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ON THE EXISTENCE OF PRECOVERS

PAUL C. EKLOF AND SAHARON SHELAH

Dedicated to the memory of Reinhold Baer, who was a pioneer in the study of Ext

Abstract. It is proved consistent with ZFC + GCH that for every

Whitehead group A of infinite rank, there is a Whitehead group HA
such that Ext(HA, A) 6= 0. This is a strong generalization of the con-

sistency of the existence of non-free Whitehead groups. A consequence
is that it is undecidable in ZFC + GCH whether every Z-module has a
⊥{Z}-precover. Moreover, for a large class of Z-modules N , it is proved

consistent that a known sufficient condition for the existence of ⊥{N}-
precovers is not satisfied.

0. Introduction

If C is a class of R-modules, define
⊥C = {A : Ext1

R(A,C) = 0 for all C ∈ C}
and

C⊥ = {A : Ext1
R(C,A) = 0 for all C ∈ C}.

For example, if C is the class of all R-modules, then ⊥C is the class of projective
modules and C⊥ is the class of injective modules. If R = Z and C is the class
of all torsion abelian groups, then ⊥C is the class of Baer groups (cf. [1]) and
if C = {Z}, then ⊥C is the class W of Whitehead groups (cf. [15]).

Note that if C is a set (not a proper class) of modules, then ⊥C = ⊥{N}
where N is the direct product of the elements of C and C⊥ = {M}⊥ where M
is the direct sum of the elements of C.

In this paper, we will be interested principally in a generalization of the
notion of a projective cover: that of an F-precover where F is a class of
modules of the form ⊥C. A homomorphism φ ∈ Hom(A,M) with A ∈ F is
called an F-precover of M if the induced map

Hom(A′, A)→ Hom(A′,M)
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is surjective for all A′ ∈ F . For example, the recently verified “Flat Cover
Conjecture” is equivalent to the statement that over every ring, every module
has an F-precover where F is the class of flat modules (that is, F = ⊥C where
C is the class of pure-injective modules). For motivation and applications, see,
for example, [11] or [25].

For arbitrary F of the form ⊥C, the first author and Jan Trlifaj proved [9]
that a sufficient condition for every module M to have an F-precover is the
following:

(†) there is a module B such that F⊥ = {B}⊥.

This sufficient condition was used by Enochs to prove the Flat Cover Conjec-
ture (cf. [2]). In [10], generalizing the method used by Enochs, it is proved
that (†) holds whenever C is any class of pure-injective modules; moreover, for
R a Dedekind domain, the sufficient condition holds whenever C is any class
of cotorsion modules. The following is also proved in [10]:

Theorem 0.1. Assuming V = L, for any hereditary ring R and any R-
module N , there is an R-module B such that (⊥{N})⊥ = {B}⊥ and hence
every R-module has a ⊥{N}-precover.

For the case R = N = Z this is an easy consequence of the second author’s
proof that V = L implies that all Whitehead groups are free (cf. [17]). Indeed,
⊥{Z} is the class of all Whitehead groups, so assuming V = L, (⊥{Z})⊥ =
{B}⊥ = the class of all abelian groups, for any free abelian group B.

Our main results here are that the conclusions of Theorem 0.1 are not
provable in ZFC + GCH for R = Z. First, we will prove in the next section
the following result. (An abelian group is called cotorsion-free if it does
not contain any non-zero subgroups which are cotorsion, or, equivalently, is
reduced and torsion-free and does not contain a subgroup isomorphic to the
group of p-adic integers, Jp, for any prime p (cf. [13] or [7, §V.2]).)

Theorem 0.2. It is consistent with ZFC + GCH that for every set C of
abelian groups which contains a non-zero cotorsion-free group, there is no B
such that (⊥C)⊥ = {B}⊥.

For countable torsion-free groups this settles the question of when it is
provable in ZFC that ⊥{N} satisfies (†):

Corollary 0.3. Let N be a countable torsion-free abelian group. It is
provable in ZFC that there is a group B such that (⊥{N})⊥ = {B}⊥ if and
only if N is divisible.

For the case of N = Z we can prove more. The rest of the paper is devoted
to the proof of the following result:
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Theorem 0.4. It is consistent with ZFC + GCH that there is an abelian
group, namely Q, which does not have a ⊥{Z} -precover.

Theorem 0.2 for C = {Z} is easily seen to be equivalent to the statement
that it is consistent with ZFC + GCH that for every Whitehead group B
we can find a Whitehead group A ∈ {B}⊥ such that there is a Whitehead
group HA with Ext(HA, A) 6= 0. For the proof of Theorem 0.4 we will need
to prove the stronger fact that it is consistent with ZFC + GCH that for
every Whitehead group A of infinite rank there is a Whitehead group HA

with Ext(HA, A) 6= 0.
The consistency results 0.2 and 0.4 will each be proved by citing the consis-

tency of a known combinatorial property (involving so-called uniformization
properties introduced by the second author) and then using the combinatorial
property to prove the algebraic facts needed.

From now on, we will deal exclusively with Z-modules, that is, abelian
groups (though the results generalize trivially to modules over a countable
p.i.d.). We will use the word “group” to mean “abelian group” and write
Ext instead of Ext1

Z
. Recall that W denotes the class ⊥{Z} of Whitehead

groups; we will sometimes write W-group instead of Whitehead group. It is
well-known that W-groups are ℵ1-free (that is, every countable subgroup is
free). Moreover, CH implies that a W-group A is strongly ℵ1-free, that is,
every countable subset of A is contained in a countable subgroup C such that
A/C is ℵ1-free. For facts about W-groups see, for example, [6, Chap. XII] or
[7, Chaps. XII & XIII].

1. Proof of Theorem 0.2

The proof will make use of the following consequence of Theorem 2 of [9].
The last assertion follows from Lemma 1 of [9].

Theorem 1.1. Let µ be a cardinal > κ such that µκ = κ and let B
be a group of cardinality ≤ κ. Then there is a group A ∈ {B}⊥ such that
A =

⋃
ν<µAν (continuous), A0 = 0, and such that for all ν < µ, Aν+1/Aν is

isomorphic to B.
Moreover, if B belongs to ⊥G, then so does A/Aν for all ν < µ. �

We will have occasion to use the Z-adic topology on a reduced torsion-free
group M , that is, the metrizable linear topology whose base of neighborhoods
of 0 consists of the subgroups (n + 1)!M (n ∈ ω). We use

∑
n∈ω n!tn to

denote the limit of the sequence
〈∑

j≤n j!tj : n ∈ ω
〉
. We denote by M̂ the

completion of M in the Z-adic topology.
The following sums up some well-known facts (cf. [12, §7] or [7, §I.3]):
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Lemma 1.2. Let M be a reduced torsion-free abelian group. Then M is not
cotorsion if and only if M is not pure-injective if and only if M is not complete
in the Z-adic topology if and only if there are elements {tn : n ∈ ω} ⊆M such
that the system of equations

(n+ 1)yn+1 = yn − tn

in the unknowns yn (n ∈ ω) does not have a solution in M . �

We will also need the following result.

Lemma 1.3. Let G be a non-zero cotorsion-free group.

(i) If M is a non-zero torsion-free group in ⊥G, then M is not pure-
injective.

(ii) If N ∈ ⊥G and is not torsion, then there exist elements {hn : n ∈
ω} ⊆ N such that the system of equations

(n+ 1)yn+1 = yn − hn

in the unknowns yn (n ∈ ω) does not have a solution in N .

Proof. By hypothesis, G is reduced and torsion-free and not pure-injective,
so G is not equal to Ĝ. There is an exact sequence

0 → G→ Ĝ→ Ĝ/G→ 0

where G is pure in Ĝ and Ĝ/G is (torsion-free) divisible and non-zero. This
exact sequence induces the exact sequence

0→ Hom(M,G)→ Hom(M, Ĝ)→ Hom(M, Ĝ/G)→ Ext(M,G) = 0.

We claim that Hom(M,G) 6= 0. Indeed, otherwise, Hom(M, Ĝ) ∼=
Hom(M, Ĝ/G), but Hom(M, Ĝ) is reduced, because Ĝ is torsion-free and
reduced; and Hom(M, Ĝ/G) is a non-zero divisible group. Now if M were
pure-injective, G would contain a non-zero homomorphic image of M , that is,
a non-zero cotorsion group; but that is impossible by the assumption on G.

(ii) We apply (i) to M = N/Nt, which is a non-zero torsion-free group.
Note that M belongs to ⊥G: consider the induced exact sequence

0 = Hom(Nt, G)→ Ext(N/Nt, G)→ Ext(N,G) = 0

where the first term is zero because G is torsion-free. By Lemma 1.2 there
are {tn : n ∈ ω} ⊆M such that the system of equations

(n+ 1)yn+1 = yn − tn

in the unknowns yn (n ∈ ω) does not have a solution in M . Let hn ∈ N be
such that hn +Nt = tn. �
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If S is a subset of an uncountable cardinal µ which consists of ordinals of
cofinality σ, a ladder system on S is a family ζ̄ = {ζδ : δ ∈ S} of functions
ζδ : σ → δ which are strictly increasing and have range cofinal in δ. For a
cardinal λ, we say that ζ̄ has the λ-uniformization property if for any functions
cδ : σ → λ for δ ∈ S, there is a pair (f, f∗) where f : µ → ω and f∗ : S → σ
such that for all δ ∈ S, f(ζδ(ν)) = cδ(ν) whenever f∗(δ) ≤ ν < σ.

Proof of Theorem 0.2. We will use the fact that the following principle is
consistent with ZFC + GCH (cf. [8]):

(UP+) For every cardinal µ of the form τ+ where τ is singular of cofinality
ω there is a stationary subset S of µ consisting of limit ordinals of
cofinality ω and a ladder system ζ̄ = {ζδ : δ ∈ S} which has the
λ-uniformization property for every λ < τ .

We work in a model of GCH plus (UP+). It suffices to show that for any non-
torsion B ∈ ⊥C, there is an A which belongs to B⊥ but not to (⊥C)⊥. (Note
that B⊥ = (B ⊕ Z)⊥.) For such a B, let κ ≥ max(|B|, sup{|G| : G ∈ C})
and let µ = τ+ = 2τ where τ > κ is a singular cardinal of cofinality ω. Then
µκ = µ. Let ζ̄ = {ζδ : δ ∈ S} be as in (UP+) for this µ. Let A =

⋃
ν<µAν be

as in Theorem 1.1 for this B and µ.
Let HA = F/K where F is the free group on symbols {yδ,n : δ ∈ S,

n ∈ ω} ∪ {xj : j < µ} and K is the subgroup with basis {wδ,n : δ ∈ S, n ∈ ω}
where

(1) wδ,n = yδ,n − (n+ 1)yδ,n+1 + xζδ(n).

Then HA is a group of cardinality µ and the uniformization property of
ζ̄ implies that HA ∈ ⊥C. (See [7, §XIII.0] or [24].) It suffices to show that
Ext(HA, A) 6= 0, for then A belongs to B⊥ but not to (⊥C)⊥.

We will show that Ext(HA, A) 6= 0 by defining ψ : K → A which does not
extend to a homomorphism from F to A.

For all δ < µ, A/Aδ belongs to ⊥G for every G ∈ C, so by Lemma 1.3(ii)
applied to N = A/Aδ (which is not torsion because it contains a copy of B),
there are elements hn = tδ,n+Aδ in N satisfying the conclusion of (ii). Define
ψ : K → A such that ψ(wδ,n) = tδ,n for all δ ∈ S, n ∈ ω. Suppose, to obtain
a contradiction, that ψ extends to a homomorphism ϕ : F → A. The set of
δ < µ such that ϕ(xj) ∈ Aδ for all j < δ is a club, C, in µ, so there exists
δ ∈ S ∩ C.

We work in A/Aδ. Let cn = ϕ(yδ,n) + Aδ. Then by applying ϕ to the
equations (1) and since ϕ(xj) ∈ Aδ for all j < δ we have that for all n ∈ ω,

tδ,n +Aδ = cn − (n+ 1)cn+1,

which contradicts the choice of the hn. �

Proof of Corollary 0.3. It is easy to see that the condition that N is divis-
ible is sufficient; for example, it follows from the main theorem of [10], since
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N is pure-injective. On the other hand, if N is not divisible, then N = G⊕D
where G is reduced and non-zero and D is divisible. But then ⊥N = ⊥{G}
and G is cotorsion-free, so by the Theorem it is consistent that there is no
such B. �

2. Building Whitehead groups

We now begin the proof of Theorem 0.4. For this proof we will need the
fact that the members of ⊥{Z} have a stronger property than not being pure-
injective, namely, they are ℵ1-free, even strongly ℵ1-free. It will suffice to
prove the following:

Theorem 2.1. It is consistent with ZFC + GCH that for every Whitehead
group B there is an uncountable Whitehead group G = GB such that every
homomorphism from G to B has finitely-generated range.

Proof of Theorem 0.4 from Theorem 2.1. Suppose that f : B → Q is aW-
precover of Q. Let G be as in Theorem 2.1 for this B. Since Q is injective
and G has infinite rank, there is a surjective homomorphism g : G→ Q. But
then clearly there is no h : G→ B such that f ◦ h = g. �

Our method of proving 2.1 is based on the following lemma. In its proof,
as well as in later results, we will use the result of Gregory and Shelah (cf.
[14], [20]) that GCH implies ♦λ for every successor cardinal λ > ℵ1.

Lemma 2.2. Assume GCH. Suppose that for every Whitehead group A of
infinite rank, there is a Whitehead group HA of cardinality ≤ |A|+ such that
Ext(HA, A) 6= 0. Then for every Whitehead group B there is an uncountable
Whitehead group G such that every homomorphism from G to B has finitely-
generated range.

Proof. Let λ = µ+ where µ > |B| + ℵ1. Then ♦λ holds, and we will
use it to construct the group structure on a set G of size λ. We can write
G =

⋃
ν<λGν as the union of a continuous chain of sets such that for all ν < λ,

|Gν+1 − Gν | = µ. Now ♦λ gives us a family {hν : ν ∈ λ} of set functions
hν : Gν → B such that for every function f : G → B, {ν ∈ λ : f � Gν = hν}
is stationary.

Suppose that the group structure on Gν has been defined and consider hν ;
if hν is not a homomorphism or the range of hν is of finite rank, define the
group structure on Gν+1 in any way which extends that on Gν . Otherwise,
let A be the range of hν and let HA be as in the hypothesis. Without loss of
generality, |HA| = µ. (Just add a free summand to HA if necessary.) Write
HA = F/K where F is a free group of rank µ. Since Ext(HA, A) 6= 0, a
standard homological argument implies that there is a homomorphism ψ :
K → A which does not extend to a homomorphism : F → A. Since K is free
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and hν : Gν → B is onto A, there is a homomorphism θ : K → Gν such that
hν ◦ θ = ψ. Now form the pushout

F → Gν+1

↑ ↑
K

θ→ Gν

to define the group structure on Gν+1 (cf. [9, proof of Theorem 2]). Then
Gν+1/Gν ∼= F/K ∼= HA, so it is Whitehead. Moreover, hν does not extend to
a homomorphism from Gν+1 into A, else ψ extends to a homomorphism on
F . This completes the definition of G. Notice that G is a Whitehead group
since all quotients Gν+1/Gν are isomorphic to F/K and hence Whitehead (cf.
[9, Lemma 1]).

Now given any homomorphism f : G → B, let A ⊆ B be the range of f .
Since |A| < |G| = λ, {ν ∈ λ : f [Gν ] = A} is a club in λ; hence there exists
ν ∈ λ such that f � Gν = hν and the range of hν is A. If A is of infinite rank,
we have constructed Gν+1 so that f � Gν does not extend to Gν+1, which is a
contradiction. So we must conclude that the range of f is of finite rank. �

Thus our goal is to show that there is a model of ZFC + GCH such that for
every W-group A of infinite rank, there is a W-group HA of cardinality ≤ |A|+
such that Ext(HA, A) 6= 0. The W-groups HA will be constructed in the
following manner. The definition is in the spirit of the general constructions
in, for example, [24] or [7, XIII.1.4] but is a little more complicated since it is
“two step”: involving a system of ladders of length cf(µ) and another system
of ladders of length ω (if cf(µ) > ℵ0).

Definition 2.3. Let µ be a cardinal of cofinality σ (≤ µ). Let S be a
subset of λ = µ+ consisting of ordinals of cofinality σ and η̄ = {ηδ : δ ∈ S}
a ladder system on S. If σ > ℵ0, let E be a stationary subset of σ consisting
of limit ordinals of cofinality ω and let ζ̄ = {ζν : ν ∈ E} be a ladder system
on E. We will say that H is the group built on η̄ and ζ̄ if H ∼= F/K where
F is the free group on symbols {yδ,ν,n : δ ∈ S, ν ∈ E, n ∈ ω} ∪ {zδ,j : δ ∈ S,
j ∈ σ}∪{xβ : β ∈ λ} and K is the subgroup with basis {wδ,ν,n : δ ∈ S, ν ∈ E,
n ∈ ω} where

(2) wδ,ν,n = yδ,ν,n − 2yδ,ν,n+1 − zδ,ζν(n) + xηδ(ν+n).

(If σ = ℵ0, let E = {0} and omit ζ̄ and the zδ,j .) For future reference, for
α ∈ λ, let Fα be the subgroup of F generated by {yδ,ν,n : δ ∈ S ∩ α, ν ∈ E,
n ∈ ω} ∪ {zδ,j : δ ∈ S ∩ α, j < σ} ∪ {xβ : β < α} and for α ∈ S and τ < σ let
Fα,τ be the subgroup generated by {zα,j : j < τ}.

Theorem 2.4. Suppose that H is built from η̄ and ζ̄ as in Definition
2.3 and that E is a non-reflecting subset of σ. If, in addition, η̄ has the
ω-uniformization property, then H is a Whitehead group.
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Proof. We assume σ > ℵ0 since this is known otherwise (cf. [18], [24]). If
F and K are as in Definition 2.3, it suffices to show that every homomorphism
ψ : K → Z extends to a homomorphism ϕ : F → Z. Given ψ, for all n ∈ ω
define cδ(ν + n) to be ψ(wδ,ν,n) if ν ∈ E, and arbitrary otherwise. Let (f, f∗)
be the uniformizing pair. Define ϕ(xβ) = f(β). For each δ ∈ S we must still
define ϕ(yδ,ν,n) and ϕ(zδ,j) for ν, j ∈ σ and n ∈ ω. Fix δ and let ρ = f∗(δ);
without loss of generality ρ /∈ E. Let F ′ (resp. F ′ρ) be the subgroup of F
generated by {yδ,ν,n : ν ∈ E, n ∈ ω} ∪ {zδ,j : j < σ} ∪ {xβ : β < δ} (resp.
by {yδ,ν,n : ν ∈ E ∩ ρ, n ∈ ω} ∪ {zδ,j : j < ρ} ∪ {xβ : β < δ}) and K ′ (resp.,
K ′ρ) the subgroup generated by {wδ,ν,n : ν ∈ E, n ∈ ω} ∪ {xβ : β < δ} (resp.,
by {wδ,ν,n : ν ∈ E ∩ ρ, n ∈ ω} ∪ {xβ : β < ρ}). Now F ′/K ′ is σ-free since
E is non-reflecting (cf. [7, §VII.1]), so F ′ρ +K/K ∼= F ′ρ/K

′
ρ is free and hence

K ′ρ is a summand of F ′ρ; then it is easy to extend ψ � {wδ,ν,n : ν ∈ E ∩ ρ,
n ∈ ω} + ϕ � {xβ : β < ρ} to ϕ : F ′ρ → Z. For ν ∈ E with ν > ρ we have
ϕ(xηδ(ν+n)) = ψ(wδ,ν,n) for all n ∈ ω. For some mν , ζν(n) ≥ ρ when n ≥ mν .
Then we can satisfy the equations

ψ(wδ,ν,n) = 2ϕ(yδ,ν,n+1)− ϕ(yδ,ν,n)− ϕ(zδ,ζν(n)) + ϕ(xηδ(ν+n))

by setting ϕ(yδ,ν,n) = 0 = ϕ(zδ,ζν(n)) for n ≥ mν . For ζν(n) < ρ, ϕ(zδ,ζν(n))
is already defined; we can define ϕ(yδ,ν,n) by downward induction on n < mν

(cf. [7, proof of XIII.1.4]). �

3. How to make Ext not vanish

Next we need to show how groups H defined as in 2.3 can satisfy Ext(H,A)
6= 0 for a given W-group A. In the proof of 0.2, we used a description of A
as the union of a chain of subgroups which came from the construction of
A. Now we have only what we can learn from the fact that A is Whitehead,
assuming GCH. We begin by proving some general properties of decomposi-
tions of Whitehead groups assuming GCH. Besides the result of Gregory and
Shelah that GCH implies ♦λ for successor cardinals λ > ℵ1, we will use the
result of Devlin and Shelah [4] that CH implies weak diamond, Φℵ1 , at ℵ1.
We will also make repeated use of the following crucial fact (cf. [16], [4], [7,
XII.1.10]):

Proposition 3.1. Let A =
⋃
α<λAα be a λ -filtration of a group of car-

dinality λ, that is {Aα : α < λ} is a continuous chain of subgroups of A of
cardinality < λ. Let Z be any group of cardinality ≤ λ. Suppose that ♦λ(E)
or the weak diamond principle Φλ(E) holds, where E = {α ∈ λ : ∃β > α s.t.
Ext(Aβ/Aα, Z) 6= 0}. Then Ext(A,Z) 6= 0. �

Corollary 3.2. Let A be a Whitehead group of cardinality λ = µ+ and
let A =

⋃
α<λAα be a λ-filtration of A. Let S(A)

def
= {α ∈ λ : Aτ/Aα is
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Whitehead for all τ > α}. If Φλ(Y ) holds for some subset Y of λ, then
Y ∩ S(A) is stationary. In particular, assuming GCH, S(A) is stationary.

Proof. Suppose Y ∩ S(A) is not stationary in λ, and let C be a club in its
complement. Then Φλ(Y ∩ C) holds and α ∈ Y ∩ C implies that α /∈ S(A),
so by 3.1 (with Z = Z), A is not Whitehead, a contradiction. �

We will say that A/Aα is locally Whitehead when α ∈ S(A), that is, every
subgroup of A/Aα of cardinality < λ is Whitehead.

Lemma 3.3. Assume GCH. Let A be a Whitehead group of cardinality
µ (possibly a singular cardinal). Then we can write A =

⋃
ν<µAν as the

continuous union of a chain of subgroups of cardinality < µ such that for all
ν < µ, A/Aν+1 is ℵ1-free.

Proof. If suffices to show that every subgroup X of A of cardinality κ < µ
is contained in a subgroup N of cardinality κ such that N ′/N is free whenever
N ⊆ N ′ ⊆ A and N ′/N is countable. But if X is a counterexample, then
we can build a chain {Nα : α < κ+} such that N0 = X and for all α < κ+,
Nα+1/Nα is countable and not free, and hence is not Whitehead. We obtain
a contradiction since then Φκ+ implies that

⋃
α<κ+ Nα is not Whitehead. �

We now give sufficient conditions for Ext(H,A) to be non-zero, when H
is defined as in 2.3. The analysis will be divided into cases, depending on
whether the cardinality of A is singular, the successor of a regular cardinal,
or the successor of a singular cardinal.

When the cardinality of A is singular, we will use a special case of a recent
result of the second author (cf. [22]).

Lemma 3.4. Assume GCH. Let µ be a singular cardinal and let σ =
cf(µ) < µ and λ = µ+. Suppose that S is a stationary subset of λ con-
sisting of ordinals of cofinality σ and {ηδ : δ ∈ S} is a ladder system on S.
Then for each δ ∈ S there is a sequence of sets Dδ =

〈
Dδ
ν : ν < σ

〉
such that

(a) for all δ ∈ S and ν ∈ σ, Dδ
ν ⊆ λ, sup(Dδ

ν) < δ and |Dδ
ν | < µ; and

(b) for every function h : λ→ λ, {δ ∈ S : h(ηδ(ν)) ∈ Dδ
ν for all ν ∈ σ} is

stationary in λ.

Proof. Fix δ ∈ S. Let
〈
bδν : ν < σ

〉
be an increasing continuous union of

subsets of δ whose union is δ and such that sup(bδν) < δ and |bδν | < µ. Let
θ = σσ = 2σ = σ+(< µ) and let 〈gi : i < θ〉 be a list of all functions from σ
to σ. Also let 〈fγ : γ < λ〉 list all functions from θ to λ (= 2µ = λθ); without
loss of generality, fγ(i) < γ for all i ∈ θ. For each i ∈ θ and ν ∈ θ, define
Di,δ
ν = {fγ(i) : γ ∈ bδgi(ν)}.
We claim that for some i ∈ θ, the sets {Di,δ =

〈
Di,δ
ν : ν < σ

〉
: δ ∈ S}

will work in (b). Assuming the contrary, for each i ∈ θ, let hi : λ → λ be a
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counterexample, i.e., there is a club Ci in λ such that for each δ ∈ Ci ∩ S,
there is ν ∈ σ such that hi(ηδ(ν)) /∈ Di,δ

ν .
For each α ∈ λ, there is h(α) ∈ λ such that for all i ∈ θ, hi(α) = fh(α)(i).

There exists δ∗ ∈
⋂
i∈θ Ci ∩ S such that for all α < δ∗, h(α) ∈ δ∗. Denote

h(ηδ∗(ν)) by γν . There exists i∗ ∈ θ such that for all ν < σ,

gi∗(ν) = min{j < σ : γν ∈ b
δ∗
j }.

(Note that the right-hand side exists since δ∗ = ∪j<σbδ∗j and γν ∈ δ∗.) Thus

γν ∈ bδ∗gi∗ (ν).

But then (letting α = ηδ∗(ν) in the definition of h),

hi∗(ηδ∗(ν)) = fh(ηδ∗ (ν))(i∗) = fγν (i∗) ∈ Di∗,δ∗
ν .

Since this holds for all ν ∈ σ, the fact that hi∗ is a counterexample implies
that δ∗ /∈ Ci∗ ∩ S. But this contradicts the choice of δ∗. �

Theorem 3.5. Assume GCH. Let µ be a singular cardinal of cofinality σ.
If H is a group of cardinality λ = µ+ built on η̄ and ζ̄ as in Definition 2.3
and A is a Whitehead group of cardinality µ, then Ext(H,A) 6= 0.

Proof. Let the sets {Dδ =
〈
Dδ
ν : ν ∈ σ

〉
: δ ∈ S} be as in Lemma 3.4 for

this ladder system. Write A =
⋃
ν<µAν as in Lemma 3.3. Without loss

of generality we can assume that the universe of A is µ and that for all ν,
Aν+1/Aν is non-zero.

We claim that for all β < µ, the 2-adic completion of A/Aβ has rank
≥ µ over A/Aβ . For notational convenience we will prove the case β = 0,
but the argument is the same in general using the decomposition A/Aβ =⋃
β≤α<µAα/Aβ . For every successor ordinal α, since Aα+1/Aα is ℵ1-free and

non-zero, there are sαn ∈ Aα+1 such that the element
∑
n∈ω 2n(sαn + Aα) of

the 2-adic completion of Aα+1/Aα is not in Aα+1/Aα. We claim that the
elements {

∑
n∈ω 2nsαn : α = ν + 1, ν ∈ µ} of the 2-adic completion of A are

linearly independent over A. Suppose not, and let
m∑
i=1

ki

(∑
n∈ω

2nsα(i)
n

)
= a

be a counterexample; so a ∈ A; ki ∈ Z−{0}; and α(1) < α(2) < · · · < α(m) <
µ. Let γ = α(m) and k = kγ . We claim that the element k

∑
n∈ω 2n(sγn +

Aγ) of the 2-adic completion of Aγ+1/Aγ belongs to Aγ+1/Aγ which is a
contradiction of the choice of the sγn. Since A/Aγ+1 is ℵ1-free, we can write
〈Aγ+1, a〉∗ = Aγ+1 ⊕ C for some C, and let a′ be the projection of a on the
first factor. For every r ∈ ω, 2r+1 divides a−

∑m
i=1 ki(

∑r
n=0 2nsα(i)

n ) in A

and hence 2r+1 divides a′−
∑m
i=1 ki(

∑r
n=0 2nsα(i)

n ) in Aγ+1. But then 2r+1
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divides (a′ + Aγ)− k
∑r
n=0 2n(sγn + Aγ) in Aγ+1/Aγ ; since this holds for all

r ∈ ω, k
∑
n∈ω 2n(sγn +Aγ) = a′ +Aγ , and we have a contradiction.

Choose a strictly increasing continuous function ξ : σ → µ whose range
is cofinal in µ. For each δ ∈ S and ν ∈ E, there is an element aδ,ν =∑
n∈ω 2n(a(δ, ν, n) + Aξ(ν)+1) in the 2-adic completion of A/Aξ(ν)+1 which

is not in the subgroup generated by A/Aξ(ν)+1 and the 2-adic completion of
{d + Aξ(ν)+1 : d ∈ Dδ

ν ∩ A}. (Note that the latter has cardinality < µ since
|Dδ

ν |ℵ0 < µ by the GCH.)
Now define ψ : K → A such that ψ(wδ,ν,n) = a(δ, ν, n). We claim that ψ

does not extend to a homomorphism ϕ : F → A. Suppose, to the contrary,
that it does. Then by Lemma 3.4, there is δ ∈ S such that ϕ(xηδ(ν)) ∈ Dδ

ν for
all ν ∈ σ. Now there exists ν ∈ E such that ϕ(zδ,j) ∈ Aξ(ν) for all j < ν. We
will contradict the choice of aδ,ν for this δ and ν.

We work in A/Aξ(ν)+1. Let cn = ϕ(yδ,ν,n) + Aξ(ν)+1, dn = ϕ(xηδ(ν+n)) +
Aξ(ν)+1. Then by applying ϕ to the equations (2) and since ϕ(zδ,j) ∈ Aξ(ν)

for all j < ν we have that for all n ∈ ω,

a(δ, ν, n) +Aξ(ν)+1 = cn − 2cn+1 + dn.

It follows that aδ,ν = c0+
∑
n∈ω 2ndn is in the subgroup generated byA/Aξ(ν)+1

and the 2-adic completion of {d + Aξ(ν)+1 : d ∈ Dδ
ν ∩ A}, which contradicts

the choice of aδ,ν . �

We now turn to the cases when the cardinality of A is a successor cardinal.
Though the two arguments could be combined into one, following the argu-
ment in Theorem 3.8, we prefer to introduce the method with the somewhat
simpler argument for the successor of regular case.

The following lemma is easy to confirm:

Lemma 3.6. Suppose that L′ is a free subgroup of L such that L/L′ is
ℵ1-free. If {tn : n ∈ ω} is a basis of a summand of L′, then

∑
n∈ω 2ntn is an

element of the 2-adic completion of L which does not belong to L. In other
words, the system of equations

2yn+1 = yn − tn
in the unknowns yn (n ∈ ω) does not have a solution in L. �

Theorem 3.7. Assume GCH. Let λ = µ+ where µ is a regular cardinal (so
σ = cf(µ) = µ). Suppose H is built on η̄ = {ηδ : δ ∈ S} and ζ̄ = {ζν : ν ∈ E}
as in Definition 2.3. Suppose also, for µ > ℵ0, that ♦µ(E′) holds for all
stationary subsets E′ of E. If A is a Whitehead group of cardinality λ = µ+,
then Ext(H,A) 6= 0.

Proof. Let A =
⋃
α<λAα and S(A) be as in Lemma 3.2. Note that (here

and in the next theorem) we make no assumption about the relation of S and
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S(A); maybe S ∩ S(A) = ∅. Without loss of generality, for all δ ∈ S(A),
Aδ+1/Aδ is Whitehead of rank µ and A/Aδ+1 is locally Whitehead. Assume
µ > ℵ0; the proof for ℵ0 is simpler. For each α < λ, write Aα as the union
of a continuous chain of subgroups of cardinality < µ: Aα =

⋃
ν<µBα,ν .

Thus Aδ+1/Aδ =
⋃
ν<µ(Aδ + Bδ+1,ν)/Aδ; for δ ∈ S(A), since ♦µ(E) holds,

we can assume that the set of ν ∈ E such that Aδ+1/(Aδ +Bδ+1,ν) is locally
Whitehead is stationary; for such ν, Aδ+1/Aδ+Bδ+1,ν is then strongly ℵ1-free
since CH holds. Thus for ν in a stationary subset Eδ of E we can assume that
Aδ+Bδ+1,ν+1/Aδ+Bδ+1,ν is free of rank ℵ0 and Aδ+1/Aδ+Bδ+1,ν+1 is ℵ1-free.
Say {tδ,ν,n +Aδ +Bδ+1,ν : n ∈ ω} is a basis of Aδ +Bδ+1,ν+1/Aδ +Bδ+1,ν .

For each δ1 ∈ S, let δ+
1 be the least member of S(A) which is ≥ δ1. Define

ψ(wδ1,ν,n) = tδ+
1 ,ν,n

for all n ∈ ω if ν ∈ Eδ+
1

. Define ψ arbitrarily otherwise. We claim that ψ
does not extend to ϕ : F → A. Suppose to the contrary that it does. Let
M = ϕ[F ], Mα = ϕ[Fα], Mα,τ = ϕ[Fα,τ ]. Then there is a club C in λ such
that for α ∈ C, Mα ⊆ Aα. Fix δ1 in C ∩S. Let δ denote δ+

1 and choose γ ∈ C
such that γ > δ. There is a club C ′ in µ such that for ν ∈ C ′, Mδ1,ν ⊆ Bγ,ν
and Aδ+1 ∩ Bγ,ν ⊆ Bδ+1,ν . Since ♦µ(Eδ) holds and Aγ/Aδ+1 is Whitehead,
there is, by Lemma 3.2, ν ∈ Eδ ∩ C ′ such that Aγ/(Aδ+1 + Bγ,ν) is locally
Whitehead, and hence ℵ1-free. We will obtain a contradiction of Lemma 3.6
with L = Aγ/(Aδ +Bγ,ν) and L′ = (Bδ+1,ν+1 +Aδ +Bγ,ν)/(Aδ +Bγ,ν) and
tn = tδ,ν,n +Aδ +Bγ,ν . Notice that modulo Aδ +Bγ,ν we have

2ϕ(yδ1,ν,n+1) = ϕ(yδ1,ν,n)− tδ,ν,n
for all n ∈ ω since ϕ(xηδ1 (ν+n)) ∈Mδ1 ⊆ Aδ1 ⊆ Aδ and ϕ(zδ1,ζν(n)) ∈Mδ1,ν ⊆
Bγ,ν . Moreover, {tn : n ∈ ω} is a basis of a summand of L′ since L′ is
naturally isomorphic to Aδ +Bδ+1,ν+1/Aδ + (Bγ,ν ∩ (Aδ +Bδ+1,ν+1)) and the
latter has a natural epimorphism onto Aδ + Bδ+1,ν+1/Aδ + Bδ+1,ν which is
free on the basis {tδ,ν,n +Aδ +Bδ+1,ν : n ∈ ω}. It remains to show that L/L′

is ℵ1-free. Now

0→ (Aδ+1 +Bγ,ν)/(Bδ+1,ν+1 +Aδ +Bγ,ν)→ L/L′ → Aγ/(Aδ+1 +Bγ,ν)→ 0

is exact and Aγ/(Aδ+1 +Bγ,ν) is ℵ1 -free by choice of ν, so it suffices to show
that (Aδ+1+Bγ,ν)/(Bδ+1,ν+1+Aδ+Bγ,ν) is ℵ1-free. But this is isomorphic to
Aδ+1/((Aδ+Bδ+1,ν+1)+(Aδ+1∩Bγ,ν)), which (since Aδ+1∩Bγ,ν ⊆ Bδ+1,ν ⊆
Bδ+1,ν+1) equals Aδ+1/(Aδ +Bδ+1,ν+1), which was chosen ℵ1-free. �

The proof of the following is similar, but requires elementary submodels.

Theorem 3.8. Assume GCH. Let λ = µ+ where µ is a (singular) cardinal
of cofinality σ. Suppose H is built on η̄ = {ηδ : δ ∈ S} and ζ̄ = {ζν : ν ∈ E}
as in Definition 2.3. Suppose also that ♦λ(Y ) holds for some subset Y of λ
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consisting of limit ordinals of cofinality σ and that, if σ > ℵ0, ♦σ(E) holds.
If A is a Whitehead group of cardinality λ = µ+, then Ext(H,A) 6= 0.

Proof. Without loss of generality, for all δ ∈ S(A), Aδ+1/Aδ is Whitehead
of rank µ. For each δ ∈ S, choose a strictly increasing sequence 〈ξδ,ν : ν < σ〉 of
elements of S(A) such that ξδ,0 ≥ δ+1 and whose limit, denoted ξδ,σ, belongs
to S(A). This is possible because, by Lemma 3.2, Y ∩ S(A) is stationary so
we can choose ξδ,σ to be an element of the intersection of Y ∩ S(A) with the
closure of {α ∈ S(A) : α > δ}. Let Bν+1,ν = Aξδ,ν . (Note the difference from
the last proof.) We can then modify the sequence so that Bδ+1,ν+1/Bδ+1,ν

is free on a countable set {tδ,ν,n + Bδ+1,ν} and A/Bδ+1,ν+1 is ℵ1-free when
ν ∈ E. (We no longer require ξδ,ν+1 ∈ S(A).)

For each δ1 ∈ S, let δ+
1 be the least member of S(A) which is ≥ δ1. Define

ψ(wδ1,ν,n) = tδ+
1 ,ν,n

for all n ∈ ω. We claim that ψ does not extend to ϕ : F → A. Suppose to the
contrary that it does. As before, let M = ϕ[F ], Mα = ϕ[Fα], Mα,τ = ϕ[Fα,τ ]
and let C be a club such that for α ∈ C, Mα ⊆ Aα. Fix δ1 in C ∩S. Let δ be
δ+
1 and choose γ ∈ C such that γ > δ.

Let N =
⋃
ν<σ Nν be the continuous union of a chain of elementary sub-

models of H(χ) for large enough χ such that each Nν has cardinality < σ,
Nν ∈ Nν+1 and such that δ, σ, A, {Aα : α < λ}, {ϕ(zδ1,j) : j < σ},
{ϕ(xηδ1 (j+n)) : j < σ} (for each n ∈ ω), {tδ,j,n : j < σ, n ∈ ω} and
{ξδ,j : j ≤ σ} all belong to N0 and

{ϕ(zδ1,j) : j < σ} ∪ {ϕ(xηδ1 (j)) : j < σ} ∪ {tδ,j,n : j < σ, n ∈ ω} ∪ σ ⊆ N .

Moreover, by intersecting with a club, we can assume that for all ν, Nν∩σ = ν
and Nν ∩ Bδ+1,σ ⊆ Bδ+1,ν and hence {ξδ,j : j < ν}, {ϕ(zδ1,j) : j < ν},
{tδ,j,n : j < ν, n ∈ ω}, and {ϕ(xηδ1 (j+n)) : j < ν} (for all n ∈ ω) are all subsets
of Nν . We claim that there is a ν ∈ E such that A/(Bδ+1,σ + (Nν ∩A)) is ℵ1

-free. Assuming this for the moment, we show how to obtain a contradiction
of Lemma 3.6 with

L = (N ∩A)/((N ∩Aδ) + (Nν ∩A)),

L′ = ((N ∩Bδ+1,ν+1) + (Nν ∩A))/((N ∩Aδ) + (Nν ∩A))

and
tn = tδ,ν,n + ((N ∩Aδ) + (Nν ∩A)).

Notice that for all n ∈ ω, ϕ(xηδ1 (ν+n)) ∈ (N ∩ Aδ) and ϕ(zδ1,ζν(n)) ∈ Nν .
Moreover, {tn : n ∈ ω} is a basis of a summand of L′ because L′ is naturally
isomorphic to (N ∩ Bδ+1,ν+1)/(N ∩ Aδ) + (Nν ∩ Bδ+1,ν) and the latter has
epimorphic image (N ∩ Bδ+1,ν+1)/(N ∩ Bδ+1,ν) which is free on the basis
{tδ,ν,n + (N ∩ Bδ+1,ν) : n ∈ ω} by choice of N . To see that L/L′ is ℵ1-free,
use the short exact sequence
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0 → ((N ∩Bδ+1,σ) + (Nν ∩A))/((N ∩Bδ+1,ν+1) + (Nν ∩A))→ L/L′

→ (N ∩A)/((N ∩Bδ+1,σ) + (Nν ∩A))→ 0

The last term is ℵ1-free by choice of ν and since N is an elementary sub-
model of H(χ). Moreover, the first term is isomorphic to (N ∩Bδ+1,σ)/(N ∩
Bδ+1,ν+1) (since Nν ∩Bδ+1,σ ⊆ Bδ+1,ν) and thus is ℵ1-free since A/Bδ+1,ν+1

is ℵ1-free.
It remains to show that there is a ν ∈ E such that A/(Bδ+1,σ+(Nν ∩A)) is

ℵ1-free. If not, then for all ν ∈ E, (Bδ+1,σ + (Nν+1∩A))/(Bδ+1,σ + (Nν ∩A))
is not ℵ1-free (and hence not Whitehead), since A, Bδ+1,σ and Nν belong to
the elementary submodel Nν+1. But then ♦σ(E) implies that

⋃
ν<σ(Bδ+1,σ+

(Nν ∩A))/Bδ+1,σ is a group of cardinality σ which is not a Whitehead group,
contradicting the fact that A/Bδ+1,σ = A/Aξδ,σ is locally Whitehead. �

4. Finishing the proof of Theorem 2.1

Finally we can put the pieces together to prove the consistency of the
hypothesis of Lemma 2.2:

Theorem 4.1. There is a model of ZFC + GCH such that for every
Whitehead group A of infinite rank, there is a Whitehead group HA of cardi-
nality ≤ |A|+ such that Ext(HA, A) 6= 0.

Proof. By a forcing construction (cf. [23]) there is a model of ZFC + GCH
such that the following holds (where Sλµ denotes the set of ordinals < λ of
cofinality µ):

(i) for every infinite successor cardinal λ = µ+ there is a stationary subset
S of Sλcf(µ) with a ladder system η̄ = {ηδ : δ ∈ S} which satisfies ω-
uniformization (or even κ-uniformization for every κ < µ);

(ii) for every infinite successor cardinal λ = µ+ there is a stationary subset
Y of Sλcf(µ) such that ♦λ(Y ) holds;

(iii) for every regular uncountable cardinal σ, there is a non-reflecting
stationary subset E of Sσω such that ♦σ(E′) holds for every stationary
subset E′ of E;

(iv) there is a tree-like ladder system on a stationary subset of ω1 which
satisfies 2-uniformization but not ω-uniformization.

We work in this model. Let A be a Whitehead group of infinite rank. If
the rank of A is ℵ0, then A is isomorphic to Z(ω) and it is well-known (cf.
[18], [7, XIII.0.6]) that (iv) implies that there is a Whitehead group H which
is not ℵ1 -coseparable, i.e., Ext(H,Z(ω)) 6= 0. If the cardinality of A is either
singular or a successor cardinal, then for λ = |A| if |A| is regular, or λ = |A|+
if |A| is singular, the properties (i), (ii) and (iii) allow us to build a group HA
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of cardinality λ as in Definition 2.3, which is Whitehead by Theorem 2.4 and
such that by Theorem 3.5, 3.7 or 3.8, Ext(HA,A) 6= 0.

It is also consistent to assume that there are no regular limit (i.e. in-
accessible) cardinals, in which case we have covered all possibilities for the
cardinality of A and we are done. Another approach is to allow inaccessible
cardinals but force the model to satisfy in addition:

(v) for every inaccessible cardinal λ there is a stationary subset S of Sλω
with a ladder system η̄ = {ηδ : δ ∈ S} which satisfies ω-uniformization;
moreover ♦λ holds.

As in Lemma 3.2, one can show that S(A) is stationary and then the proof
is similar to that in Theorem 3.7. �

Added in proof. The authors and J. Trlifaj, in “On the cogeneration of
cotorsion pairs” (to appear in J. Algebra), have extended Corollary 0.3 to
modules N of arbitrary cardinality over Dedekind domains with countable
spectrum; in the extension “divisible” is replaced by “cotorsion”.
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