CORRECTION AND COMPLETION OF THE PAPER "GENERALIZATION OF A FORMULA OF HAYMAN"

BY
Emil Grosswald ${ }^{1}$

1. In a letter of June 2, 1966, Professor L. Schoenfeld made several critical remarks concerning [2]. A fow minor printing errors will easily have been corrected by the reader, but I believe that the following two points require correction and/or completion.
(A) The estimate (7) of S_{2}^{\prime} on p. 13 depends on all $a_{n}(x)$ and it is not sufficiently clear how it follows from the assumption of (non-uniform) boundedness made on the $a_{n}(x)$.
(B) The indications how (14) are obtained are so brief as to mislead the reader concerning the difficulties involved.

In trying to clarify the matter, I observed that a slight strengthening of the assumptions was needed, but once this is done, the result may be stated in a somewhat neater form. In order to settle this matter it seems desirable to restate in full the needed assumptions and the theorem; but, in order to keep these remarks brief, I shall refer to [2] or [4] for all statements proven there and to Harris and Schoenfeld [3] for the proof of the main theorem. The interested reader will have to "translate" quite a few notations, but my version of the corrected proof is rather long and in view of the fact that in the meantime [3] has come out, the publication in toto of another proof does not seem warranted. I wish to thank Professor L. Schoenfeld for having called my attention upon these two points and for a lengthy correspondence with helpful suggestions for the clarification of several others. Some suggestions of referees that permitted streamlining of the presentation are also gratefully acknowledged.
2. In [4] Hayman defines a class H of "admissible" functions, and proves an asymptotic formula for the coefficients of their power series expansion. Here we are concerned with subclasses $F_{V+1} \subset H\left(V \epsilon Z^{+}\right)$of the Hayman admissible functions, characterized by some additional properties. A function $f \in H$ belongs to F_{V+1} if
(1) for every $k \leq V+1$ there exist positive constants $r_{k}, \varepsilon_{k}, M_{k}$, such that for $r_{k}<r<R, \varepsilon_{k} a_{2}(r) \leq\left|a_{k}(r)\right| \leq M_{k} a_{2}(r)$ holds; and
(2) for $(0 \leq) r_{0} \leq r,|z|<R$ and $|z-r|<2 r \delta(r)$ one has $f(z) \neq 0$ and

[^0]$\left|a_{V}(z)\right|<C_{V}\left|a_{V}(r)\right|$, where $\delta(r)$ (defined in [2] and [3]) satisfies $\delta^{3}(r) a_{2}(r) \rightarrow 0$ for $r \rightarrow R$.

If $f \in F_{V+1}$ for all V we say that $f \in F\left(=\bigcap_{V} F_{V+1}\right)$. We recall that $f \epsilon H$ implies (for $r \rightarrow R$) that
(i) $a_{1}(r), a_{2}(t) \rightarrow \infty$ (hence, by (2) and (1), $\delta(r) \rightarrow 0$ and $a_{k}(r) \rightarrow \infty$ for $1 \leq k \leq V+1)$;
(ii) $\delta^{2}(r) a_{2}(r) \rightarrow \infty$;
(iii) $\lambda(r) a_{2}^{1 / 2}(r) \rightarrow 0$ (for definition of $\lambda(r)=\lambda(r ; \delta)$ see [2]).

Let $\Phi_{V}(r ; \delta)=\max \left(a_{2}^{1 / 2} \lambda, a_{2}^{-(V+9) / 6}\right)$; then the following theorem holds.
Theorem. If $f(z)=\sum_{n=0}^{\infty} \alpha_{n} z^{n} \in F_{6 m+1}$ and $r=r(n)$ is defined by (1) of [2] then
(4) $\alpha_{n}=f(r) r^{-n}\left(2 \pi a_{2}\right)^{-1 / 2}\left\{1+\pi^{-1 / 2} \sum_{\nu=2}^{3 m}\left(2 a_{2}^{-1}\right)^{\nu} \Gamma\left(\nu+\frac{1}{2}\right) A_{2 \nu}(r)+R\right\}$, where $|R| \leq K_{m} \Phi_{6 m}(r ; \delta)$.

Remarks. The result remains formally correct also for $V \not \equiv 0(\bmod 6)$, but then R is of the same order as the last one or two terms of the sum; for $V=1$, (4) reduces to Hayman's Theorem.
3. The verification that the function $f(z)$ of the second part satisfies the conditions of the theorem, (actually, for every V so that $f \epsilon F$) proceeds as follows. The conditions for $f \epsilon H$ are verified in [4]. Next one recalls that the zeros t of $\Xi(t)$ are of the form $t=t_{0}+i Y,|Y|<\frac{1}{2}$, and that the zeros z of $f(z)$ satisfy $z=-t^{2}$. Consequently, $z=-\left(t_{0}^{2}-Y^{2}\right)-2 i Y t_{0}$ and $\operatorname{Re} z<-\left(t_{0}{ }^{2}-\frac{1}{4}\right)<0$, because (see [5]) $t_{0}>14$. It follows that $f(z) \neq 0$ in $\operatorname{Re} z>0$. Next, for each fixed $c>0$, the following estimates hold uniformly for $|\arg z|<\pi-c, \nu=1,2, \cdots, V+1$ ((14) of [2])

$$
\begin{equation*}
a_{\nu}(z)=2^{-\nu-1} z^{1 / 2} \log \frac{e^{\nu-1} z^{1 / 2}}{2}+\frac{(-1)^{\nu}}{6} z^{-1 / 2}\left(2^{-\nu}-\frac{1}{2} z^{-1 / 2}\right)+\gamma_{\nu}+O\left(z^{-3 / 2}\right) \tag{14}
\end{equation*}
$$

where $\gamma_{1}=\frac{7}{8}, \gamma_{\nu}=0$ for $\nu \geq 2$.
Using (14) of [2], one observes that (1) holds, e.g., with $\varepsilon_{k}=2^{1-k}$ and $M_{k}=1$. From (14) also follows for $\varepsilon>0$ arbitrarily small, $\delta(r)=r^{-1 / 6} \log ^{-1 / 2} r$ and $|z-r|<2 r \delta$, that

$$
\left|\frac{a_{k}(z)}{a_{k}(r)}\right|<\frac{1+\varepsilon}{1-\varepsilon} \frac{1+(2 / \log r)\left(k-1-\log (2 \pi)+\frac{1}{2} \pi+\delta\right)}{1+(2 / \log r)(k-1-\log 2 \pi)}<2
$$

say, so that (2) holds with $C_{V}=2$, and also $\delta^{3} a_{2} \rightarrow 0$, so that all conditions for $f \epsilon F$ hold; finally $\lambda(r)=\exp \left(-r^{1 / 6} / 32\right)$ (see [2], p. 19) and the proof is completed as in [2] starting on p. 19, line 23.
4. In order to obtain (14) of [2], one follows the indications on p. 18, line 3. From (13), $\log f(z)=f_{1}(z)+f_{2}(z)+f_{3}(z)$, with

$$
\begin{aligned}
& f_{1}(z)=\frac{1}{2} z^{1 / 2} \log \left(z^{1 / 2} / 2 \pi e\right)+\frac{7}{8} \log z+\frac{1}{4} \log (\pi / 2), \\
& f_{2}(z)=J\left(\frac{1}{2} z^{1 / 2}+\frac{1}{4}\right), \quad f_{3}(z)=\log \zeta\left(z^{1 / 2}+\frac{1}{2}\right)
\end{aligned}
$$

One computes the corresponding $a_{\nu}^{(j)}(z)(j=1,2,3)$ as follows: For $|\arg z|<\pi$,

$$
a_{1}^{(1)}=\frac{1}{4} z^{1 / 2} \log \left(z^{1 / 2} / 2 \pi\right)+\frac{7}{8}, \quad a_{2}^{(1)}=\frac{1}{8} z^{1 / 2} \log \left(e z^{1 / 2} / 2 \pi\right)
$$

and, by induction on ν,

$$
a_{\nu}^{(1)}=2^{-\nu-1} z^{1 / 2} \log \left(e^{\nu-1} z^{1 / 2} / 2 \pi\right)
$$

For each fixed $c>0$, uniformly for $|\arg z|<\pi-c$,

$$
\begin{aligned}
& a_{1}^{(3)}=z \frac{\zeta^{\prime}}{\zeta}\left(z^{1 / 2}+\frac{1}{2}\right) \cdot \frac{1}{2} z^{-1 / 2}=\frac{1}{2} z^{1 / 2} \sum_{n=1}^{\infty} \wedge(n) n^{-z^{1 / 2-1 / 2}} \\
& a_{2}^{(3)}=-\frac{1}{4} z \sum_{n=1}^{\infty} \wedge(n) n^{-z^{1 / 2-1 / 2}}\left(\log n-z^{-1 / 2}\right)
\end{aligned}
$$

and, by induction,

$$
a_{\nu}^{(3)}=(-1)^{\nu-1} z^{\nu / 2} 2^{-\nu} \sum_{n=1}^{\infty} \wedge(n) n^{-z^{1 / 2-1 / 2}} P_{\nu-1}\left(\log n, z^{-1 / 2}\right)
$$

where $P_{k}(x, y)$ is a homogeneous polynomial, monic in x, of degree k; consequently,
$a_{\nu}^{(3)} \sim(-1)^{\nu-1} z^{\nu / 2} 2^{-\nu}(\log 2)^{\nu} 2^{-z^{1 / 2}-1 / 2}=o\left(z^{-K}\right) \quad(z \rightarrow \infty, K$ arbitrarily large $)$.
The most laborious part is the computation of $a_{\nu}^{(2)}$. One has (see, e.g. [1, p. 166-167])

$$
\begin{aligned}
J(Z)=\sum_{\mu=1}^{m} \frac{B_{2 \mu}}{2 \mu(2 \mu-1)} & Z^{1-2 \mu} \\
& +(-1)^{m} Z^{-2 m-1} \frac{1}{\pi} \int_{0}^{\infty} \frac{u^{2 m}}{1+(u / Z)^{2}} \log \left(1-e^{-2 \pi u}\right)^{-1} d u
\end{aligned}
$$

where the convergence is clearly uniform for $\operatorname{Re} Z>c^{\prime}>0$, and thus for $|\arg z|<\pi$ if $Z=\frac{1}{2} z^{1 / 2}+\frac{1}{4}$. In particular, setting

$$
g(u, z)=u^{2}\left\{1+\left(\frac{2 u}{z^{1 / 2}+\frac{1}{2}}\right)^{2}\right\}^{-1}
$$

one has

$$
\begin{aligned}
J\left(\frac{1}{2} z^{1 / 2}+\frac{1}{4}\right)=\frac{1}{2} B_{2}\left(\frac{1}{2} z^{1 / 2}+\frac{1}{4}\right)^{-1}-\left(\frac{1}{2} z^{1 / 2}\right. & \left.+\frac{1}{4}\right)^{-3} \\
& \cdot \frac{1}{\pi} \int_{0}^{\infty} g(u, z) \log \left(1-e^{-2 \pi u}\right)^{-1} d u
\end{aligned}
$$

On account of the uniform convergence of the integral (which is majorized
by $\left.\int_{0}^{\infty} u^{2} \log \left(1-e^{-2 \pi u}\right)^{-1} d u\right)$ and that of its formal derivatives, one may differentiate under the integral sign and obtain

$$
\begin{aligned}
a_{1}^{(2)}(z)= & z \frac{d}{d z} J\left(\frac{1}{2} z^{1 / 2}+\frac{1}{4}\right)=-\frac{1}{12\left(z^{1 / 2}+\frac{1}{2}\right)}+\frac{1}{24\left(z^{1 / 2}+\frac{1}{2}\right)^{2}} \\
& +\left(\frac{12}{\left(z^{1 / 2}+\frac{1}{2}\right)^{3}}-\frac{6}{\left(z^{1 / 2}+\frac{1}{2}\right)^{4}}\right) I_{1}-\left(\frac{32}{\left(z^{1 / 2}+\frac{1}{2}\right)^{5}}-\frac{16}{\left(z^{1 / 2}+\frac{1}{2}\right)^{6}}\right) I_{2},
\end{aligned}
$$

where

$$
I_{t}=I_{t}(z)=\frac{1}{\pi} \int_{0}^{\infty} g^{t}(u, z) \log \left(1-e^{-2 \pi u}\right)^{-1} d u
$$

In general, one obtains, by finite induction on ν,

$$
a_{\nu}^{(2)}=\sum_{k=1}^{\nu+1} \alpha_{k}^{(\nu)}\left(z^{1 / 2}+\frac{1}{2}\right)^{-k}+\sum_{t=1}^{\nu}\left\{\sum_{k=1}^{\nu+1} \beta_{t, k}^{(\nu)}\left(z^{1 / 2}+\frac{1}{2}\right)^{-2 t-k}\right\} I_{t}(z) .
$$

One observes that all integrals $I_{t}(z)$ are majorized by the integrals

$$
\frac{1}{\pi} \int_{0}^{\infty} \sum_{i=1}^{t} u^{2 i} \log \left(1-e^{-2 \pi u}\right)^{-1} d u
$$

Consequently,

$$
\begin{aligned}
a_{\nu}^{(2)} & =\alpha_{1}^{(\nu)}\left(z^{1 / 2}+\frac{1}{2}\right)^{-1}+\alpha_{2}^{(\nu)}\left(z^{1 / 2}+\frac{1}{2}\right)^{-2}+O\left(z^{-3 / 2}\right) \\
& =\alpha_{1}^{(\nu)} z^{-1 / 2}+\rho^{(\nu)} z^{-1}+O\left(z^{-3 / 2}\right),
\end{aligned}
$$

the constant implied by the O-symbol depending, of course, on ν. One observes, that

$$
\rho^{(\nu)}=\alpha_{2}^{(\nu)}-\frac{1}{2} \alpha_{1}^{(\nu)}, \quad \alpha_{1}^{(\nu)}=-\frac{1}{2} \alpha_{1}^{(\nu-1)} \quad \text { and } \quad \alpha_{2}^{(\nu+1)}=-\alpha_{2}^{(\nu)}+\frac{1}{4} \alpha_{1}^{(\nu)} ;
$$

hence, using $\alpha_{1}^{(1)}=-\frac{1}{12}$, one obtains

$$
\alpha_{1}^{(\nu)}=(-1)^{\nu}\left(6.2^{\nu}\right)^{-1}
$$

and

$$
\begin{aligned}
& \rho^{(\nu)}=\alpha_{2}^{(\nu)}-\frac{1}{2} \alpha_{1}^{(\nu)}=-\left(\alpha_{2}^{(\nu-1)}-\frac{1}{2} \alpha_{1}^{(\nu-1)}\right) \\
&=-\rho^{(\nu-1)}=(-1)^{\nu-1} \rho^{(1)}=(-1)^{\nu-1} / 12
\end{aligned}
$$

Consequently, as $|z| \rightarrow \infty$, for fixed ν,

$$
\alpha_{\nu}^{(2)}=\frac{(-1)^{\nu}}{6 \cdot 2^{\nu} z^{1 / 2}}+\frac{(-1)^{\nu-1}}{12 z}+O\left(z^{-3 / 2}\right) .
$$

Adding the results for $a_{\nu}^{(j)}(z)(j=1,2,3)$, one obtains (14).

Bibliography

1. L. B. Ahlfors, Complex analysis, McGraw-Hill, New York, 1953.
2. E. Grosswald, Generalization of a formula of Hayman and its applications to the study of Riemann's zeta function, Illinois J. Math., vol. 10 (1966), pp. 9-23.
3. B. Harris and L. Schoenfeld, Asymptotic expansions for the coefficients of analytic functions, Illinois J. Math., vol. 12 (1968), pp. 264-277.
4. W. K. Hayman, A generalization of Stirling's formula, J. Reine Angew. Math., vol. 196 (1956), pp. 67-95.
5. E. C. Titchmarsh, The theory of the Riemann zeta-function, The Clarendon Press, Oxford, 1951.

University of Pennsylvania
Philadelphia, Pennsylvania
Temple University
Pulladmlphia, Pennsylvania

[^0]: Received November 26, 1966.
 ${ }^{1}$ The original paper, as well as the present addition, were written with the support of the National Science Foundation.

