
PRESPECTRAL OPERATORS

E. :BERKSON AND H. R. DOWSON

1. Introduction

It does not seem to have attracted much attention that certain basic proper-
ties of spectral operators established in [5] are invalid or uncertain for pre-
spectral operators. As can be seen from the proof of Theorem 5 of [5], if T
is a spectral operator then a bounded operator commuting with T also com-
mutes with any strongly countably additive resolution of the identity for T.
However, Example 2.7 of [8] shows that there exist on a prespectral operator
T with a resolution of the identity E(-) of class 11 and a bounded operator
A which commutes with T but not with every value of E(-). The failure of
the commutativity theorem for prespectral operators rules out direct applica-
tion to such operators of the theory in [5] based on it. Thus it is not known
in general if a prespectral operator of class F necessarily has a unique resolu-
tion of the identity of class F.
The purpose of this paper is to obtain results of fairly broad applicability

which help to overcome the difficulties with prespectral operators arising from
the failure of the commutativity theorem. Results which do not depend on
special assumptions about the spectrum are presented in 3. Prespectral
operators with totally disconnected spectrum are discussed in 4, and in 5
we consider scMar-type prespectral operators whose spectra are R-sets. Some
new aspects and consequences of the example of Fixman, referred to above,
are considered in 6. The paper concludes with a brief section on the litera-
ture which has appeared concerning prespectral operators.

2. Preliminaries

Throughout the paper, X is a complex Banach space with dual space X*.
We write (x, q} for the value of the functional q in X* at the point x of X. For
brevity the term "operator" is used to mean "bounded linear operator". The
spectrum and resolvent set of an operator T are denoted by a(T) and p(T)
respectively. The Banach algebra of operators on X is denoted by L(X).
The complex plane is denoted by p and 2; denotes the a-field of Borel subsets
of p. Let K be a compact Hausdorff space. C(K) denotes the Banach
algebra of complex functions continuous on K under the supremum norm.
A family F

_
X* is called total if and only if y e X, {y, f} 0 for all f in

1 imply y 0. Let 2 be a a-field of subsets of an arbitrary set t with t e 2;.

Suppose that a mapping E(. from 2 into a Boolean algebra of projections on
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X satisfies the following conditions"

(i) E() + E(.) E()E(.) E(6 u .),
(ii) E(ih )E(.) E( n i2), , . e 2,
(iii) E(ft\t) I E(), e 2:,
(iv) E(ft) I,
(v) there is M > 0 such that E(ti)l] -< M for all ti in 2,
(vi) there is a total linear manifold 1

_
X* such that (E(.)x, y) is count-

ably additive on 2; for each x in X and each y in 1".

Then E(. is called a spectral measure of class (2, F). An operator T, in
L(X ), is called a prespectral operator of class 1 if and only if the following condi-
tions (a) and () are satisfied.

(a) There is a spectral measure E(. of class (2, I’) with values in
L(X) such that

TE(I) E()T, e Y,,

This condition implies that the closed subspaces E(t)X, e 2:, are inwriant
under T.

i.e., the spectrum, of the restriction of T to E( )X is contained in the closure of

The spectral measure E(.) is called a resolution of the identity (of class F for
T. An operator in L(X) is called a spectral operator if and only if it is pre-
spectral of class X*. It is a consequence of the Banach-Orlicz-Pettis theorem
that T is a spectral operator if and only if T has a resolutioa of the identity
which is countably additive in the strong operator topology. In this connec-
tion, it is well known that a prespectral operator on a weakly complete Banach
space is automatically spectral. This cn be seen for example from Lemmus
2.3 nd 2.9 of [1].
Dunford initiated the study of prespectrM operators in [5], but since then

the majority of authors hve concentrated on the case of spectral operators.
The following result shows that prespectral operators arise naturally in the
study of spectral operators.

2.1 THEOREM. Let T, in L(X), be a spectral operator with resolution of the
identity E(. of class X*. Then T* is prespectral on X* with resolution of the
identity E*(. of class X.

This result was proved in [6; pp. 250-1]. We shll study this class of pre-
spectral operators in more detail in the next section.

2.2. Now let T e L(X) nd let x e X. An X-valued function f, defined
and analytic on an open subset D(f) of p such that

(I T)f(.) x, e D(f),
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is called pre-imaging function for x and T. It is easily shown that f(’)
(I T)-lx whenever p(T) n D(f). If for all x in X nd all pairs f(1),
(’) of pro-ironing functions for x and T we have

D . D
then T is said to have the single-valued extension property. In this cse there
is unique pre-imaging function with maximal domain p(x), al open set con-
raining p(T). The values of this function re denoted by/x() e p(x)}.
Let a(x) pp(x). Clearly z(x)

___
(T). The following results concerning

these concepts were proved in [5; pp. 325-9].

2.3 THEOREM. (i) A prespectral operator has the single-valued extensiot
property.

(ii) Let T, in L(X), be a prespectral operator with a resolution of the identity
E(. of class F. Then E(z(T) I. More generally if is a closed subset of
p then

{x G

The theory of integration with respect to a spectrM measure was developed
in [5]. The reader is referred to pp. 330-1 nd pp. 340-1 of [5] for a complete
discussion. However the main consequences of the theory will be specifically
recalled in 3.

3. General results
We begin this section by observing that if T is a spectral operator, and E(. )

is a strongly countably dditive resolution of the identity for T, then the com-
mutativity theorem [5; p. 329] is valid for T and E(. ). Thus if F(. is a
resolution of the identity of class r for T, then {F(r) r e 2;} commutes with
/E(r) r e 2;}, and the proof of Theorem 6 [5; p. 330] shows that F(r) E(r),
r e 2. Hence all resolutions of the identity of a spectral operator, no matter
what their class, are identical and countably additive in the strong operator
topology. In the case of a prespectrl operator T, the rgument of Theorem 6
of [5] shows that if F(. and G(. are commuting resolutions of the identity
of class F for T, then F(r) G(r), r e 2;. In general it is not known that
two resolutions of the identity of the same class for T commute, and so the
problem of uniqueness of resolution of the identity of class 1 for a prespectral
operator of class F is unresolved. In view of this, Lemma 6 of [5; p. 341]
requires slight change in wording. We give preliminary definition and
then state the amended version of the result, which will be required later.

DEFINITIONS. Let S be prespectral operator with a resolution of the
identity E(-) of class F such that S f() kE(dk). Then S is called
scalar-type operator of class F, and E(. is called an s-resolution of the identity
of class F for S.
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3.1 THEOREM. Let Z be a z-field of subsets of a set , with 2. Let E(. )
be a spectral measure of class (2, ), and let f B( ), the set of bounded complex
Z-measurable functions defined on .

Define
(f) j f(w)E(dw).

Then there is a constant v(E) such that

(f) () Supw, If(w)I, f B(a).

For each f in B(a the operator (f) is a prespectral operator with an s-resoluti
of the identity F(. of class r where

Let T be prespectral operator th u resolution of the identity E(. of
class F. Assume E(r)]] M, r e Z. Note that by LindelSf’s theorem
[10; p. 49], the union p of all open sets v in p such that E(v) 0 can be ex-
pressed as a union of countbly many such open sets. It follows that E(p)
0. The complement of p, which we denote by K, is called the support of
E(.). By2.2, E(p(T)) 0andsoK a(T). HoweverE(K) I, and
so z(T) z(T]E(K)X) K. Therefore K z(T), and so z(T) is the
intersection of all closed subsets such that E() I. Let f e C(z(T)).
Then by 3.1 (f) f(r)f(h)E(dh) has a resolution of the identity F(.)
given by

F() E(f-()), Z.
Therefore

a((f)) [3 {’t} is closed, and F(t}) I}
[3 [t} t} is closed, und E(f-l(

However if t} is closed and E(f-(t}) I, then since f-l(t}) is u closed subset
of (T),

q(T)

___
f-()

_
q(T).

Hence
a(b(f)) [3 It} t} closed, and f-l(t}) z(T)}.

There follow the familiar facts that a((f)) f(z(T) ), and that the spectral
radius ot (f) is
From this and Theorem 7 of [5],

sup f(h) <_ f f(h)E(dh) <_ 4M sup If(),) f C((T)),
ksa(T) da (T) ksa(T)

(T) (T) (T)

Hence is a bicontinuous algebr isomorphism from C(z(T) into L(X ).
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Every resolution of the identity of a prespectral operator T yields an algebra
of operators equivalent to C(z(T)) in this way. It is not known in general
whether different algebras of operators may be obtained from different resolu-
tions of the identity of T. A useful criterion for uniqueness of the resolution
of the identity of a particular class may be given in these terms.

3.2 LEMMA. Let T be a prespectral operator with resolutions of the identity
El(. and E2(. of class F such that

f f(h)El(dh) f(T) (T)
f(k)E2(dk), f, C(z( T) ).

Then

Proof. Let x e X, y e F, and k(8) (E(8)x, y>, e Z k 1,2. Byfirst
verifying the result for simple functions it follows in the usual way that

Hence

f f()t(dh) f f(h)t.(dX), fe C(a(T)).
(T) (T)

#1 and . are finite countably additive measures with supports contained in
a(T). Hence they are regulur measures, and by the Riesz representation
theorem, tl It then follows that

<El(r)x, y} <E.(r)x, y}, re 2,, x e X, y e F.

Since F is total, the conclusion of the lemma follows.
For our next result we make use of the notion of generalized hermiticity in-

troduced in [12] and [16]. We shall not devote space here to a discussion of
this concept, but instead refer the reader to 1 of [3].
A spectral measure is called hermitian if and only if all of its values are

hermitian operators.

3.3 THEOREM. Let S be a prespectral operator with Hermitian s-resolutions

of the identity El(. and E(. of class F. Then EI(’) E(-), - e

Proof. Let R() and I(),) denote respectively the real and imaginary prts
of the complex number . Define

R f R(h)Ek(dh),
(s)

J f I(h)E(dh), t 1, 2.
()

Then R and J are hermitian operators, and S R + iJ,/ 1, 2. It
follows from Lemma 2(c) of [16] that R R: and J1 J.. By virtue of the
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standard properties of the integral with respect to a spectral measure these
equations lead to

(s) (s)

where p is a polynomial in the two variables h, . Then by the Stoae-Weier-
strass theorem

f f(h)E(dh)=f f(h)E(dh), f eC(o-(S)).
(s)

The result now follows immediately from Lemma 3.2.

Remark. It is known that a bounded Boolean algebra of projections ou X
can be made into a family of hermitian operators by appropriate equiwleat
renorming of X. (See the proofs of Lemmas 2.2 and 2.3 of [3]. Thus if E(.
is an s-resolution of the identity of class 1 for the prespectral operator S, in
L(X), it can be made into a necessarily unique hermitian s-resolution of the
identity of class 1 for S by equivalent renormiug of X. We now turn to
Theorem 8 of [5], the canonical decomposition theorem. For purposes of
comparison we state in full the form applicable to spectral operators.

3.4 THEOREM. An operator T is spectral if and only if it is the sum T
N of a scalar-type spectral operator S and a quasinilpotent operator N such that
SN NS. Furthermore this decomposition is unique. T and S have the same
spectrum and the same resolution of the identity.

This may be proved by the arguments given in [5; pp. 333-5] or [6; pp.
226-9]. Note that in proving that the sum of a scalar-type spectral operator S
nd a commuting quasinilpotent N is spectral, both proofs use the commuta-
tivity theorem to show that N commutes with the resolution of the identity of
S. This argument cannot be applied to the corresponding situation or
prespectral operators. In fact, in 6, we will construct on a scalar-type
operator S of class 11 and a nilpotent A with SA AS such that S -t- A is
not prespectral of any class. However the arguments of [6; pp. 226-9] do
suffice to prove the following result.

3.5 THEOREM. (i) Let T be prespectral with a resolution of the identity E(.
of class F. Define S f(z) hE(rib) and N T S. Then S is prespectral
with an s-resolution of the identity E(. of class F, and 1 is a quasinilpotent
operator commuting with {E(r) r e Z,}. Moreover a(T) z(S).

(ii) Let S be prespectral with a resolution of the identity E(. of class F such
that S f(s) hE(dh). Let N be a quasinilpotent operator commuting with
{E(r) r e Zl. Then S + N is prespectral with a resolution of the identity
E(. of class F. Moreover

This suggests the introduction of the following terminology.
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DEFINITION. A sum T S N, where S is prespectral with an s-resolu-
tion of the identity E(. of class I’, and N is a quasinilpotent commuting with
E(r) r e E}, is called a Jordan decomposition of class F for T. S and N are
cMled respectively the scalar and radical parts of the decomposition. In this
terminology, Theorem 3.5 states that T is prespectral if and only if T admits a
Jordan decomposition. Every resolution of the identity of T then defines a
Jordan decomposition of T. It is not known, in general, whether different
resolutions of the identity of a prespectral operator T my yield different
Jordan decompositions of T.

Let T be a spectral operator. The canonical decomposition T S N
given by Theorem 3.4 is the unique Jordan decomposition of T. This follows
from Theorem 3.5 and the discussion on uniqueness of the resolution of the
identity of a spectral operator at the beginning of this section. In fact we
cn make the following stronger assertion.

3.6 THEOREM. Let T be a spectral operator, and let S and N be respectively
the scalar and radical parts of the canonical decomposition of T. If T So --No, where So is a scalar-type operator of class F, and No is a quasinilpotent
operator with SoNo NoSo then S So and N No.

Proof. So is prespectral with an s-resolution of the identity E(. of class
r. Note that No commutes with So and hence with T. By the commuta-
tivity theorem, No commutes with the resolution of the identity of T, and
hence also with S and N. Now N No is quasinilpotent since it is the differ-
ence of commuting quasinilpotents. By Theorem 3.4, So S -t- (N N0)
is spectral. Hence E(. is countably additive in the strong operator to-
pology, and so So is a scalar-type spectral operator. The result now follows
from Theorem 3.4.
Our next theorem, a generalization of a result of Dunford, leads to the mMn

techniques used in this section. We denote by 2K the z-field of Borel subsets
of a compact Hausdorff space K.

3.7 THEOREM. Let K be a compact Hausdorff space, and let be a continuous
algebra homomorphism of C(K) into L(X with b( 1 I. Let N, in L(X), be
a quasinilpotent commuting with b(f) for every f in C(K). Then there is a
spectral measure E( of class (ZK X) with values in L(X*) such that

3.7(a)

and

3.8

(f)* fKf(h)E(dh), f e C(K),

N*E(r) E(r)N*, -Moreover if S (C(K) ), then the adjoint of T S -- N is prespectral of class
X, and S* - N* is a Jordan decomposition of class X for T*.

Proof. 3.7(a) follows by the argument used to prove Theorem 18 [5; p.
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350]. Let x e X and y e X*. Define

#l(r) (Nx, E(r)y) and .(r) (x, E(r)N*y), re

Then as in the proof of Lemma 3.2

:f(X)(dh)
(Nx,

(x, b(f)*N*y) C(K).

It follows that the Borel measures (Nx, E(. )y) nd (x, E(. )N’y) (regular by
construction) are identicul, and 3.8 is immediate. If S (f) for some f in
C(K) then by 3.7() and 3.1, S* hs an s-resolution of the identity whose
range is contained in the rnge of E(- ). Hence by 3.8, S* 3- N* is Jordan
decomposition of cluss X for T*.
The following generalization of 3.7() is well known, although it does not

appear explicitly in the literature.

3.9 THEOREM. Let X be weakly complete. Let K be a compact Hausdorff
space, and let b be a continuous algebra homomorphism of C(K into L(X with
b(1) I. Then there is a specSral measure E(. of class Z X*) such that

C(K).

Moreover for each f in C(K), b(f) is a scalar-type spectral operator with resolu-
tion of the identity F(. ), where

F(-) E(f-(r)),
Outline of proof. Consider for euch x in X the mp T which sends f in

C(K) into b(f)x. By Theorem VI. 7.6 of [7; p. 494], each T is weakly com-
pact. Hence by Theorem VI. 7.3 of [7; p. 493], the wek completeness of X
implies that for ech x in X there is vector-vlued meusure (. countbly
additive on 2: such that

f(X)(dX).

Define for each r in Z a mup E(r) which sends x into #,(r). Routine argu-
ments complete the proof that E(. hs the properties stated. The lst
statement of the theorem follows from 3.1.

3.10 Tnonn. Let T, in L(X), be prespectral with a resolution of the
identity E(. of class F. Then T* is prespectral on X* with a resolution of the
identity F( of class X such that

(I. )" f.f(k)E(dk) f(k)F(dk), f e C((r( T) ).
(T) (T)
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Moreover if S f(r) E(d) and N T S, then S* - N* is the Jordan
decomposition of T* corresponding to F(. ).

Proof. From 3.1, the map defined by

/(f) f f(k)E(dX)

is a continuous algebra homomorphism from C(z(T) into L(X), and N com-
mutes with each if(f). Let 2;0 denote the a-field of Borel subsets of z(T).
Hence by 3.7 there is a spectral measure G(- of class (220, X) such that

(f)* f())G(d), f e C(z(T));
(T)

N*G(r) G(r)N*, re220.

Also from 3.1, S* is prespectral with an s-resolution of the identity F(. of
class X, where for each t in 2;p F() G(t n z(T)). Hence

f f(k)G(dh) f f(k)F(d)), f e(f)* C(( T) ).
(T) t/a (T)

The result now follows from 3.5.
In the case of a spectral operator more can be asserted.

3.11 THEOREM. Let T, in L(X), be a spectral operator. Then T*, pre-
spectral on X* of class X, has a unique Jordan decomposition for resolutions of
the identity of all classes. Moreover if T* is also prespectral of class F, then T*
has a unique resolution of the identity of class F.

Proof. Let K denote the compact set z(T). Note that K z(T)
z(T*). Let E(-) be the resolution of the identity of T. Then by 2.1, T*
is prespectral with resolution of the identity E*(. of class X. Let FI(. and
F.(. be resolutions of the identity of classes F1 and F. respectively for T*.
By Theorem 3.10, T** is prespectral of class X*, and there are resolutions of
the identity G(-) and G,.(. of class X* for T** such that

f(X)F(dX) f(X)Gl(d), f e C(K),

(f. )* f.f(X)F,(dX) f(X)G,(cl), f C(K).

T** is a prespectral operator on X**, and X is a closed subspace of X** in-
variant under T**. Moreover the restriction of T** to X is a spectral opera-
tor, and so by Theorem 2.1 of [8; p. 1032]

G()x G.()x E()x, x X, .
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Therefore

f: f(h)G(dk)x f(k)G(dk)x f,f(X)E(dX)x, f e C(K),x e X.

LetyeX*. Then fort 1,2,

, =
f(k)Gr(dk)x, y x, f()x)I,’r(dk)y f e C([), x e X, y e X*’,

and so

Hence

f(k)F(dh) f(h)F(dk), f e C(K).

From this result F(- nd F(- yield the same Jordan decomposition. Now
let F F F. It then follows from Lemm 3.2 that T* has a unique reso-
lution of the identity of class F.

3.12 COROLLARY. Let T, in L(X), be a spectral operator with resolution of
the identity E(.). Let S f(r) hE(dh and N T S. Then T* is
prespectral on X* with uniuqe resolution of the identity E*(. of class X. More-
over S* + N* is the unique Jordan decomposition of T* for resolutions of the
identity of all classes.

Proof. This result follows immediately from Theorems 2.1 und 3.11.

It ws noted in 2 that in weakly complete Bnch spce the classes of
prespectral operators and spectral operators coincide. Ninny non-weakly
complete Bnach spces hve wekly complete dul spces. (See for example
the tbles in [7; pp. 374-9]). We have the following results for prespectrl
operntors on such spnces.

3.13 TnOnEM. Let X* be weakly complete and let T, in L(X), be pre-
spectral of class F. Then T has a unique Jordan decomposition for resolutions

of the identity of all classes. Moreover T has a unique resolution of the identity
of class F.

Proof. By Theorem 3.10, T* is prespectrM. Since X* is wekly complete,
T* is spectral. Let E(. and E(. be resolutions of the identity of classes
F and F. respectively for T. Let F(. be the unique resolution of the
identity for T*. Then by Theorem 3.10,

kEl(dh) kF(dk) kE=(dk)
(T) (T) (T)
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and hence T has a unique Jordan decomposition for resolutions of the identity
of all classes. Now let rl r2. Again by Theorem 3.10

f f(k)E,(dk) f f(k)E2(dk), f e C((T)),
(T) J6 (T)

and so by Lemma 3.2, T has unique reso|ution of the identity of clss F.

3.14 TIFOREM. Let X* be weakly complete. Let S, in L(X), be a scalar-
type operator of class r, and let N be a quasinilpotent with SN NS. Then if
T S -k N is prespectral, every resolution of the identity of T is an s-resolution

of the identity of S, and T S -k N is the unique Jordan decomposition of T.
Moreover N commutes with every resolution of the identity of T.

Proof. By Theorem 3.10, T* is prespectrM. Since X* is weakly complete,
T* is spectral. Let t-l and N1 be respectively the scalar and radical parts of the
canonical decomposition of T*. Again by 3.10, S* is prespectral with n
s-resolution of the identity of class X. Hence S* is a scalar-type spectral
operator. N* is qusinilpotent with S’N* N’S*. From the uniqueness
of the cnonicl decomposition of T*, we get S S* and N N*. Let
E(- be resolution of the identity for T. Then by 3.10

S* S E(d)
(T)

The present theorem now follows immediately.

3.15 THEOREM. Let X* be wealcly complete. Let S, in L(X), be pre-
spectral with s-resolution of the identity E(. )of class F. Let N be a quasinil-
potent operator such that SN NS. Then S N is prespectral of class F if
and only if

NE(-) E(-)N, - e

Proof. The condition is certainly sufficient by 3.5. Now let S -k N be
prespectral with resolution of the identity F(. of class F. By the preceding
theorem S is prespectral with an s-resolution of the identity F(. of class F,
and

NF( -) F( r)N, re

By 3.13, S has unique resolution of the identity E(. of class F. Hence
F(.) E(.) nd

NE(r) E(.)N, r eZ,.

To conclude this section we state a generalization of Theorem 3.13, which
may be proved in similar way.

3.16 THEOREM. Let T, in L(X), be a prespectral operator of class F.
Suppose that T*, prespectral on X* of class X, has a unique resolution of the
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identity of class X. Then T has a unique Jordan decomposition for resolutions
of the identity of all classes. Also T has a unique resolution of the identity of
class r.
We observe that by this theorem, if it were known that every prespectrl

operator of class r hd unique resolution of the identity of class F, then it
could be deduced that every prespectml operator hd unique Jordan de-
composition for resolutions of the identity of 11 classes. Also if it were known
that every sclr-type operator of class 1 hd unique resolution of the
identity of class I, then it could be deduced that sclr-type operators pos-
sessed only s-resolutions of the identity. Moreover, in considering the prob-
lem of uniqueness of resolution of the identity for prespectml operators (re-
spectively sclr-type operators) it is sufficient to consider only prespectrl
operators (respectively sclr-type operators) on X* of class X.

4. Operators with totally disconnected spectra
4.1. Let T eL(X). Corresponding to each open-and-closed subset ti of

a(T) there is spectral projection for T defined by

1 fe4.2 A()

where C is contour in p(T) which encloses ti but excludes a(T)\. Moreover
the operator A (ti) does not depend on the prticulr contour C chosen. The
map t - A (t) is an isomorphism from the Boolean Mgebr of open-end-closed
subsets of a(T) onto Boolean Mgebra of projections in L(X). For ech
open-und-closed subset ti of a(T) we hve TA () A ()T and

4.3 a(T[A()X)
The reader is referred to [15; pp. 298-302] for complete discussion and proofs
of these properties. In order to prove the first theorem of this section
preliminary result is required. The concepts introduced in 2.2 will be used
in the proof.

4.4 LEMMA. Let T, in L(X), be a prespectral operator with a resolution of
the identity E(. of class F. Then for each open-and-closed subset of z( T),
E( is equal to the spectral projection A for T.

Proof. Let x e E()X. By 2.3, Thus the single-vlued extensio property
and a(x) . Therefore by 4.2,

A(z(T)\) x O.

Hence A ()x x, and we have

4.5 A ()E() E().

Now let y eE(z(T)\)X. By 2.3, z(y)

_
z(T)\t, and so by 4.2, A()y O.
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Hence
4.6 A (/t)E(a(T)\) 0.

Addition of 4.5 and 4.6 gives the required result.

DEFINITION. A subset of p is called totally disconnected if and only if the
connected componeat of each point is the set consisting of the point itself.

A compact set in p is totally disconnected if nd only if its topology has
base of open-end-closed subsets [9; p. 247]. Hence by LindelSf’s theorem
[10; p. 49] u compact totally disconnected subset of p has countuble bse of
open-and-closed subsets.

4.7 TEOEM. Let T, in L(X), be prespectral of class I?, und let a( T) be
totally disconnected. Then T has a unique resolution of the identity of class F.
Also T has a unique Jordan decomposition for resolutions of the identity of all
classes.

Proof. Let E(-) and F(. be resolutions of the identity of class 1 for T.
By Lemma 4.4, E(/t) F(ti) for ech open-end-closed subset of a(T). The
topology of a(T) hus a countable buse of such subsets. Hence for each rela-
tively open subset r of a(T)

(E(r)x, y) (F(r)x, y), x e X, y e F.

Since E(a(T)) F(a(T)) I nd I is total, it follows that

E() E(), .
Hence T has unique resolution of the identity of class I. By 3.10, T* is pre-
spectral of class X. Since a(T*) is totally disconnected, T* has unique
resolution of the identity of class X. Applicatior of 3.16 completes the
proof.

4.8 TEOnEM. Let S be a scalar-type operator of class F, and let a(S) be
totally disconnected. Let N be a quasi-nilpotent operator with SN NS. Then

if T S -b N is prespectral, every resolution of the identity of T is an s-resolution

of the identity of S, and T S -b N is the unique Jordan decomposition for T.
Moreover N commutes with every resolution of the identity for T.

Proof. The rgument of [6; pp. 227-8] shows that a(T) a(S). Hence
a(T) is totally disconnected. Let F(. be a resolutioa of the identity for T,
and let E(. be the s-resolution of the identity of class 1 for S. Let tt be au
open-and-closed subset of a(T). There exist disjoint open sets G and G
with i

_
G and a(T)\8

_
Ge. Define u function f by f(z) 1, z e G, and

f(z) 0, z e G. Note that f is analytic on a neighborhood of a(T) a(S).
It follows from Corollary VII. 6.12 of [7; p. 592] that

f() N
f(T) --I(S + N) _, (S) f(S)

n=o r!
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in the usual notation. Now by 4.4, f(T) F(/t) andf(S) E(ti). Hence
F() E(i). Let e > 0 be given. Since the compact set a(T) has a base
of open-and-closed subsets, it is easily shown that there exist a partition of
a(T) into open-and-closed subsets {i:i 1, 2,..-n} and points hi in
ii, i 1, 2, n, such that

IX-- },il < e, },eii, i= 1,2,..- n.

Now =1 hi E(i) =V’$= h F((i). Since e is n arbitrary positive number,
it follows from 3.1 that

S )E(d)) )F(d)).
(T) (T)

The conclusions of the theorem now follow immediately.

4.9 THEOREM. Let S be a prespectral operator with an s-resolution of the
identity E(. of class F, and let z(S) be totally disconnected. Let N be a quasi-
nilpotent operator with SN NS. Then S + N is prespectral of class F if
and only if

WE(r) E(r)N, -Proof. The condition is clearly sufficient by 3.5. Now let S + N be
prespectral with resolution of the identity F(. of class F. By the previous
theorem, S is prespectral with an s-resolution of the identity F(. of class
and

NF(r) F(-)N, r eZp.

By 4.7, S has a unique resolution of the identity E(. of class F. Hence
F(.) E(.) and

NE(r) E(r)N, r

In order to prove the next theorem we require the following well-known
elementary result.

4.10 LEMMA. Let T e L(X). Let E, F be projections in L(X) such that
EF F and T, E, F commute. Then

r(T FX (r(V EX) r(T).

Proof. Let ), e p(T). Now E commutes with T and hence also with
(XI T)-i. Therefore (XI T)-I leaves EX invariant, and its restriction
to that subspace is a bounded operator, clearly inverse to (XI T) EX.
Hence ) e p( T EX), and z(TIEX o-( T). Similarly T EX commutes
with FLEX, and a(TIFX

_
a( T EX ).

4.11 TttEOREM. Let T, in L(X), have totally disconnected spectrum. In
order that T* be prespectral of class X it is necessary and sul]icient that the set
{A(i) t open-and-closed in z(T)} of spectral projections for T be uniformly
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bounded in norm. If this is the case, T* has a unique resolution of the identity
E( of class X, where for each open-and-closed subset of o.( T), E( A( )*.

Proof. If T* is prespectral with resolution of the identity E(. of class X,
then by 4.4, E(i) A (i)*, and so the condition is necessary. In this case,
E(. is unique by 4.7. Conversely suppose A(ti)ll -- M, ti open-and-closed.
Let f e C(o.(T) ), and let e > 0 be given. Since the topology of the compact
set o.(T) has a base of open-and-closed subsets, it is easily shown that there
exist a partition of o.(T) into open-and-closed subsets {tii i 1, 2, n} and
points Xi in ii, i 1, 2, n, such that

f(Xi) --f(X)] < e, Xeric, i= 1,2,..-n.

Hence the algebra of finite linear combinations of characteristic functions
of disioint open-and-closed subsets of o.(T) is dense in C(O.(T)). Define
map from A into L(X) by

( Ein-I Oli X(Ti) Ein--l Ogi A. (Ti), Ti [’ Tj if i j,

where x(ri) denotes the characteristic function of r. It is easy to see that
b is well defined and that

Therefore can be extended to a continuous homomorphism from C(O.(T))
into L(X). Let 2:o denote the o.-field of Borel subsets of o.(T). By 3.7(a)
there is a spectral measure E0(. of class (2:0, X) such that

4.12 (f)* f f(X)E0(dX), f e C(o.(T)).
(T)

Define E(. on 2 by
E() E0(ti n o.(T)),

Then E(-) is a spectral measure of class (2:, X). Let r be an open-and-
)* E(r). Alsoclosed subset of o.(T) By 4.12, A (r

X*(Tx, E(r)y} (Tx, A(r)*y} (x,E(r)T*y}, xeX, ye

The topology of o.(T) has a countable base of open-and-closed subsets. Since
E(O.(T)) I, it follows that the regular measures (Tx, E(.)y} and
(x, E(. )T’y} are identical for all x in X, y in X*. Hence

T*E() E()T*, e Y,,

Finally let i e 2:, and let r be an open-and-closed subset of o.(T) with
n o.(T)

_
r. Then, since A(r)* E(r), it follows from 4.10 and 4.3 that

O.(T* E()X*) a(T* E(gno.(T))X*) O.(T* E(r)X*) r.

Now since o.(T) is totally disconnected, g n o.(T) is equal to the intersection
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of all open-and-closed subsets r of a(T) with n a(T) r. Hence

a(T* E(6)X*) G n a(T) G ,
By using Theorem 3.9 instead of 3.7 (a) at the appropriate stage of the

proof, we can obtain the following result by similar arguments.

4.13 TEOnEM. Let X be weakly complete and let T, in L(X), have totally
disconnected spectrum. In order that T be a spectral operator it is necessary
and sucient that the set {A () open-and-closed in a(T)} of spectral pro-
jections for T be uniformly bounded in norm.

Dunford [6; p. 252] proved this theorem by a different method.

5. Scalar-type operators whose spectra are R-sets
In order to prove the main result of this section a preliminary lemma, due

to Lumer, is required.

5.1 LEMMA. Let A and B be commuting hermitian operators. Let N be a
quasinilpotent operator with N A - iB. Then A B O.

Proof. By Lemma 15 of [13; p. 82], B 0. Since iN is quasinilpotent,
similar reasoning applied to the equation

iN --B - iA
yields A 0.

DEFINITION. A compact subset K of p is called an R-set if and only if the
rational functions with poles in p\K are uniformly dense in C(K).

We observe that every R-set is nowhere dense, but that there exist nowhere
dense compact subsets of p which are not R-sets. If a compact subset of p
has plane Lebesgue measure 0, or if it is nowhere dense and its complement
has a finite number of components, then it is an R-set.

5.2 To. Let S, in L(X), be a scalar-type operator of class F, and
let a S be an R-set. Then every resolution of the identity for S is an s-resolution
of the identity. Also S has a unique resolution of the identity of class F.

Proof. Let E(. be an s-resolution of the identity of class 1 for S, and let
F(. be a resolution of the identity of class F0 for S. Let So f(s) hF(d),
and let S S0 -t- N be the Jordan decomposition of S corresponding to F(-).
Define

(s)

(s)



PRESPECTRAL OPERATORS 307

Since (S) is n R-set, there re sequences r} nd {j} of rtionM functions
with poles outside (S) converging uniformly on a(S) to R(. nd I(.
respectively. It follows from 3.1 that in the uniform operator topology

r(S) ---+ R, r,(So) ---+ Ro, j(S) J nd j(So) Jo.
From this and the relation SSo SoS it is clear that the operators R, R0, J
nd J0 commute. Since ech of these four operators cn be mde hermitia by
equivMent renorming of X [3; Theorem 2.5], nd since these operators com-
mute, it follows rom Corollary 7 of [13; p. 78] that fter some pproprite
equivMent renorming of X they re simultaneously hermitin. We ssume
that tMs renorming hs been crried out. By pplying Lemm 5.1 to the
equation

N (R- Ro) +i(]- ]o)

we obtain N 0. Hence S f F(d). For every rtionM function
g with poles outside (S we hve

By hypothesis such rtionM functions re uniformly dense in C((S)), nd
so by 3.1

(s)

If F(. ) is lso of class F then, by 3.2, F(. E(. ). This completes the
proof.

5.3 THEOREM. Let S eL(X), and let z(S) be an R-set. In order that S*
be a scalar-type operator of class X it is necessary and sucient that there exist
a cstant M > 0 such that for each rational function g with poles outside z(S)

]lg(S)I] M
Proof. Necessity is obvious, since if S* is prespectrl with n s-resolution

of the identity E(. ) of class X, then

g(S)*= g(k)E(dk).

Conversely suppose the condition is satisfied. It follows that the mp
r r(S), which sends rational function in C(z(S) into an element of L(X),
is well defined. Since a(S) is un R-set, this mup cun be extended to con-
tinuous algebra homomorphism from C(z(S)) into sublgebra of L(X)
contuing S. The conclusion now follows t once from Theorem 3.7.
The next result, the last in this section, may be deduced in a similar manner

from Theorem 3.9.
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5.4 THEOREM. Let X be wealcly complete, and let S e L(X). Let r(S) be
an R-set. Then S is a scalar-type spectral operator if and only if there is a
constant M > 0 such that for each rational function g with poles outside r( S)

6. The Fixman example
This section is devoted to simplifying Fixman’s example 2.7 [8; pp. 1035-6]

and developing some further consequences. On the subspace of consisting
of convergent sequences, the map which assigns to each such sequence its
limit is a linear functional of norm 1. Throughout this section L denotes a
fixed linear functional on with L 1 such that for each convergent
sequence {n}

L({)}) lim {}.

Define operators S and A on by

S{} {}, wherer ,ifn lor2,

,ifn 3, 4, 5,...
n- 1

A{} {L({}), L({}), 0, 0, 0, .-.}.

The operators S and A here defined are modifications of those employed in [8]
and are more convenient to our purposes. Clearly A 1 and A 0.
Also

where ,, 0, if n 1, 2,

1
n-1

, if n 3, 4, 5,

Since L({y}) 0, then AS{} A{}. It is easy to see that
SA } A{}, nd hence

AS SA.

(S) is the totally disconnected set consisting of 1 and the numbers
(n 2)/(n 1) for n 3, 4, 5, .... By regarding S as the adjoint of a
operator on it follows from Theorem 4.11 that S is prespectrl with a
unique resolution of the identity E(. of class satisfying

E({1}){e} {, , O, O, 0,-..},

E n--2 {} {8} for n 3, 4, .-.,

where 5 1 if n k, and = 0 if n # k. Define the sequence {M} by
setting

M 1 if n 1,2; M (n-2)/(n- 1) if n 3,4,5,..-
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Then it is easy to see from 6.1 that for r in 2p, E(r) is the operator which
multiplies the n*h term of a sequence by 1 if n e r and by 0 if hn e r. The
sequence {fn} of functions on z(S), given by

fn(h) if < (n-- 2)/(n-- 1),

1 if >_ (n-- 2)/(n-- 1),

for n 3, 4, 5, converges uniformly to the function identically equal to
) on a(S). One sees directly that f,()f,(h)E(dh) converges to S in the
uniform operator topology, and hence

S f XE(dX).

Observe that-

(i) S is scalar-type operator.on of class 11, nd z(S) is an R-set;
(ii) S is the djoint of scMar-type spectral operator by 5.3 nd 5.4;
(iii) (l)* is wekly complete by IV. 8.16 nd IV. 9.9 of [7];
(iv) a(S) is totally disconnected.

It follows from any one of the Theorems 3.11, 3.13, 4.7 nd 5.2 that every
resolution of the identity for S is an s-resolution of the identity, nd any two
resolutions of the identity of the sme class for S are identical. Also by 2.1,
E(. rises from the resolution of the identity of scalar-type spectrM operator
on 11 by taking adjoints. Since

AE({1}){1, 1, 1,...} {0, 0, 0,.-.}
and

E({1})A{1, 1, 1,--.} {1, 1, 0,...}
we have

6.2 A commutes with S but not with the resolution of the identity of class
for S.

Next we define T1 S + A. Thus T1 is the sum of S nd nilpotent com-
muting with S. It is clear from 6.2 and Theorem 4.9 that Ta is not prespectral
of class a. In fct we shall show

6.3. Ta is not prespectral of any class.

Suppose to the contrary that G(. is resolution of the identity of class 1
for Ta. By either 3.14 or 4.8, G(. is an s-resolution of the identity of class F
for S, md A commutes with every value of G(. ). Now by 2.3 the projec-
tions G({ 1} nd E({ 1} hve the same range. Also

1, ...} E(/1}
nd

AG (.{1}){1, 1, 1,--.} {0, 0, 0,.--}.
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However
A{1, 1, 1,...} {1, 1, 0,.--} eE({1})l G({1})l

nd
G({1})Al1,1,1,...} {1,1,0,--.}.

This gives a contradiction, and so 6.3 is established.
If A were to commute with some resolutionof the identity for S, then

Theorem 3.5 would give a contradiction to 6.3. Thus

6.4. A does not commute with any resolution of the identity for S.

Resolutions of the identity other than E(.) cn be constructed for S by the
method of Fixmun. Define

6.5 F(r) E(r) + AE(r) E(r)A, r e ,.
Using the relations A 0 and AE(r)A O, r e Z, it is easily verified that
F(. is a homomorphism from Z into a Boolean algebra of projections on
with F(z(S)) I. Vlearly F(r)I] 3, re .
For each positive integer n leg e in be given by e {6}%, and let e

be the corresponding linear functional on . Let r be the total linear mani-
fold in (l)* generated by e L, e L, and e n 3, 4, 5, ...}. Since
for each r in Z and x in

n 3, 5, ...,
L) L), n 1, 2,

where x, is the characteristic function of r, it follows that F(- is rt-countably
additive. Since E(. and A commute with S, elementary algebra shows that
F(r)S SF(r), r e Z. In order to prove that F(. is a resolution of the
identity for S it remains only to show thin z(S F(r)l) , r e Z. By
virtue of Lemma 4.10 it suffices to prove this inclusion when r is a closed sub-
set of (S). AgMn by Lemma 4.10, and the fact that (S) is totally s-
connected, it is sufficient to prove the inclusion for an open-and-closed subset
r of (S). It is easy to see from the defiNtion of F(. that E(. and F(.
agree on fiNte subsets of (S){ 1}. Since every open-and-closed subset of
a(S) is such a set or the complement in (S) of such a set, F(. and E(-)
agree on open-and-closed subsets of (S). Therefore

(SF()) (SlE()t)
for r open-and-closed in z(S). (This is simpler than the proof given in [8]).
In establisNng 6.2 it was shown that A and E({1} do not commute. Hence
from 6.5, F(’{ 1} E({ 1} ). Therefore F(- and E(. are distinct.

In contrast to the property of A stated in 6.4 we show

6.6. There is a nilpotent N commuting with E(. but not with F({1} ).
We define N on by setting

0, 0, 0,..
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Then N 1, N 0 and N commutes with E(. ).

However

Moreover

F({1}){1, 1/2, 1, 1, 1,...} {0, --1/2, 0, 0, 0,..-};

NF({1} )l l, 1/2, 1, 1, 1,...} l-1/2, O, O, O, 0,...}.

...} ...};

F({1})N{1, 1/2, 1, 1, 1,...} {1/2, 0, 0, 0, 0,.-.}.

Therefore 6.6 is demonstrated.
Define T. S -t- N. Since N commutes with E(. ), T2 is prespectral of

class 11 by Theorem 3.5. By either 3.14 or 4.8, every resolution of the identity
of T. is an s-resolution of the identity of S. Now T does not commute with
F(. ), nd so S hus n s-resolution of the identity F(. which is not resolu-
tion of the identity of T:. Moreover, if in the statements of Theorems 3.15
and 4.9 the words "of class F" ure deleted ia both places, then the theorems
fail.
To round off the considerations in 6.4 nd 6.6 we show:

6.7. If Q is a quasinilpotent commuting with every resolution of the identity
for S, then Q O.

Since for n 3, 4, 5,

Q IE
is a qusinilpotent on a 1-dimensionul spce, it is 0. Therefore

and so

6.8 E ----l Q 0, n- 3,4,5,

Let {k} e , and let Q{ (k} vk}. Then from 6.8 it follows that

Hence w 0 for n 3. If further 0 then clearly

QE({1}){} Q{, , 0, 0, 0,...} 0,

and so in this case

which gives
0 E({1})Q{}} {1, ., 0, 0, 0,...},

(6.9) Q{} 0 if 1 2= 0.
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Now we consider Q E(ll} )l. Representing this operator by the matrix

relative to the basis {1, 0, 0, ...} and {0, 1, 0, 0, }, we observe that for any
{k} in ,

Q{I, ,., 0, 0, 0,-..} {a1 -k b,., c1 q- d2,0, 0, 0,-..}.

Hence by 6.9,

q{k} Q{x, 2,0, 0, 0,...} q- Q{0, 0, a, 4, 5,"’}

6.10 Q{I, ,., 0, 0, 0,...}

a -{- b2 c q-. d2 O, O, O, ...}.

Direct computation with 6.5 shows that

F({1}){1, 0, 1, 1, 1,...} {0, -1, 0, 0, 0,...},

nd we see with the aid of (6.10) that

6.11 QF({1}){1, 0, 1, 1, 1,...} {-b, -d, 0, 0, 0, ...}.

However
Q{1, 0, 1, 1, 1,-..} {a, c, 0, 0,...}.

The right-hand member of this last equation belongs to the range of F({1} ).
Therefore

F({1})Q{1, 0, 1, 1, 1,...} {a, c, 0, 0, 0,...}.

Since Q commutes with F(. it follows from this equation and 6.11 that

6.12 a-t-b 0, cq-d 0.

Define an operator A on by

A{} {L({k}), 0, 0, 0,...}.

As in the proof of the corresponding results for A we haveA O, A S 8A,
and ALE({1} E({1} )A. Denote by 12 the total linear mnifold in (l)*

generated by e’ L, {e, n 2, 3, 4, the set function H(- defined by

H(r) E(r) -t- AE(r) E(r)A1, r e

is a resolution of the identity of class r,. for S. From the definition of H(-)
we obtain

H({1}){1, 1, 1, 1, 1,...} {0, 1, O, O, 0,-..}.
Therefore

6.13 QtI({1}){1, 1, 1, 1, 1,...} {b, d, 0, 0, 0,.-.}.
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However by 6.10 and 6.12,

Q{1, 1, 1, 1, 1,-..}--{a+b, cWd, O,O,O,...} =0.

Using this last fact and the relation QH({1} H({1} )Q, we deduce from
6.13 that b d 0. Therefore by 6.12 and 6.10, Q 0.

7. Comments on the literature

The problems with prespectral operators (as opposed to spectral operators)
mentioned in 1 have not always been taken into account in the literature,
with the result that errors have occurred in various places. Without attempt-
ing a general analysis of this situation, we shall take up some of these errors
in this section.

In the work of E. Berkson, one non-trivial error occurs. This concerns
Theorem 3.3 of [3; p. 370-1]. Although this theorem was intended to apply
to a scalar-type operator S ou X of arbitrary class r, its proof depends on
knowing that S* has a unique resolution of the identity of class X. With I’
arbitrary it is not known if S* has a unique s-resolution of the identity of
class X (which would be enough for the proof). However, by Corollary 3.12
above, the proof of Theorem 3.3 of [3] is valid if S is of class X*. Thus the
statement of Theorem 3.3 of [3] must be revised to include the additional
hypothesis that S is of class X*. It should be mentioned that this theorem
is subsequently applied in [3] and [4] only to scalar-type spectral operators,
and so no further difficulty arises from it. For another proof of Theorem 3.3
of [3] when S is of class X*, see also Proposition 9 of [13].
In conclusion we consider the following proposition from [2; p. 858].

7.1 THEOREM. Let A be a commutative Banach algebra with radical R such
that for some compact Hausdorff space , the algebra A/R is isomorphic to C( ).
If A is the direct sum of a closed subalgebra B and the radical R, then the closed
subalgebra B is uniquely determined.

There are two difficulties with the proof of 7.1 as presented in [2]. These
are:

7.2. The sum of a scalar-type operator and a commuting quasinilpotent
need not be prespectral of any class by 6.3;

7.3. The decomposition of a prespectral operator into the sum of a scalar-
type operator of the same class and a commuting quasinilpotent is not known
to be unique.

However 7.1 is valid by virtue of the following proof based on the notion of
generalized hermiticity. We do not assume ia this proof that the algebra A
has an identity.

Proof of 7.1. Let B1 and B: be closed subalgebras of A complementary to
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R. We shall denote by Ta the image of a in A under the extended left regular
representation of A in A1. (See [14; p. 4] for this terminology and notation.)
If x is an element of an arbitrary Banch algebra, we use the symbol Eo(x)
to denote the element =1 x/n!. We shall show that B1

___
B. similar

reasoning gives the reverse inclusion. Since each of the algebr B, B is
algebraically eqvalent to C(), each is topologically isomorphic to C() by
the Corollary [11; p. 77].

Let b e B1. Then b can be written b b + r where b e B, r e R, nd
we wish to show that r 0. It is known that the hertiun elements (in the
Vidav sense) of a C*-algebra with identity are precisely those elements which
are self-adjoint with respect to the given involution. (See the proof of
Theorem 21 of [12; p. 41].) Further, it is known that if u is a hermitiaa ele-
ment of an arbitrary Banuch algebr (possessing an identity of norm 1 ), then
the set {Eo(itu) :t is real} is uniformly bounded in norm [16; Hilfsstz 1].
Applying these fcts about generalized herticity to C() and using the
Banach algebra equiwlence of each of B and B th C(), we find that there
are elements u, v, j 1, 2, such that

7.4(a) b u + iv u v e B
7.4(5) the set {]]Eo(itu)]] + 1] Eo(itv)]:t is real} is bounded.

’rom the equation b 52 + r we obtain

T + iT T + iT T.
From the boundedness condition 7.4(b) and Theorem 6 of [13; p. 77], it fol-
lows that the underlying spaceA can be renormed with an eqvalent Banach
space norm which makes the operators T, T, T, T simultaneously
hermitian. Let such an equivalent renorng be carried out. Then

(T- T2)+ i(T,- T)= T.
Since T is quasinilpotent it follows from Lemma 5.1 that T 0. Hence

We observe that in the above proof of 7.1, it is clear from the reasong in
[2] that T is a scalar-type operator of class A. Since tHs operator is equal
to T + T, the latter is trivially prespectral of class Ax. Moreover by
3.7, T + T is a Jordan decomposition of class A for T. Thus the-culty 7.2 can be overcome in the proof given in [2]. By reducing the problem
to the case in which the spectrum of T is real, the other fficulty 7.3 can be
circumvented by appeMing to Theorem 5.2. This reduction can be effected,
because B is equivalent to C(). We omit the details.
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