CORRECTION AND COMPLETION OF THE PAPER “GENERALIZATION
OF A FORMULA OF HAYMAN”

BY
EmiL GrosswaALDb!

1. Inaletter of June 2, 1966, Professor 1. Schoenfeld made several critical
remarks concerning [2]. A few minor printing errors will easily have been
corrected by the reader, but I believe that the following two points require cor-
rection and/or completion.

(A) The estimate (7) of Sy on p. 13 depends on all a,(z) and it is not
sufficiently clear how it follows from the assumption of (non-uniform) bound-
edness made on the a,(x).

(B) The indications how (14) are obtained are so brief as to mislead the
reader concerning the difficulties involved.

In trying to clarify the matter, I observed that a slight strengthening of the
assumptions was needed, but once this is done, the result may be stated in a
somewhat neater form. In order to settle this matter it seems desirable to re-
state in full the needed assumptions and the theorem; but, in order to keep
these remarks brief, I shall refer to [2] or [4] for all statements proven there and
to Harris and Schoenfeld [3] for the proof of the main theorem. The inter-
ested reader will have to “translate” quite a few notations, but my version of
the corrected proof is rather long and in view of the fact that in the meantime
[3] has come out, the publication in toto of another proof does not seem war-
ranted. I wish to thank Professor I.. Schoenfeld for having called my at-
tention upon these two points and for a lengthy correspondence with helpful
suggestions for the clarification of several others. Some suggestions of referees

that permitted streamlining of the presentation are also gratefully acknowl-
edged.

2. In [4] Hayman defines a class H of “admissible” functions, and proves
an asymptotic formula for the coefficients of their power series expansion.
Here we are concerned with subelasses Fyyy © H (VeZ") of the Hayman
admissible functions, characterized by some additional properties. A function
f e H belongs to Fyq if

(1) forevery k < V + 1 there exist positive constants 4, &, My, such that
forrm < r < R, erax(r) < |a(r) | < My ax(r) holds; and

(2) for (0 <)rp <1, |z| < Rand |z — r| < 2r8(r) one has f(z) £ 0 and
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lav(2) | < Cy|ay(r) |, where 8(r) (defined in [2] and [3]) satisfies 8°(7)as(r) — 0
for r — R.

If feFyy for all V we say that fe F(= Ny Fyy). We recall that fe H
implies (for r — R) that

(1) a(r), ax(t) — o (hence, by (2) and (1), 8(r) —> 0 and ax(r) —
(3) forl <k<V+1);

(i) 8"(r)ax(r) — oo;
(iii) A(r)as’*(r) — 0 (for definition of N(r) = \(r; ) see [2]).

Let ®y(r; 8) = max (a3, a3 "™"); then the following theorem holds.

TEEOREM. Iff(2) = X me00n 2" € Fon1 and r = r(n) is defined by (1) of
[2] then

(4) @, = fOr)r " Cra) M1 + 230N (2037)'T (v + 3)As(r) + R},
where | R | < Ky®en(r; 6).

Remarks. The result remains formally correct also for ¥V # 0 (mod 6),
but then R is of the same order as the last one or two terms of the sum; for
V =1, (4) reduces to Hayman’s Theorem.

3. The verification that the function f(z) of the second part satisfies the
conditions of the theorem, (actually, for every V so that feF) proceeds as
follows. The conditions for f e H are verified in [4]. Next one recalls that
the zeros ¢ of Z(t) are of the form ¢ = ¢, 4+ Y, | Y| < }, and that the zeros
z of f(2) satisfy 2 = —¢. Consequently, z = —(ty’ — Y*) — 2¢Y4 and
Rez < —(t — 1) < 0, because (see [5]) {o > 14. It follows that f(z) = 0
in Re z > 0. Next, for each fixed ¢ > 0, the following estimates hold uniformly
for |argz| < 7w — ¢, v =1,2,---,V 4 1((14) of [2])

V 11/2

(14) a(e) = 277" log &2 + 2= (_1) ST =) 4+ 0

where y1 = §, v, = 0 for» > 2.
Using (14) of [2], one observes that (1) holds, e.g., with &, = 2" and M, = 1.

From (14) also follows for ¢ > 0 arbitrarily small, 8(7) = » " log " r and
|z — r] < 278, that

ar(2) 14+ 1+ (2/logr) (K — 1 —log(2x) + 27 + 6) <9

ax(r) 1—¢ 14 (2/logr) (k — 1 — log 2m) ’

say, so that (2) holds with Cy = 2, and also 8°a; — 0, so that all conditions
for f e F hold; finally N(r) = exp (—1"%/32) (see [2], p. 19) and the proof is
completed as in [2] starting on p. 19, line 23.
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4. In order to obtain (14) of [2], one follows the indications on p. 18, line
3. From (13), log f(2) = fi(z) + falz) + fi(z), with

fi(2) = 3" log (*/2we) + % log 2z + % log (7/2),
f(2) =TG4+ 1),  fiz) = log ¢ (2 + 3).

One computes the corresponding af”(2) (j = 1, 2, 3) as follows: TFor
larg z| < m,

ai’ = 12" log (2"%/27) + %,  as’ = 1" log (e2'*/2w)
and, by induction on »,
asl) — 2-—-1:—121/2 lOg (ev —1 1/2/2 7[_)

Tor each fixed ¢ > 0, uniformly for |arg z| < = — ¢,
!
(3) § 1/2 ~1/2 1/2 © —z1/2-1/2
o =2*(2 + )2 = LY A)n” ,

a§3) — 2 anl/\(n) —z1/2—1/2(10g n — z-—-l/‘A)
and, by induction,
o = (=172 Xra A(m)n ™" PP, i (log m, 277),

where Pi(z, i) is a homogeneous polynomial, monic in z, of degree k; con-
sequently,

a® ~ (—1)72""27(log 2)'27°" "7 = 6(z7F) (2 — =, K arbitrarily large).

The most laborious part is the computation of ai”. One has (see, e.g. [1, p.

166-167])

- B2 1—2,
7)) = St A/ /Ao
I8 = 2 e =y

2m

_ m —Zm—-ll-_ ° (2 _ —27ru\—1
+(=1)"Z Wfo Tz s (L= T d,

where the convergence is clearly uniform for Re Z > ¢’ > 0, and thus for
larg 2| < wif Z = %" + 1. In particular, setting

2 2\ ~-1
g(%z) = u2{1 + (;75‘_‘1{;—% } ’
one has
T+ 1) = 1BGM + D7 - G D
1 f g(u, 2) log (1 — ™)™ du.
™

On account of the uniform convergence of the integral (which is majorized
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by [¢ u’log (1 — ¢°™)™" du) and that of its formal derivatives, one may
differentiate under the integral sign and obtain

3 1L 1
1267 + 3) T 24" + 1)

12 6 32 16
" <<zl/2 +P @+ >> h ((zw +B @R >> fo

I, =I1,(2) = L / ¢ (u,2) log (1 — ¢ ™) du.
™ Jo

o (2) = 22 T3+ 1) =

where

In general, one obtains, by finite induction on »,
o = THaPE + D+ DL (TR E + D L),
One observes that all integrals I,(z) are majorized by the integrals

w t
;1; f > wtlog (1 — 7)™ du.
0

=1
Consequently,
@ CYRY: -1 [OYRY ~g —3/2
a’ =a (2" +3) ta (@ +3) +0ET)
— a]('v)z—IIZ + p(v)z—~1 + O(z~3/2)’

the constant implied by the O-symbol depending, of course, on ». One ob-
serves, that

» (») ») (») (v—1) (r+1) (») ),
p” = a — tay”, a1 = —3}af and oo = —ay + 1a”;

. 1 .
hence, using of” = —i%, one obtains

o = (—1)"(6.2)7,
and

—1 —
p(l') = a;!') _ %ay) = _(aév ) %a](.v 1))

— _p(v—l) — (_1)11-—1[)(1) = (_1)v~1/12.
Consequently, as | 2| — «, for fixed »,

@ _ (=1 (=1 32
o = poin t g TOET).

Adding the results for a{”(z) (j = 1, 2, 3), one obtains (14).
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