0 x < 1. Then

k(d)f(u/g) du (d) f
u gu

dx
(1)

f f(t) dt f() ]c(d)dr,
dx 1 dx/t

and so extending the range of integration formally to (0, on the right and
substituting (B) on the left in (1) gives

() () (d) g a -g + b. + o
dx/

Replacing x by x/, fixed positive constant, in (2) gives

() At) () t a
<x/()

dt + + o(x)

For a 5, a, fixed constants > 1 to be determined more precisely later,
define

2 E(y) .E(y/) 5E(y/)

by (i). Then from (3), after some appropriate changes of variable, we have

(5)

d dt/ d d,/

On the other hand by (i) and partial summation,

A + + +d u:
(6)

A log + A + K + o(1)
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since the integral converges by hypothesis (i) as -- . Substitution of (6)
in (5) yields on letting L(1/x) G(x),

(7) -lfof(t)G()dt=aA log (a)+ o(1).

Now, for 0 -< < 1, by definition, E(t) e<_, k(d) At -At, and so
by (4), for 0 _-< 1, L(t) O. Hence by the definition of G(x) and (4),

G(t) dt
L(u)

du
2E(u) --aE(u/a) E(u/) du,

U U

which is convergent by hypothesis (i). Hence G(x) is integrable in (0, );
if furthermore

(8) G(u)ux du 0 for all real x

then the Wiener-Pitt Tauberian theory muy be applied to (7).
It is easily seen, however, writing s - ix, that for a > 0,

L(t)t-- dt (2 a-" fl-’) E(t)t-- dt q- A/s

by computing f E(t/o)t-- dt and f E(t/fl)t-8- dt in terms of f E(t)t-8-dt
while, as above, L(t) 0 for 0 -< 1. Hence for > 0,

G(u)u du L(t)t-- dt

(9)

)=(2 a E(t) dt d- A/s.3- t--

But by hypothesis (i) and the rguments bove, f G(u)u du and

f E(t)t-- dt re convergent for z 0 lso. Hence, by well-known
continuity theorem, on tking limits of both sides of (9) s 0+ we my
interchange the limit with the integration nd obtMn,_

3_) t__ A(10) a(u)u du (2 a E(t) +

for all real x 0, and

(11) G(u) du A log (a3).

If a and 3 are chosen so that (log a)/(log 3) is irrational, then the first factor
on the right in (10) 0, and the right side of (11) 0. For the second factor
on the right in (10) we huve by (i), partial summation, and the above quoted
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continuity result, for ti > 0,

E(t)t-- dt ( k(d) At)t-- dt
d<_t

A 1
i- - lira k(d)

-,o+ 1

Hence, by hypothesis (ii), the second factor on the right side of (10) also 0.
So (8) is true and, taking sight of (11), the theorem will follow from (7)

and a well-known result of Pitt [3, Theorem 233] provided we can prove that
f(x)/x is slowly decreasing in (0, oo in the sense of Schmidt.
To show this, it suffices to note that for all p > 1 and all x > 0,

f(px)/px--f(x)/x >= (f(x)/x)(1-- l/p) 0(1)(1 l/p)

since f(x) is positive and non-decreasing and f(x) O(x).
Hence the theorem follows.

Remarks. (a) It would be desirable to eliminate if possible the necessity
of hypothesizingf(x) O(x). In the classical case k(d) 1 considered by
Ingham, an argument going back to Tschebyscheff allows the deduction of
f(x) O(x) from (B). An attempt to imitate this argument for a more
general nonconstant k(d) leads to the condition:
There exists an integer m ->__ 2 such that for all integers d -> 1,. k(md u + v) >= ink(d).

While, with the assumption of this condition, one can indeed deduce f(x)
O(x) from (B), unfortunately it appears likely, though no proof is known, that
the only functions/c(d) satisfying this condition and (i) are constants, and so
it represents no advance over Ingham’s case.

It would be in particular useful to eliminate the hypothesis f(x) O(x) or
replace it by a weaker one in the kind of situation considered in [1]. Here, it
seems almost as difficult to prove the relevant function is O(x) as it does to
prove that actually it is x as x --(b) Writing ]c(n) nh(n), and if f(x) ,_ n a,, the theorem can
also be formulated in terms of the (, h(n))-summability methods intro-
duced in [7].

(c) The condition thatf(x) be positive may be ameliorated to f(x) => M
by considering f(x) -t- M in place of f(x).
The author wishes to thank the referee for several perceptive comments on

an earlier version of this note. Since the original submission of this note for
publication, a similar theorem has been published by T. M. K. Davison in the
Canadian Journal of Mathematics, vol. XX (1968), pp. 362-368. Davison’s
work apparently goes back to his Toronto dissertation of 1965, the first pub-
lished abstract of which seems to be given in Dissertation Abstracts, vol.



320 s.L. SEGAL

27 (1967), no. 6 (December), p. 2019B. An abstract of the present puper
occurs in the Notices of the American Mathematical Society, vol. 15 (1968), no. 1
(Jnuury), pp. 145-146
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