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L-FREE GROUPS

ROLAND SCHMIDT

Meinem verehrten Lehrer gewidmet

Abstract. Let L be a lattice. A lattice is called L-free if it has no

sublattice isomorphic to L. In this paper we study finite groups whose
subgroup lattices are L-free for certain lattices L.

Introduction

A lattice L is called primitive if the class C(L) of lattices containing no
sublattice isomorphic to L is a variety [2, p. 129]. A well-known example of
such a lattice is the nonmodular lattice N5 with 5 elements for which C(N5)
is the variety of modular lattices; see Figure 1.
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Figure 1

Not every variety has a primitive lattice and there are also other interesting
classes of lattices characterized by the fact that their members do not contain
certain lattices as sublattices. Therefore we introduce the following concept.

Definition. Let L be a lattice.
(a) A lattice is called L-free if it has no sublattice isomorphic to L.
(b) A group G is called L-free if its subgroup lattice L(G) is L-free.
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For example, a lattice is modular if and only if it is N5-free, and it is
distributive if and only if it is N5-free and M5-free. We shall show in Section
1 that a subgroup lattice is distributive if and only if it is M5-free.

It is a theorem of Krempa and Terlikowska-Os lowska [4] that a finite lattice
is globally permutable if and only if it is L6-free and L7-free (see Figure 1);
Baginski and Sakowicz [1] determined the finite groups with such a subgroup
lattice. They showed that a finite group is L6-free and L7-free if and only if it
is a direct product of P̃ -groups and modular p-groups with pairwise relatively
prime orders. Here a group X is called a P̃ -group if X = A〈b〉 where A is
an elementary abelian normal p-subgroup of X, o(b) = qn for primes p and
q such that q divides p − 1 and n ∈ N, and b induces a nontrivial power
automorphism β in A. Note that a P̃ -group X is a P -group if o(b) = q and
a P ∗-group if o(β) = q; so the finite L6- and L7-free groups are not far from
being modular (see [6, Theorem 2.4.4]).

In this paper we study the question what happens if a finite group has just
one of the two properties occurring in the Baginski-Sakowicz Theorem. It
turns out that these groups are also near to being modular. We show that a
finite group is L6-free if and only if its subgroup lattice is upper semimodular;
the structure of these groups was given independently by Jones and Sato (see
[7, p. 24]). And a finite group is L7-free if and only if it is a direct product of
groups with pairwise relatively prime orders which are either modular p-groups
or of the form X = AB, where A is an elementary abelian normal p-subgroup
of X and B a q-group, p and q are primes, and one of the following holds:

(i) B is cyclic and every subgroup of B either is irreducible on A or
induces a power automorphism in A.

(ii) B is a quaternion group (of order 8) operating faithfully on A, |A| = p2

and p ≡ 3 (mod 4).

In particular, L7-free groups are in general not supersoluble.
Our notation is standard (see [3] or [6]) except that we write H ∪K for the

group generated by the subgroups H and K of the group G. For basic results
on subgroup lattices we refer the reader to [6].

1. M5-free groups

Let us denote the chain with n elements by Kn. Then a lattice is Kn-free
if and only if it has length at most n−2, and it is (K2×K2)-free if and only if
it is a chain. So the smallest lattice which is interesting in the study of L-free
groups is M5.

Theorem 1.1. The group G is M5-free if and only if L(G) is distributive
(and hence G is locally cyclic).
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Proof. If L(G) is distributive, it is clearly M5-free. Conversely, suppose
that G is M5-free. We show that G is abelian; then L(G) is modular and
M5-free and hence distributive.

So suppose, for a contradiction, that G is not abelian. Then there exist
x, y ∈ G such that xy 6= yx. If 〈x〉 ∩ 〈y〉 = 1 for all such pairs (x, y) of
noncommuting elements, it would follow that 〈x〉 ∩ 〈xy〉 = 1 = 〈y〉 ∩ 〈xy〉
and so {1, 〈x〉, 〈y〉, 〈xy〉, 〈x, y〉} would be a sublattice of L(G) isomorphic to
M5. Hence there exist x, y ∈ G such that xy 6= yx and 〈x〉 ∩ 〈y〉 6= 1. Then
|〈x〉 : 〈x〉 ∩ 〈y〉| and |〈y〉 : 〈x〉 ∩ 〈y〉| are finite and we choose x, y with xy 6= yx
such that |〈x〉 : 〈x〉 ∩ 〈y〉| is minimal.

Let H = 〈x, y〉 and let p be a prime dividing |〈x〉 : 〈x〉 ∩ 〈y〉|. Then
xpy = yxp and hence N := 〈xp〉 ≤ Z(H). If 〈x〉 6= 〈xy〉, the group 〈x, xy〉/N
would have two different subgroups of order p and hence would not be cyclic.
It would follow that 〈x, xy〉 6= 〈xxy〉N and so {N, 〈x〉, 〈xy〉, 〈xxy〉N, 〈x, xy〉}
would be a sublattice of L(G) isomorphic to M5.

Thus 〈x〉 = 〈xy〉 �H = 〈x, y〉. If H/N were not abelian, it would contain
a nonabelian section of order pq for some prime q; again L(G) would have a
sublattice isomorphic to M5. So, finally, H/N = 〈x〉/N × 〈y〉N/N is a finite
abelian group and |〈y〉N/N | is prime to p since H/N is M5-free. Therefore
H/N is cyclic and since N ≤ Z(H), it follows that H is abelian, the desired
contradiction. �

2. L6-free groups

Both lattices L6 and L7 contain sublattices isomorphic to N5. Therefore
every modular (that is, N5-free) lattice clearly is L6-free and L7-free. For
finite p-groups the converse also holds.

Lemma 2.1. The following properties of a finite p-group G are equivalent.
(a) G is L6-free.
(b) G is L7-free.
(c) L(G) is modular.

Proof. As mentioned above, (c) implies (a) and (b). Conversely assume
that (a) or (b) holds and suppose, for a contradiction, that L(G) is not
modular. Then by [6, Lemma 2.3.3], G has a section X isomorphic to the
dihedral group of order 8 or to the nonabelian group of order p3 and expo-
nent p for p > 2. If A1 and A2 are different noncyclic maximal subgroups
of X and Bi, Ci are different minimal subgroups of Ai different from Z(X),
then {1, B1, C1, A1, B2, X} and {1, B1, A1, Z(X), B2, A2, X} are sublattices of
L(X) isomorphic to L6 and L7, respectively. This contradiction proves the
lemma. �

We shall need another general property of L6-free or L7-free lattices.
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Lemma 2.2. Let M and N be lattices and let k ∈ {6, 7}. If M and N are
Lk-free, then so is M ×N .

Proof. It is well-known that Lk is subdirectly irreducible (see [5, p. 34]),
that is, there exist a, b ∈ Lk such that a 6= b and aϕ = bϕ for every homomor-
phism ϕ of Lk which is not injective. (It is easy to see that one can take for
a the least element of Lk and for b an atom which is not an antiatom if k = 6
and the intersection of the two antiatoms if k = 7.) If Lk were a sublattice of
M×N , then since M and N are Lk-free, the projections ϕ1 and ϕ2 of Lk into
M and N , respectively, could not be injective; hence aϕi = bϕi for i = 1, 2
and so a = b, a contradiction. �

We show next that finite L6-free groups are supersoluble. For this we need
a lemma which will also be used later.

Lemma 2.3. Let G be a finite group, N�G and H ≤ G such that G = NH
and N ∩H = 1. If G is L6-free, then H normalizes every subgroup of N .

Proof. Suppose that this is false. Then there exist B ≤ N and x ∈ H such
that Bx 6= B; let B be minimal with this property. Then

E := B ∩Bx < B < B ∪Bx ≤ N
and hence Ex = E. It follows that N ∩E〈x〉 = E(N ∩〈x〉) = E and therefore
{E,B,Bx, B∪Bx, E〈x〉, 〈B, x〉} is a sublattice of L(G) isomorphic to L6. �

Lemma 2.4. Let G be a finite group. If G is L6-free, then G is supersol-
uble.

Proof. We use induction on |G|. Then every proper subgroup and factor
group of G is supersoluble. By Huppert’s theorem (see [3, p. 718]), G is sol-
uble. Let N be a minimal normal subgroup of G. Then G/N is supersoluble,
|N | is a power of some prime p and N ∩Z(P ) 6= 1 for every Sylow p-subgroup
P of G. By Lemma 2.3, a subgroup X of order p of N ∩ Z(P ) is normalized
by every p′-subgroup of G and hence X �G. So N = X has order p and G is
supersoluble. �

We can now prove our main result on L6-free groups. For the sake of
simplicity, we introduce the following notation.

Definition 2.5. The finite group G is called a Q-group if there exist
pairwise different primes p1, . . . , pk (k ∈ N) and q such that G =
(P1 × · · · × Pk)Q and for all i, j ∈ {1, . . . , k},

(1) Pi is an elementary abelian normal pi-subgroup of G,
(2) Q is a cyclic q-group inducing nontrivial power automorphisms in Pi,
(3) CQ(Pi) 6= CQ(Pj) for i 6= j.
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Theorem 2.6. The following properties of the finite group G are equiva-
lent.

(a) G is L6-free.
(b) L(G) is upper semimodular.
(c) G is a direct product of Q-groups and modular p-groups with pairwise

relatively prime orders.

Proof. It is well-known (see [7, p. 24]) that (b) and (c) are equivalent. We
prove that (a) implies (b) and that (c) implies (a).

So assume, for a contradiction, that G is L6-free but L(G) is not upper
semimodular and let G be minimal with this property. Since L(G) is not
upper semimodular, there exist subgroups H and K of G such that H ∩K is
a maximal subgroup of H but K is not maximal in H ∪K. We choose such
a pair with |H| minimal and |K| maximal for this H. The minimality of G
implies that H ∪K = G. Since K is not maximal in G, there exist maximal
subgroups M of G and L of M such that K ≤ L. Since H 6≤ L, we have
H ∩L = H ∩K and the maximality of K implies that L = K. By Lemma 2.4,
G is supersoluble and hence maximal subgroups have prime index; so there
exist primes p, q, r such that

(4) |G : K| = pr

and |H : H ∩ K| = q. If x is a q-element of minimal order in H such that
H = 〈x〉 ∪ (H ∩K), then xq ∈ H ∩K and so 〈x〉 ∩K = 〈xq〉 is maximal in
〈x〉 and 〈x〉 ∪K = H ∪K = G. The minimality of H implies that

(5) H = 〈x〉 is cyclic of order qn for some q ∈ P, n ∈ N.

Suppose that HG 6= G. If E := HG ∩K, then H ∩ E = H ∩K is maximal
in H. The minimality of G implies that L(HG) is upper semimodular and so
E is maximal in E ∪H =: B. Since |HG : E| = |G : K| = pr, it follows that
E l B l HG; furthermore, H ≤ B < HG implies that B is not normal in
G = H ∪K and hence there exists y ∈ K such that B 6= By. Since E �K,
it follows that {E,B,By,HG,K,G} is a sublattice of L(G) isomorphic to L6.
This contradiction shows that

(6) HG = G.

The supersoluble groupG has a normal t-complementN for the smallest prime
t dividing |G| (see [3, p. 716]). Since HG = G, it follows that NH = G and
so t = q and H is a Sylow q-subgroup of G. By Lemma 2.3, every subgroup
of N is normalized by H and any of its conjugates and hence is normal in G.
In particular, N ∩ K � G and since (N ∩ K)H ∩ K = (N ∩ K)(H ∩ K) is
maximal in (N∩K)H, the lattice L(G/N∩K) is not upper semimodular. The
minimality of G implies that N ∩K = 1. Therefore |N | divides |G : K| = pr
and K is a q-group properly containing H ∩K. Since Sylow q subgroups are
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cyclic, it follows that H∩K�H∪K = G and the minimality of G now implies
that H ∩K = 1. Since L(G) is not modular, we finally get that

(7) G = NH where |N | = pr and |H| = q = |K|, q < r ≤ p.

Furthermore G is not a P -group, but every subgroup of N is normal in G.
So if p = r, then N is cyclic. Since H ∪K = G, we have PH 6= PK if P is
the subgroup of order p of N . So if we choose y ∈ P such that H 6= Hy, then
{1,H,Hy, PH,K,G} is a sublattice of L(G) isomorphic to L6. Therefore,
finally, p 6= r and then N = P × R where |P | = p and |R| = r. Since
p > r > q, there exist three subgroups Qi of order q different from H in
HP . Since Qi ∪ Qj = HP for i 6= j, the groups PK and RK each contain
at most one of the Qi and hence there exists Qj such that K ∪ Qj = G.
Now {1,H,Qj ,HP,K,G} is a sublattice of L(G) isomorphic to L6. This
contradiction proves that (a) implies (b).

We next show that (c) implies (a) and consider a minimal counterexample
G to this assertion. Then [6, Lemma 1.6.4] and Lemma 2.2 together with
2.1 imply that G is a Q-group; we use the notation of Definition 2.5. Since
G is a minimal counterexample, there exists a sublattice of L(G) isomorphic
to L6, and its maximal element is G; note that property (c) is inherited by
subgroups and factor groups since it is equivalent to (b).
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In the notation of Figure 2, clearly, EG = 1. We will show that also

(8) BG = CG = DG = 1.

So suppose that N �G and N ≤ B. If NE = B, it would follow that BD =
NED = ND = DN = DEN = DB; so G = BD and A = B(A ∩ D) = B,
a contradiction. Therefore NE < B and since A ∩ ND = N(A ∩D) = NE
and B ∩NC = N(B ∩C) = NE, it follows that {NE,B,NC,A,ND,G} is a
sublattice of L(G) isomorphic to L6. The minimality of G implies that N = 1.
So BG = 1 and, similarly, CG = 1.

Now let N �G such that N ≤ D. As above, if NE = D, then BD = DB
and we get the same contradiction A = B. Therefore NE < D and since
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NA ∩ D = N(A ∩ D) = NE and NA/N ' A/A ∩ N with A ∩ N ≤ E, it
follows that {NE,NB,NC,NA,D,G} ' L6. So N = 1 and (8) holds.

It follows from (2) of Definition 2.5 that B,C, and D are q-groups. Hence
they are cyclic and E is centralized by B ∪D = G. Thus

(9) E = 1.

Let M := P1 × · · · × Pk so that G = MQ. Since G/M is a cyclic q-group
and G = B ∪D, one of MB or MD must be G and hence one of the groups
B and D is a Sylow q-subgroup S of G and the other is contained in Sx for
some x ∈M . Thus

G = B ∪D ≤ S ∪ Sx ≤ S ∪ 〈x〉 = 〈x〉S

and hence M = 〈x〉 is cyclic of order p1 . . . pk. By (8), SG = 1 and by (3) of
Definition 2.5, the minimal subgroup Ω(S) of S centralizes all but one of the
Pi. Hence if T := Ω(S)G is the group generated by all the subgroups of order
q of G, then |T | = pjq for some j ∈ {1, . . . , k}. Now B ∩ C = 1 implies that
B ∩ T 6= C ∩ T and hence T ≤ B ∪ C = A. But then A ∩D ≥ T ∩D 6= 1, a
final contradiction. �

Remark 2.7. The author originally proved the equivalence of properties
(a) and (c) of Theorem 2.6. He is grateful to A. Leone (Napoli) who pointed
out to him that (c) is the characterization of finite groups with upper semi-
modular subgroup lattice given in [7]. Unfortunately, he was not able to find
a simple direct proof for the equivalence of (a) and (b). The reason for this
might be that the corresponding statement for lattices is wrong. The lattices
N5 or L7, for example, are L6-free but not upper semimodular. And the
lattice in Figure 3 is upper semimodular but not L6-free.
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3. L7-free groups

We first determine the {p, q}-groups with this property.

Lemma 3.1. Let p and q be different primes, n ∈ N, and assume that
G = PQ where P is an elementary abelian normal subgroup of order pn of G
and Q = 〈x〉 is a cyclic q-group. Then the following properties are equivalent.

(a) G is L7-free.
(b) Every subgroup Q0 of Q either is irreducible on P or normalizes every

subgroup of P .
(c) One of the following holds.

(i) G = P × Q or G is a P̃ -group, that is, x induces a (possibly
trivial) power automorphism in P .

(ii) q | p−1, |P | = pq, and x induces an automorphism of order qk+1

(resp. at least qk+1 = 4 in case q = 2 and k = 1) in P where k
is the largest integer such that qk | p− 1.

(iii) n ≥ 2, q - pr − 1 for 1 ≤ r < n, qm | pn − 1, and x induces an
automorphism of order qm in P (m ∈ N).

Proof. We use induction on |G| to show that (a) implies (b). For this we
may assume that Q0 = Q and that Q = 〈x〉 is not irreducible on P . By
Maschke’s theorem (see [3, p. 122]), P is completely reducible under Q, that
is, P = N1× · · ·×Nr with minimal normal subgroups Ni of G. If r > 2, then
x induces power automorphisms in N1×Ni for all i ∈ {2, . . . , r} and therefore
also in P . So, finally, suppose that P = N1 ×N2.

Let 1 6= a ∈ N1 and M be a maximal subgroup of 〈a〉 ×N2 different from
N2 such that a 6∈ M . Then P = N1M and N1 ∩M = 1. Suppose, for a
contradiction, that Mx 6= M and let L := (M ∪Q)∩ P . Then Lx = L, hence
M < L and so L = (N1 ∩ L)M with N1 ∩ L 6= 1. Since (N1 ∩ L)x = N1 ∩ L
and N1 is a minimal normal subgroup of G, it follows that N1 ≤ L and so
M∪Q = G. Then {1,M,Q,N1, N1Q,P,G} is a sublattice of L(G) isomorphic
to L7. This contradiction shows that Mx = M . Since N2 is a minimal normal
subgroup of G, it follows that N2 ∩M = 1 and hence |N2| = p. Similarly,
|N1| = p. Now our argument shows that every diagonal M in the direct
product N1 × N2 is Q-invariant and so x induces a power automorphism in
P .

We show next that (b) implies (a). If G satisfies (b), then every subgroup
and factor group of G also satisfies (b) or is abelian. Thus if L ' L7 is
a sublattice of L(G), then by induction, its greatest element has to be G
and hence the antiatoms A and B of L (see Figure 4 below) have to be
contained in two different maximal subgroups of G. But if Q is irreducible
on P , then the maximal subgroups of G are Pφ(Q) and the conjugates of Q;
since L(Q) is a chain, it cannot contain a sublattice isomorphic to K2 ×K2.
And if Q normalizes every subgroup of P , then G is abelian or a P̃ -group
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and by [1, Proposition 2.12], it is L7-free. Since the proof there is rather
long, note that a simple proof can be given similar to that of Theorem 2.6.
Indeed, since CD 6= DC, the same argument as in the proof of (8) shows
that CG = 1 = DG. Hence C and D are q-groups generating G, so one of
them is a Sylow q-subgroup S of G and the other is contained in Sg for some
g ∈ P . Then G = C ∪D ≤ 〈g〉S and hence S is a maximal subgroup of G, a
contradiction.

We finally show that (b) and (c) are equivalent. If G satisfies (b) and x
normalizes every subgroup of P , then (i) holds; conversely, the groups in (i)
satisfy (b). So suppose that P is irreducible under Q, |P | = pn with n ≥ 2,
and x induces an automorphism of order qm in P . Then it is well-known (see
[3, p. 166]) that n is the smallest integer such that qm | pn − 1. If xq

m−1
is

irreducible on P , then q - pr−1 for 1 ≤ r < n and (iii) holds. So suppose that
xq

m−1
is not irreducible on P . Then by (b) there exists k ∈ {1, . . . ,m − 1}

such that xq
m−k

induces a power automorphism of order qk in P and xq
m−k−1

is irreducible on P . Then qk | p − 1, but qk+1
- pr − 1 for 1 ≤ r < n; in

particular, k is the largest integer such that qk | p− 1. So p = sqk + 1 where
q - s, hence pi ≡ 1 + isqk (mod qk+1) for i ≥ 1, and

(10)
pr − 1
p− 1

=
r−1∑
i=0

pi ≡ r +
r(r − 1)sqk

2
(mod qk+1)

for r ≥ 2. Since qk+1 | pn − 1, it follows that q | n. On the other hand, since
qk+1 | pq − 1, the irreducible GF (p)-modules for a cyclic group of order qk+1

have order pq and hence n = q. If q > 2, then (10) shows that pq−1
p−1 ≡ q

(mod qk+1) and hence qk+2
- pq − 1; it follows that m = k + 1. The same is

true if q = 2 and k > 1. Thus (ii) holds.
Conversely, if G satisfies (ii) or (iii) of (c), then P is completely reducible

underQ. The arithmetical conditions in (iii) imply that the irreducibleGF (p)-
modules for a group of order q have order pn. Thus P is irreducible under
every nontrivial automorphism induced by elements of Q and (b) holds. In
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case (ii), as shown above, the irreducible GF (p)-modules for a cyclic group
of order qk+1 have order pq and hence P is irreducible under Q. Again it is
well-known (see [3, p. 166]) that x operates on P = GF (pq) by multiplication
with an element of order qk+1 (resp. qm, m ≥ k + 1, if q = 2 and k = 1)
of the multiplicative group of GF (pq). The q-th (resp. qm−1-th) power of
this element lies in GF (p) and therefore fixes every subgroup of P . Again (b)
holds. �

Note that groups with the properties (ii) or (iii) in (c) do exist. Since x
operates irreducibly on P in these cases, these groups are L7-free and not
supersoluble. We shall show that there is just one further class of L7 -free
{p, q}-groups, namely the following.

Lemma 3.2. Let p be a prime such that p ≡ 3 (mod 4) and let G = PQ
be the semidirect product of an elementary abelian group P of order p2 by a
quaternion group Q of order 8 operating faithfully on P . Then G is L7-free.

Proof. By Lemma 3.1, PH is L7-free for every subgroup H of order 4 of
Q. So if L(G) has a sublattice isomorphic to L7, the greatest element of
this lattice is G and we choose the notation as in Figure 4. If C ≤ Pφ(Q),
then D must contain a Sylow 2-subgroup of G since C ∪ D = G. But this
is impossible since Q is a maximal subgroup of G. Hence C 6≤ Pφ(Q) and
therefore C contains a subgroup Hx of order 4 where H ≤ Q and x ∈ P .
Since [G/H] = {H,Q,PH,G}, it follows that C = Hx has order 4. Similarly,
|D| = 4 and since C and D are contained in different Sylow 2-subgroups, E =
C ∩D = 1. Since Q has only one minimal subgroup, it follows that A 6= Qx

and so A = (PH)x = PC. Similarly, B = PD and F = PC ∩ PD = Pφ(Q).
But then F ∩ C 6= E, a contradiction. �

Lemma 3.3. If G is L7-free and |G| is divisible by at most two different
primes, then G is nilpotent or one of the groups occurring in Lemmas 3.1 or
3.2.

Proof. We use induction on |G| and may assume that G is not nilpotent;
hence |G| = pαqβ , where p and q are different primes and α, β ∈ N. We have
to show that G has a normal elementary abelian Sylow p-subgroup, say, and
the Sylow q-subgroups of G are cyclic if G is not one of the groups in Lemma
3.2. Then by Lemma 3.1, G is one of the groups in (c) of that lemma.

First suppose, for a contradiction, that G has only nonnormal (nontrivial)
Sylow subgroups. By Burnside’s {p, q}-Theorem, G is soluble; let M �G be
such that |G : M | = q, say. Then the Sylow p-subgroups of M are not normal
in M and hence, by induction, M = NP where N is a normal elementary
abelian q-subgroup of M and P is a quaternion group or a cyclic p-group
which either is irreducible on N or induces a nontrivial power automorphism
in N . Let Q be a Sylow q-subgroup of G. Then Q/N is not normal in G/N
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and hence, again by induction, M/N is elementary abelian and so has order
p. The Frattini argument shows that G = M · NG(P ) = N · NG(P ) and
hence Q = N(NG(P ) ∩ Q). If NG(P ) ∩ N 6= 1, then NG(P ) ∩ N and hence
N would be centralized by P , a contradiction. Therefore NG(P ) ∩ N = 1,
so |NG(P ) ∩ Q| = q and Q is generated by elements of order q. By Lemma
2.1, L(Q) is modular and hence by [6, Lemma 2.3.5], Q is elementary abelian.
It follows that N is centralized by QG = G and so M = P × N . This
contradiction shows that

(11) G has a normal Sylow p-subgroup P,

say. Again let Q be a Sylow q-subgroup of G and suppose, for a contradiction,
that P is not elementary abelian. Then if H is a maximal subgroup of Q,
the induction assumption implies that PH is nilpotent. Hence H �G and if
H 6= 1, again by induction, G/H would be nilpotent, a contradiction since,
by (11), Q is not normal in G. So H = 1, that is, |Q| = q. Let N := φ(P ).
Then 1 6= N � G and since G is not nilpotent, Q does not centralize P/N
(see [3, p. 275]). Thus G/N is one of the groups in Lemma 3.1 and therefore
[P,Q] = P . Let Qx be a conjugate of Q such that Qx 6= Q. If Q ∪ Qx = G,
then {1, Q,Qx, N,NQ,NQx, G} would be a sublattice of L(G) isomorphic to
L7. Hence Q ∪ Qx < G and by induction, Q ∪ Qx = MQ with elementary
abelian normal p-subgroup M of Q ∪Qx. So Q ∪Qx ≤ Ω(P )Q and it follows
that QG ≤ Ω(P )Q. But then [P,Q] ≤ P ∩QG ≤ Ω(P ) and Ω(P ) is a proper
subgroup of P since L(P ) is modular. This contradiction yields that

(12) P is elementary abelian.

It remains to be shown that Q is cyclic or G is one of the groups in Lemma
3.2. So suppose that Q is not cyclic and let H be a maximal subgroup of
Q. Then by induction, PH is nilpotent or H operates nontrivially on P and
therefore is cyclic or a quaternion group. In the first case, H ≤ CG(P ) and
hence H ∩K �G if K is a maximal subgroup of Q different from H. Again
by induction, G/H ∩K would be nilpotent if H ∩K 6= 1. This is not the case,
hence H ∩K = 1, that is,

(13) Q is elementary abelian of order q2

in this case. If H is a quaternion group, Lemma 2.1 and [6, Theorem 2.3.8]
show that Q = H × Z where |Z| = 2. Then Q contains a noncyclic abelian
maximal subgroup of order 8, which cannot happen as we have just shown.
Thus either (13) holds or every maximal subgroup of Q is cyclic and operates
nontrivially on P . It is well-known (see [3, p. 311]) that then |Q| = q2 or Q
is a quaternion group. In the latter case, Q/CQ(P ) is noncyclic and therefore
at least one of the maximal subgroups of Q does not operate as a group of
power automorphisms on P . Then Lemma 3.1 implies that this subgroup is
irreducible on P and |P | = p2. Hence p ≡ 3 (mod 4) and G is one of the
groups in Lemma 3.2.
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So we finally have to show that (13) is impossible. But if (13) holds, then
since |CQ(P )| ≤ q, there exist subgroups C and D of order q in G such that
PC 6= PD and C ∪ D is not a q-group. Then P ∪ C ∪ D = G and hence
F := P ∩ (C ∪D) is a Sylow p-subgroup of C ∪D and FC 6= C ∪D 6= FD.
It follows that {1, C,D, F, FC, FD,C ∪D} is a sublattice of L(G) isomorphic
to L7. �

We show next that every finite L7-free group is soluble. For this (and also
later) we need the following simple property of (soluble) L7-free groups.

Lemma 3.4. Sylow subgroups for different primes of a finite soluble L7-
free group permute.

Proof. Let G be such a group, p and q different primes and suppose that
P ∈ Syl p(G) and Q ∈ Syl q(G). We use induction on |G| to show that PQ =
QP and may assume that P ∪Q = G. Let N be a minimal normal subgroup
of G. Since G is soluble, N is an r-group for some prime r. If p 6= r 6= q,
then {1, P,Q,N,NP,NQ,G} is a sublattice of L(G) isomorphic to L7. Thus
r = p, say, so N ≤ P and, by induction, (P/N)(QN/N) = (QN/N)(P/N). It
follows that

PQ = PNQ = PQN = QNP = QP,

as desired. �

Lemma 3.5. Every finite L7-free group is soluble.

Proof. Let G be a minimal counterexample. Then, clearly, G is a non-
abelian simple group. Suppose, for a contradiction, that G has a Sylow p-
subgroup P which is not elementary abelian. Then NG(P ) = PH with a
complement H to P in NG(P ) and for any prime q dividing |H|, every q-
element x ∈ H generates together with P a {p, q}-group which is nilpotent,
by Lemma 3.3. Thus x ∈ CG(P ) and hence NG(P ) = P × H. By Lemma
2.1, L(P ) is modular and hence by [6, Theorem 2.3.1], expP ′ < expP =: pn.
So P ∩NG(P )′ = P ′ ≤ Ωn−1(P ) and P ∩ (P ′)g ≤ Ωn−1(P ) for all g ∈ G; by
Grün’s First Theorem (see [3, p. 423]), it follows that P ∩G′ ≤ Ωn−1(P ) < P .
But this implies that G′ < G, a contradiction. Thus every Sylow subgroup of
G is elementary abelian.

By Burnside’s criterion (see [3, p. 419]), NG(S) 6= CG(S) for every Sylow
subgroup S of G. Let q be the smallest prime dividing |G| for which there
exists a Sylow subgroup S of G such that q divides |NG(S)/CG(S)|; let Q
be a Sylow q-subgroup of NG(S) and let S be a p-group, p ∈ P. By Lemma
3.3, Q is cyclic (or quaternion) and hence |Q| = q. Therefore if Q were a
Sylow q-subgroup of G, the choice of q would imply that NG(Q) = CG(Q), a
contradiction. So if T is a Sylow q-subgroup of G containing Q and K is a
complement to Q in T , then K 6= 1. If S∪K = G, then {1, S,K,Q, SQ, T,G}
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would be a sublattice of L(G) isomorphic to L7. Thus S ∪K < G and hence
S∪K is soluble. Since S and K are normalized by Q, (S∪K)Q = S∪T is also
soluble. By Lemma 3.4, it follows that ST = TS is an L7-free {p, q}-group,
but neither S nor T is normal in ST . This contradicts Lemma 3.3. �

We can now prove our main result.

Theorem 3.6. A finite group is L7-free if and only if it is a direct product
of modular p-groups and groups occurring in Lemmas 3.1 or 3.2 with pairwise
relatively prime orders.

Proof. If G is such a direct product, then by Lemmas 2.1, 3.1, and 3.2, the
subgroup lattices of the direct factors are L7-free. Again Lemma 2.2 and [6,
Lemma 1.6.4] yield that the same holds for L(G).

Conversely, suppose that G is L7-free and consider a minimal counterex-
ample to the assertion of the theorem. Then by [6, Theorem 1.6.5], L(G)
is directly indecomposable and Lemma 3.3 together with Lemma 2.1 implies
that |G| is divisible by at least three different primes. By Lemma 3.5, G is
soluble. So if N is a normal subgroup of prime index t, say, in G, the mini-
mality of G implies that N has at least two different normal Sylow subgroups,
or at least one if N is a Hall t′-subgroup of G. In any case, one of these Sylow
subgroups is a normal Sylow p-subgroup P of G. Since P is not a direct factor
of G, there exist a prime q 6= p and a Sylow q-subgroup Q of G that does not
centralize P . By Lemma 3.3, P is elementary abelian and Q is cyclic or a
quaternion group. Again PQ is not a direct factor of G and hence there exist
a prime r such that p 6= r 6= q and a Sylow r-subgroup R of G which does
not centralize PQ. By Lemma 3.4, PQR is a subgroup of G and, of course, a
counterexample to the theorem; hence PQR = G.

Since Q does not centralize P , there exists x ∈ P such that Qx 6= Q.
Again by Lemma 3.4, H := QR and QxR both are Hall {q, r}-subgroups of
G and hence there exists y ∈ P such that Hy = QxR (see [3, p. 662]). Then
R ≤ H ∩ Hy = CH(y) (see [6, Lemma 4.1.1]) and y 6= 1 since |Q ∪ Qx| is
divisible by p. It follows from 3.3 and 3.1 that PR is nilpotent. In particular,
R � PR ≤ CG(P ) � G and CG(P ) < G. If PR = CG(P ), then R � G. If
PR < CG(P ), then |Q| ≥ q2 and since Q is cyclic or quaternion, Lemma 3.3
implies that R�QR.

So in both cases, R � G, hence PR = P × R and Q operates nontrivially
on P and on R. If Q is a quaternion group, then Q is faithful on P and R; if
Q is cyclic, then CQ(P ) ≤ CQ(R), say, and the minimality of G implies that
CQ(P ) = 1. Thus in any case, CQ(P ) = 1 and there exists x ∈ P such that
Q ∩ Qx = 1. Let y ∈ R such that [y,Q] 6= 1 and consider G0 := Q ∪ Qxy.
By [6, Lemma 4.1.1], G0 = [xy,Q]Q and so p and r divide |G0|. Hence
R0 := R ∩G0 6= 1 and since

Q ∩Qxy ≤ R0Q ∩R0Q
xy ≤ RQ ∩RQx = R,
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it follows that {1, Q,Qxy, R0, R0Q,R0Q
xy, G0} is a sublattice of L(G) isomor-

phic to L7, a final contradiction. �
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