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ON THE EXISTENCE OF PRECOVERS

PAUL C. EKLOF AND SAHARON SHELAH

Dedicated to the memory of Reinhold Baer, who was a pioneer in the study of Fxt

ABSTRACT. It is proved consistent with ZFC 4+ GCH that for every
Whitehead group A of infinite rank, there is a Whitehead group H 4
such that Ext(H 4, A) # 0. This is a strong generalization of the con-
sistency of the existence of non-free Whitehead groups. A consequence
is that it is undecidable in ZFC + GCH whether every Z-module has a
+{Z}-precover. Moreover, for a large class of Z-modules N, it is proved
consistent that a known sufficient condition for the existence of +{N}-
precovers is not satisfied.

0. Introduction

If C is a class of R-modules, define
LC ={A:Exti(A,C) =0 forall C €C}

and
Ct = {A:ExtR(C,A) =0 for all C € C}.

For example, if C is the class of all R-modules, then *C is the class of projective
modules and C* is the class of injective modules. If R = Z and C is the class
of all torsion abelian groups, then 1C is the class of Baer groups (cf. [1]) and
if C = {Z}, then *C is the class W of Whitehead groups (cf. [15]).

Note that if C is a set (not a proper class) of modules, then +C = +{N}
where N is the direct product of the elements of C and C*+ = {M}+ where M
is the direct sum of the elements of C.

In this paper, we will be interested principally in a generalization of the
notion of a projective cover: that of an F-precover where F is a class of
modules of the form +C. A homomorphism ¢ € Hom(A, M) with A € F is
called an F-precover of M if the induced map

Hom(A’, A) — Hom(A’, M)
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is surjective for all A’ € F. For example, the recently verified “Flat Cover
Conjecture” is equivalent to the statement that over every ring, every module
has an F-precover where F is the class of flat modules (that is, 7 = +C where
C is the class of pure-injective modules). For motivation and applications, see,
for example, [11] or [25].

For arbitrary F of the form +C, the first author and Jan Trlifaj proved [9)]
that a sufficient condition for every module M to have an F-precover is the
following:

(1) there is a module B such that F* = {B}*.

This sufficient condition was used by Enochs to prove the Flat Cover Conjec-
ture (cf. [2]). In [10], generalizing the method used by Enochs, it is proved
that (1) holds whenever C is any class of pure-injective modules; moreover, for
R a Dedekind domain, the sufficient condition holds whenever C is any class
of cotorsion modules. The following is also proved in [10]:

THEOREM 0.1. Assuming V = L, for any hereditary ring R and any R-
module N, there is an R-module B such that (F{N})* = {B}* and hence
every R-module has a ~{N}-precover.

For the case R = N = Z this is an easy consequence of the second author’s
proof that V' = L implies that all Whitehead groups are free (cf. [17]). Indeed,
+{Z} is the class of all Whitehead groups, so assuming V = L, (+{Z})*+ =
{B}+ = the class of all abelian groups, for any free abelian group B.

Our main results here are that the conclusions of Theorem 0.1 are not
provable in ZFC + GCH for R = Z. First, we will prove in the next section
the following result. (An abelian group is called cotorsion-free if it does
not contain any non-zero subgroups which are cotorsion, or, equivalently, is
reduced and torsion-free and does not contain a subgroup isomorphic to the
group of p-adic integers, J,, for any prime p (cf. [13] or [7, §V.2]).)

THEOREM 0.2. It is consistent with ZFC + GCH that for every set C of
abelian groups which contains a non-zero cotorsion-free group, there is no B
such that (+C)* = {B}+.

For countable torsion-free groups this settles the question of when it is
provable in ZFC that -{N} satisfies (1):

COROLLARY 0.3. Let N be a countable torsion-free abelian group. It is
provable in ZFC that there is a group B such that (1{N})* = {B}* if and
only if N is divisible.

For the case of N = Z we can prove more. The rest of the paper is devoted
to the proof of the following result:
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THEOREM 0.4. [t is consistent with ZFC + GCH that there is an abelian
group, namely Q, which does not have a L{Z} -precover.

Theorem 0.2 for C = {Z} is easily seen to be equivalent to the statement
that it is consistent with ZFC 4+ GCH that for every Whitehead group B
we can find a Whitehead group A € {B}* such that there is a Whitehead
group H4 with Ext(Ha, A) # 0. For the proof of Theorem 0.4 we will need
to prove the stronger fact that it is consistent with ZFC + GCH that for
every Whitehead group A of infinite rank there is a Whitehead group H4
with Ext(Hga, A) # 0.

The consistency results 0.2 and 0.4 will each be proved by citing the consis-
tency of a known combinatorial property (involving so-called uniformization
properties introduced by the second author) and then using the combinatorial
property to prove the algebraic facts needed.

From now on, we will deal exclusively with Z-modules, that is, abelian
groups (though the results generalize trivially to modules over a countable
p.id.). We will use the word “group” to mean “abelian group” and write
Ext instead of Ext}. Recall that W denotes the class {Z} of Whitehead
groups; we will sometimes write W-group instead of Whitehead group. It is
well-known that W-groups are N;-free (that is, every countable subgroup is
free). Moreover, CH implies that a W-group A is strongly N;-free, that is,
every countable subset of A is contained in a countable subgroup C' such that
A/C is N;-free. For facts about W-groups see, for example, [6, Chap. XII] or
[7, Chaps. XII & XIII].

1. Proof of Theorem 0.2

The proof will make use of the following consequence of Theorem 2 of [9)].
The last assertion follows from Lemma 1 of [9].

THEOREM 1.1. Let p be a cardinal > k such that p* = k and let B
be a group of cardinality < k. Then there is a group A € {B}* such that
A= Uu<u A, (continuous), Ag = 0, and such that for all v < u, A,41/A, is
isomorphic to B.

Moreover, if B belongs to +G, then so does AJA, for all v < p. (]

We will have occasion to use the Z-adic topology on a reduced torsion-free
group M, that is, the metrizable linear topology whose base of neighborhoods
of 0 consists of the subgroups (n + 1)!M (n € w). We use ) . nlt, to
denote the limit of the sequence <ngnj!tj 'n € w>. We denote by M the
completion of M in the Z-adic topology.

The following sums up some well-known facts (cf. [12, §7] or [7, §1.3]):
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LEMMA 1.2. Let M be a reduced torsion-free abelian group. Then M is not
cotorsion if and only if M is not pure-injective if and only if M is not complete
in the Z-adic topology if and only if there are elements {t,, : n € w} C M such
that the system of equations

(n + 1)yn+1 =Yn —ln

in the unknowns y, (n € w) does not have a solution in M. g
We will also need the following result.

LEMMA 1.3. Let G be a non-zero cotorsion-free group.

(i) If M is a non-zero torsion-free group in +G, then M is not pure-
injective.

(ii) If N € G and is not torsion, then there exist elements {h, : n €
w} € N such that the system of equations

(n+ DYnt1 = Yn — ha,
in the unknowns y, (n € w) does not have a solution in N.

Proof. By hypothesis, G is reduced and torsion-free and not pure-injective,
so G is not equal to G. There is an exact sequence

0 -G—G—G/G—0

where G is pure in G and G/G is (torsion-free) divisible and non-zero. This
exact sequence induces the exact sequence

0 — Hom(M, @) — Hom(M, G) — Hom(M, G/G) — Ext(M,G) = 0.

We claim that Hom(M,G) # 0. Indeed, otherwise, Hom(M,G) =
Hom(M,G/G), but Hom(M,G) is reduced, because G is torsion-free and
reduced; and Hom(M, @/ G) is a non-zero divisible group. Now if M were
pure-injective, G would contain a non-zero homomorphic image of M, that is,
a non-zero cotorsion group; but that is impossible by the assumption on G.

(ii) We apply (i) to M = N/N;, which is a non-zero torsion-free group.
Note that M belongs to +G: consider the induced exact sequence

0 = Hom(Ny, G) — Ext(N/N;, G) — Ext(N,G) =0

where the first term is zero because G is torsion-free. By Lemma 1.2 there
are {t, : n € w} C M such that the system of equations

(n + 1)yn+1 =Yn —In

in the unknowns y, (n € w) does not have a solution in M. Let h, € N be
such that h,, + N; = t,,. [l
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If S is a subset of an uncountable cardinal y which consists of ordinals of
cofinality o, a ladder system on S is a family = {(s : 6 € S} of functions
(s : 0 — 0 which are strictly increasing and have range cofinal in §. For a
cardinal \, we say that ¢ has the A\-uniformization property if for any functions
¢s 0 — Afor § €S, there is a pair (f, f*) where f: y > wand f*: S — o
such that for all 6 € S, f(¢s(v)) = ¢s(v) whenever f*(§) <v < 0.

Proof of Theorem 0.2. We will use the fact that the following principle is
consistent with ZFC + GCH (cf. [8]):

(UPT) For every cardinal u of the form 7 where 7 is singular of cofinality
w there is a stationary subset S of p consisting of limit ordinals of
cofinality w and a ladder system ¢ = {¢s : 6 € S} which has the
A-uniformization property for every A < 7.

We work in a model of GCH plus (UP™). It suffices to show that for any non-
torsion B € 1C, there is an A which belongs to B+ but not to (+C)+. (Note
that B+ = (B @ Z)*.) For such a B, let k > max(|B|, sup{|G| : G € C})
and let ;= 77 = 27 where 7 > & is a singular cardinal of cofinality w. Then
pt = p. Let ( = {¢s:6 € S} be as in (UP) for this p. Let A=J,_, A, be
as in Theorem 1.1 for this B and pu.

Let Hy = F/K where F is the free group on symbols {ys, : § € S,
n€wlU{x;: j < p}and K is the subgroup with basis {ws, : 6 € S, n € w}
where

v<p

(1) W5, = Ysn — (N + 1)Ysnt1 + T¢s(n)-

Then H4 is a group of cardinality g and the uniformization property of
¢ implies that H4 € +C. (See [7, §XIIL0] or [24].) It suffices to show that
Ext(Ha, A) # 0, for then A belongs to B+ but not to (+C)+.

We will show that Ext(H4, A) # 0 by defining ¢ : K — A which does not
extend to a homomorphism from F' to A.

For all § < p, A/As belongs to G for every G € C, so by Lemma 1.3(ii)
applied to N = A/As (which is not torsion because it contains a copy of B),
there are elements h,, = ts5, + As in N satisfying the conclusion of (ii). Define
¥ : K — A such that ¢¥(ws ) = ts, for all 6 € S, n € w. Suppose, to obtain
a contradiction, that ¥ extends to a homomorphism ¢ : FF — A. The set of
0 < p such that ¢(z;) € As for all j < ¢ is a club, C, in p, so there exists
desSncC.

We work in A/As. Let ¢, = ¢(ys.n) + As. Then by applying ¢ to the
equations (1) and since ¢(z;) € A; for all j < 6 we have that for all n € w,

t5,n + A6 =Cn — (n + l)cn+17
which contradicts the choice of the h,,. O

Proof of Corollary 0.3. 1t is easy to see that the condition that N is divis-
ible is sufficient; for example, it follows from the main theorem of [10], since
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N is pure-injective. On the other hand, if IV is not divisible, then N = G & D
where G is reduced and non-zero and D is divisible. But then *N = +{G}
and G is cotorsion-free, so by the Theorem it is consistent that there is no
such B. O

2. Building Whitehead groups

We now begin the proof of Theorem 0.4. For this proof we will need the
fact that the members of +{Z} have a stronger property than not being pure-
injective, namely, they are Ni-free, even strongly N;-free. It will suffice to
prove the following:

THEOREM 2.1. It is consistent with ZFC + GCH that for every Whitehead
group B there is an uncountable Whitehead group G = Gp such that every
homomorphism from G to B has finitely-generated range.

Proof of Theorem 0.4 from Theorem 2.1. Suppose that f: B — Q is a W-
precover of Q. Let G be as in Theorem 2.1 for this B. Since Q is injective
and G has infinite rank, there is a surjective homomorphism g : G — Q. But
then clearly there is no h: G — B such that foh =g. O

Our method of proving 2.1 is based on the following lemma. In its proof,
as well as in later results, we will use the result of Gregory and Shelah (cf.
[14], [20]) that GCH implies ¢ for every successor cardinal A > N;.

LEMMA 2.2.  Assume GCH. Suppose that for every Whitehead group A of
infinite rank, there is a Whitehead group Ha of cardinality < |A|T such that
Ext(Ha, A) # 0. Then for every Whitehead group B there is an uncountable
Whitehead group G such that every homomorphism from G to B has finitely-
generated range.

Proof. Let X = p* where p > |B| + ®y. Then <, holds, and we will
use it to construct the group structure on a set G of size \. We can write
G =, <, G as the union of a continuous chain of sets such that for all v < A,
|Gy1 — Gy| = p. Now Oy gives us a family {h, : v € A} of set functions
hy, : G, — B such that for every function f : G — B, {v e X: f | G, = h,}
is stationary.

Suppose that the group structure on GG, has been defined and consider h,;
if h, is not a homomorphism or the range of h, is of finite rank, define the
group structure on G,41 in any way which extends that on G,. Otherwise,
let A be the range of h, and let H4 be as in the hypothesis. Without loss of
generality, |Ha| = p. (Just add a free summand to H,4 if necessary.) Write
Hy = F/K where F is a free group of rank pu. Since Ext(Ha,A) # 0, a
standard homological argument implies that there is a homomorphism 9 :
K — A which does not extend to a homomorphism : F' — A. Since K is free
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and h, : G, — B is onto A, there is a homomorphism 6 : K — G, such that
h, o6 = 1. Now form the pushout

Fr — GV+1
T T
K % a,

to define the group structure on G,y (cf. [9, proof of Theorem 2]). Then
G,41/G, 2 F/K = Hy, so it is Whitehead. Moreover, h, does not extend to
a homomorphism from G,; into A, else ¢ extends to a homomorphism on
F'. This completes the definition of G. Notice that G is a Whitehead group
since all quotients G, 11 /G, are isomorphic to F//K and hence Whitehead (cf.
[9, Lemma 1]).

Now given any homomorphism f : G — B, let A C B be the range of f.
Since |4] < |G| = X, {v € X : f[G,] = A} is a club in A; hence there exists
v € Asuch that f | G, = h, and the range of h, is A. If A is of infinite rank,
we have constructed G, 41 so that f [ G, does not extend to G +1, which is a
contradiction. So we must conclude that the range of f is of finite rank. [

Thus our goal is to show that there is a model of ZFC + GCH such that for
every W-group A of infinite rank, there is a W-group H 4 of cardinality < |A|T
such that Ext(Ha,A) # 0. The W-groups H4 will be constructed in the
following manner. The definition is in the spirit of the general constructions
in, for example, [24] or [7, XIII.1.4] but is a little more complicated since it is
“two step”: involving a system of ladders of length cf(u) and another system
of ladders of length w (if cf(u) > Ro).

DEFINITION 2.3. Let p be a cardinal of cofinality o (< p). Let S be a
subset of A = ut consisting of ordinals of cofinality o and 7 = {55 : § € S}
a ladder system on S. If 0 > N, let E be a stationary subset of o consisting
of limit ordinals of cofinality w and let { = {¢, : v € E} be a ladder system
on E. We will say that H is the group built on 7 and ¢ if H = F/K where
F is the free group on symbols {ys,n:0 € S, v € E,n € w}U{z;:0 €S,
j€otU{zg: €A} and K is the subgroup with basis {ws ., :0 € S, v € E,
n € w} where
(2) Ws,vn = Ys5,u,n — 2y5,v,n+1 — 28,¢,(n) + Lys(v+n)-

(If o = Vg, let E = {0} and omit ¢ and the zs;.) For future reference, for
a € A, let F,, be the subgroup of F generated by {ys,n:0 € SNa, v € E,

newpU{zs;j:0€SNa,j<olU{zsg:f<a}andforae Sand T <o let
F, - be the subgroup generated by {zn,; : j < T}.

THEOREM 2.4. Suppose that H is built from 7 and ¢ as in Definition
2.8 and that E is a non-reflecting subset of o. If, in addition, 1 has the
w-uniformization property, then H is a Whitehead group.
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Proof. We assume o > g since this is known otherwise (cf. [18], [24]). If
F and K are as in Definition 2.3, it suffices to show that every homomorphism
1 : K — Z extends to a homomorphism ¢ : F' — Z. Given 9, for all n € w
define ¢s(v +n) to be Y(ws,. ) if v € E, and arbitrary otherwise. Let (f, f*)
be the uniformizing pair. Define ¢(xg) = f(5). For each § € S we must still
define ¢(ys5,,,») and ¢(zs5;) for v,j € o and n € w. Fix § and let p = f*(0);
without loss of generality p ¢ E. Let F' (resp. F}) be the subgroup of F
generated by {ys,n v € E, n € w}U{z5; : j <o} U{ag: [ <} (resp.
by {yspm:vE€ENp, newtU{zs;:j<ptU{ag: B <d})and K’ (resp.,
K) the subgroup generated by {ws,n: v € E,n € w}U{xg: 3 < d} (resp.,
by {wsyn v € ENp, n€wtU{xsg: [ < p}). Now F'/K' is o-free since
E is non-reflecting (cf. [7, §VIL.1]), so F; + K/K = F, /K is free and hence
K, is a summand of F); then it is easy to extend ¥ [ {wsy. : v € ENp,
ne€wr+y [ {rg: B <p}top:F,— Z Forve L withv > p we have
(s (v4n)) = Y(Ws,,n) for all n € w. For some m,, ¢, (n) > p when n > m,,.
Then we can satisfy the equations

w(w&l/,n) = 290(y6,v,n+1) - @(yé,vm) - @(Zé,(,,(n)) + @(xns(lfﬁ-n))

by setting ©(ys,u.n) = 0 = ¢(25.¢,(n)) for n > m,. For (,(n) < p, ¢(z5¢,n))
is already defined; we can define ¢(ys,,,) by downward induction on n < m,,
(cf. [7, proof of XIII.1.4]). O

3. How to make Ext not vanish

Next we need to show how groups H defined as in 2.3 can satisfy Ext(H, A)
# 0 for a given W-group A. In the proof of 0.2, we used a description of A
as the union of a chain of subgroups which came from the construction of
A. Now we have only what we can learn from the fact that A is Whitehead,
assuming GCH. We begin by proving some general properties of decomposi-
tions of Whitehead groups assuming GCH. Besides the result of Gregory and
Shelah that GCH implies <, for successor cardinals A > Xy, we will use the
result of Devlin and Shelah [4] that CH implies weak diamond, ®y,, at N;.
We will also make repeated use of the following crucial fact (cf. [16], [4], [7,
XII.1.10]):

PROPOSITION 3.1.  Let A =], Aa be a X -filtration of a group of car-
dinality X, that is {Aq : a < A} is a continuous chain of subgroups of A of
cardinality < X. Let Z be any group of cardinality < A. Suppose that $a(E)
or the weak diamond principle ®(E) holds, where E = {a € A : 30 > « s.t.
Ext(Ag/Aq, Z) # 0}. Then Ext(A, Z) # 0. O

COROLLARY 3.2. Let A be a Whitehead group of cardinality A\ = p* and

let A = ycnAa be a X-filtration of A. Let S(A) g {a € A: A /A, is
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Whitehead for all 7 > a}. If ®\(Y) holds for some subset Y of A, then
Y N S(A) is stationary. In particular, assuming GCH, S(A) is stationary.

Proof. Suppose Y N S(A) is not stationary in A, and let C' be a club in its
complement. Then ®,(Y N C) holds and « € Y N C implies that o ¢ S(A4),
so by 3.1 (with Z = Z), A is not Whitehead, a contradiction. O

We will say that A/A, is locally Whitehead when « € S(A), that is, every
subgroup of A/A, of cardinality < A is Whitehead.

LEMMA 3.3. Assume GCH. Let A be a Whitehead group of cardinality
1 (possibly a singular cardinal). Then we can write A = U, ., A, as the
continuous union of a chain of subgroups of cardinality < p such that for all
v <, AJA 41 is Ry-free.

Proof. If suffices to show that every subgroup X of A of cardinality x < p
is contained in a subgroup N of cardinality x such that N'/N is free whenever
N C N’ C A and N'/N is countable. But if X is a counterexample, then
we can build a chain {N, : @ < k} such that Ny = X and for all o < k™,
No+1/Ng is countable and not free, and hence is not Whitehead. We obtain
a contradiction since then ®,.+ implies that | J,_,.+ No is not Whitehead. [

We now give sufficient conditions for Ext(H, A) to be non-zero, when H
is defined as in 2.3. The analysis will be divided into cases, depending on
whether the cardinality of A is singular, the successor of a regular cardinal,
or the successor of a singular cardinal.

When the cardinality of A is singular, we will use a special case of a recent
result of the second author (cf. [22]).

LEMMA 3.4. Assume GCH. Let p be a singular cardinal and let o =
cf(p) < p and X = p*. Suppose that S is a stationary subset of X\ con-
sisting of ordinals of cofinality o and {ns : 6 € S} is a ladder system on S.
Then for each § € S there is a sequence of sets D® = <D‘DS v < O’> such that

(a) forall§ € S and v € o, D} C A, sup(DS) < § and |D3| < u; and
(b) for every function h: X — X, {6 € S : h(ns(v)) € DS for allv € o} is
stationary in \.

Proof. Fix 6 € S. Let <b§, v < a> be an increasing continuous union of
subsets of § whose union is § and such that sup(b%) < § and |b}| < p. Let
0 =07 =27 =0t (< p) and let (g; : i < 6) be a list of all functions from o
to 0. Also let (f, : v < A) list all functions from 6 to A (= 2#* = \?); without
loss of generality, f,(i) < v for all ¢ € §. For each ¢ € § and v € 6, define
Dif = {f,(0) s 7 €1 o

We claim that for some i € 6, the sets {D"° = (D’ :v <o) : § € S}
will work in (b). Assuming the contrary, for each ¢ € 0, let h; : A — A be a
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counterexample, i.e., there is a club C; in A such that for each § € C; N S,
there is v € o such that h;(ns(v)) ¢ DLO.

For each o € A, there is h(a) € A such that for all i € 0, hi(a) = f(a) (7).
There exists 0. € [, Ci NS such that for all a < ., h(a) € d.. Denote
h(ns, (v)) by ~,. There exists i, € 6 such that for all v < o,

gi.(v)=min{j <o :v, € b‘;*}_

Note that the right-hand side exists since d, = U 4<gb5»* and v, € 6,.) Thus
J J

.
gi, (V)"

But then (letting o = 75, () in the definition of k),
hi, (5. (V) = fuins. () (i) = fo, (ix) € D"

Since this holds for all v € o, the fact that h;, is a counterexample implies
that 0. ¢ C;, N.S. But this contradicts the choice of J.,. O

Y €D

THEOREM 3.5.  Assume GCH. Let ji be a singular cardinal of cofinality o.
If H is a group of cardinality X = u™ built on 77 and ¢ as in Definition 2.3
and A is a Whitehead group of cardinality p, then Ext(H, A) # 0.

Proof. Let the sets {D° = (DJ :v €0c) : 6 € S} be as in Lemma 3.4 for
this ladder system. Write A = |J, < A, as in Lemma 3.3. Without loss
of generality we can assume that the universe of A is p and that for all v,
A, +1/A, is non-zero.

We claim that for all 8 < p, the 2-adic completion of A/Ag has rank
> p over A/Ag. For notational convenience we will prove the case 8 = 0,
but the argument is the same in general using the decomposition A/Ag =
Uﬁ§a<,u, A, /Ag. For every successor ordinal «, since Aq11/A, is Ny-free and
non-zero, there are si € A, 1 such that the element ) _ 2"(s5 + Ay) of
the 2-adic completion of A,11/A, is not in Ay41/A44. We claim that the
elements {) . 2"sy :a = v+ 1, v € p} of the 2-adic completion of A are
linearly independent over A. Suppose not, and let

Z ki (Z 2”8%“) =a
i=1 new

be a counterexample; so a € A; k; € Z—{0}; and (1) < a(2) < -+ < a(m) <

p. Let v = a(m) and k = k,. We claim that the element k) _ 2"(s) +

A,) of the 2-adic completion of Ay1/A, belongs to A,;+1/A, which is a

contradiction of the choice of the s). Since A/A. ;1 is Ri-free, we can write

(Ayt1,0a), = Aypq @ C for some C, and let o’ be the projection of a on the

first factor. For every r € w, 2"+ divides a— > 10 k(>0 _, 2ns2) in A
and hence 2" divides o’'— Y7" | k(> 2m52) in A ;. But then 27+

n=0



ON THE EXISTENCE OF PRECOVERS 183

divides (¢’ + A,)— kZZ 02"(s) +A,) in Ay /A,; since this holds for all
rew, kY .., 2"(s) +A,) =a + A, and we have a contradiction.

Choose a th‘lCtly increasing continuous function ¢ : ¢ — p whose range
is cofinal in p. For each 6 € S and v € E, there is an element a5, =
Y onew 2"(a(d,v,n) + Agy41) in the 2-adic completion of A/Ag(,)41 which
is not in the subgroup generated by A/A¢(,)41 and the 2-adic completion of
{d+ A¢(y41 : d € DS N A} (Note that the latter has cardinality < p since
|DS Mo < 1 by the GCH.)

Now define ¢ : K — A such that ¢(ws..,) = a(d,v,n). We claim that ¢
does not extend to a homomorphism ¢ : F — A. Suppose, to the contrary,
that it does. Then by Lemma 3.4, there is § € S such that ¢(x,,(,)) € DS for
all v € 0. Now there exists v € E such that ¢(zs ;) € Ag(,) for all j <v. We
will contradict the choice of as, for this 6 and v.

We work in A/Ag(V)Jrl. Let ¢, = (p(y(;,ym) + Ag(y)+1, n ( s ( V+n))
A¢)+1- Then by applying ¢ to the equations (2) and since <p( i) € Aew)
for all j < v we have that for all n € w,

a(6,v,n) + Aey41 = Cn — 2¢ny1 + dy.

It follows that a5, = co+)_,,c,, 2"dy is in the subgroup generated by A/A¢ ()41
and the 2-adic completion of {d + Ag(,)41 : d € D) N A}, which contradicts
the choice of a5, O

We now turn to the cases when the cardinality of A is a successor cardinal.
Though the two arguments could be combined into one, following the argu-
ment in Theorem 3.8, we prefer to introduce the method with the somewhat
simpler argument for the successor of regular case.

The following lemma is easy to confirm:

LEMMA 3.6. Suppose that L' is a free subgroup of L such that L/L’' is
Ny-free. If {t, :n € w} is a basis of a summand of L', then ), . 2"ty is an
element of the 2-adic completion of L which does not belong to L. In other
words, the system of equations

2yn+l =Yn — tn

in the unknowns y, (n € w) does not have a solution in L. O

THEOREM 3.7. Assume GCH. Let A = p+ where u is a reqular cardinal (so
o =cf(u) = p). Suppose H is built onj={ns:6 € S} and { ={(, : v € E}
as in Definition 2.3. Suppose also, for p > N, that {,(E') holds for all
stationary subsets E' of E. If A is a Whitehead group of cardinality A\ = pu™,
then Ext(H, A) # 0.

Proof. Let A = J,.5 Aa and S(A) be as in Lemma 3.2. Note that (here
and in the next theorem) we make no assumption about the relation of S and
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S(A); maybe SN S(A) = (. Without loss of generality, for all § € S(A),
Asy1/As is Whitehead of rank p and A/As.q is locally Whitehead. Assume
1 > Ng; the proof for Ny is simpler. For each o < A, write A, as the union
of a continuous chain of subgroups of cardinality < u: A, = U, u Baw-
Thus Asi1/As = UV<#(A5 + Bsy1,0)/As; for 6 € S(A), since $,(F) holds,
we can assume that the set of v € E such that Asy1/(As + Bst1,.) is locally
Whitehead is stationary; for such v, Ast1/As+ Bs+1,, is then strongly Ry-free
since CH holds. Thus for v in a stationary subset Es of E we can assume that
As+Bst1,41/As5+Bst1,, is free of rank Rg and As41/As+Bsi1,0+1 is Ny-free.
Say {té,u,n +As+ Bsy1,, 1 n € w} is a basis of As + B(;+17,,+1/A5 + Bst1,0-
For each §; € S, let 6f be the least member of S(A) which is > ¢;. Define

V(W ,v,n) = t(slﬂy,n

foralln e wif v € E(;;r. Define ¢ arbitrarily otherwise. We claim that 1
does not extend to ¢ : FF — A. Suppose to the contrary that it does. Let
M = ¢[F]|, My = ¢[F,], Mo+ = @[Fa,r]- Then there is a club C in A such
that for « € C, M, C A,. Fix §; in CNS. Let § denote 5fr and choose v € C
such that v > ¢. There is a club C” in p such that for v € C’, M;, , C B,
and Asy1 N By, C Bsi1,,. Since $,(Es) holds and A, /A4 is Whitehead,
there is, by Lemma 3.2, v € Es N C” such that A,/(As+1 + B,,,) is locally
Whitehead, and hence N;-free. We will obtain a contradiction of Lemma 3.6
with L = Av/(A(; + B%y) and L' = (Bg+17,,+1 + As + BV’U)/(A(S + B%l,) and
tn = tsun + As + B,,,. Notice that modulo A; + B, , we have

20(Ys, wint1) = Ws1,0m) — town

for all n € w since (2, (1)) € Ms, C A5, C As and (25, ¢, (n)) € M5, C
B, ,. Moreover, {t, : n € w} is a basis of a summand of L' since L' is
naturally isomorphic to As +Bsq1,u4+1/As + (B, N(As + Bsy1,0+1)) and the
latter has a natural epimorphism onto As + Bsy1,,+1/As + Bs41,, which is
free on the basis {t5,.n + As + Bs+1,, : 1 € w}. It remains to show that L/L’
is Ny-free. Now

0— (A5+1 +B’Y,V)/(B5+17V+1 + As +Bw,u) - L/L/ - A'y/(AtHl + B'y-,v) —0

is exact and A /(As1+1+ B, is Ny -free by choice of v, so it suffices to show
that (As+1+By.)/(Bs+1,0+1+As+B,,,) is Ny-free. But this is isomorphic to
Asy1/((As+Bsy1,041)+ (As41NBy,,)), which (since Asy1N B, € Bsy1,, C
Bsi1,04+1) equals Asy1/(As + Bsy1,0+1), which was chosen Nj-free. O

The proof of the following is similar, but requires elementary submodels.

THEOREM 3.8. Assume GCH. Let A = ut where p is a (singular) cardinal
of cofinality o. Suppose H is built on j={ns : 6 € S} and ( ={¢, : v € E}
as in Definition 2.3. Suppose also that O (Y) holds for some subset Y of A
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consisting of limit ordinals of cofinality o and that, if o > g, $n(E) holds.
If A is a Whitehead group of cardinality A = ™, then Ext(H, A) # 0.

Proof. Without loss of generality, for all 6 € S(A), As1+1/As is Whitehead
of rank p. For each § € S, choose a strictly increasing sequence (&5, : v < o) of
elements of S(A) such that s > 0 +1 and whose limit, denoted &5, belongs
to S(A). This is possible because, by Lemma 3.2, Y N .S(A) is stationary so
we can choose &5, to be an element of the intersection of ¥ N S(A) with the
closure of {a € S(A) : a > 6}. Let B, 11, = Ag, . (Note the difference from
the last proof.) We can then modify the sequence so that Bsyi ,41/Bsy1.
is free on a countable set {t5,.n + Bs+1,,} and A/Bsi1 41 is Ri-free when
v € E. (We no longer require 5,41 € S(A).)

For each 0; € S, let 8 be the least member of S(A) which is > §;. Define

1/)(11)5171,,“) = téf’,u,n

for all n € w. We claim that v does not extend to ¢ : F' — A. Suppose to the
contrary that it does. As before, let M = ¢[F], M, = ¢[Fu], Mo = ¢[Fa.r]
and let C be a club such that for « € C, M, C A,. Fix §; in CNS. Let § be
81 and choose v € C such that v > 6.

Let N = U,., N, be the continuous union of a chain of elementary sub-
models of H(x) for large enough x such that each N, has cardinality < o,
N, € N,41 and such that §, o, 4, {As : a < A}, {e(zs,5) : § < o},
{o(@y,, (j4n)) + J < o} (for each n € w), {t5jn : j < oyn € w} and
{&,; : j < o} all belong to Ny and

{o(zs,,5) 17 <ot U{p(n,, () 1d<otU{tsjn:j<on€wpUoCN.
Moreover, by intersecting with a club, we can assume that for all v, N,No = v
and N, N Bsy1,0 € Bsy1,, and hence {&s; : j < v}, {e(zs,5) 1 J < v},
{ts.jn 17 <v,n €w}, and {@(zy; (j+n)) 1 § < v} (forall n € w) are all subsets
of N,,. We claim that there is a v € E such that A/(Bst1,0 + (N, NA)) is Ny

-free. Assuming this for the moment, we show how to obtain a contradiction
of Lemma 3.6 with

L=(NNA)/((NNAs)+ (N, NA)),

L' = ((N'N Bsp1p41) + (Ny N A)) /(N 0 As) + (N, N1 A))
and

tn =ts5un + (NN As)+ (N, NA)).

Notice that for all n € w, @(zy; (v4n)) € (N N As) and ©(25, ¢, (n)) € No-
Moreover, {t, : n € w} is a basis of a summand of L’ because L’ is naturally
isomorphic to (N N Bst1,,41)/(N N As) + (N, N Bsy1,,) and the latter has
epimorphic image (N N Bjsy1,,41)/(N N Bsy1,,) which is free on the basis
{ts,yn + (NN Bst1,) : n € w} by choice of N. To see that L/L’ is N;-free,
use the short exact sequence
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0 — ((NNBsi1o)+ (N, NA)/((NNBssrpi) + (N, NA) — L/L
— (NNA)/(NNBst15)+ (N, NA) —0

The last term is N;-free by choice of v and since N is an elementary sub-
model of H(x). Moreover, the first term is isomorphic to (N N Bsy1,6)/(N N
Bst1,,41) (since Ny, N Bsi1,6 C Bst1,,) and thus is Ry-free since A/Bsi1 41
is Ny-free.

It remains to show that there is a v € E such that A/(Bst1,,+(N,NA)) is
N;-free. If not, then for all v € E, (Bsy1,60 + (Noy1NA))/(Bst1,0 + (N, NA))
is not W-free (and hence not Whitehead), since A, Bs11,, and N, belong to
the elementary submodel N, ;1. But then {,(E) implies that |J, ., (Bst1,0 +
(N,NA))/Bst1,0 is a group of cardinality o which is not a Whitehead group,
contradicting the fact that A/Bsy 1, = A/Ag, , is locally Whitehead. O

4. Finishing the proof of Theorem 2.1

Finally we can put the pieces together to prove the consistency of the
hypothesis of Lemma 2.2:

THEOREM 4.1. There is a model of ZFC + GCH such that for every
Whitehead group A of infinite rank, there is a Whitehead group H s of cardi-
nality < |A|™ such that Ext(Ha, A) # 0.

Proof. By a forcing construction (cf. [23]) there is a model of ZFC + GCH
such that the following holds (where S;‘ denotes the set of ordinals < A of
cofinality u):

(i) for every infinite successor cardinal A = u™ there is a stationary subset
S of Sc’\f(u) with a ladder system 77 = {ns : 6 € S} which satisfies w-
uniformization (or even k-uniformization for every s < p);

(ii) for every infinite successor cardinal A = p* there is a stationary subset
Y of Sé\f(“) such that $(Y") holds;

(iii) for every regular uncountable cardinal o, there is a non-reflecting
stationary subset E of S7 such that {,(E’) holds for every stationary
subset E’ of FE;

(iv) there is a tree-like ladder system on a stationary subset of w; which
satisfies 2-uniformization but not w-uniformization.

We work in this model. Let A be a Whitehead group of infinite rank. If
the rank of A is N, then A is isomorphic to Z() and it is well-known (cf.
[18], [7, XIII1.0.6]) that (iv) implies that there is a Whitehead group H which
is not Wy -coseparable, i.e., Ext(H, Z(“)) # 0. If the cardinality of A is either
singular or a successor cardinal, then for A = |A] if |A| is regular, or A = |A|*
if |A] is singular, the properties (i), (i) and (iii) allow us to build a group H 4
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of cardinality A as in Definition 2.3, which is Whitehead by Theorem 2.4 and
such that by Theorem 3.5, 3.7 or 3.8, Ext(H 4, A) # 0.

It is also consistent to assume that there are no regular limit (i.e. in-
accessible) cardinals, in which case we have covered all possibilities for the
cardinality of A and we are done. Another approach is to allow inaccessible
cardinals but force the model to satisfy in addition:

(v) for every inaccessible cardinal A there is a stationary subset S of S2
with a ladder system 77 = {7 : § € S} which satisfies w-uniformization;
moreover <y holds.

As in Lemma 3.2, one can show that S(A) is stationary and then the proof
is similar to that in Theorem 3.7. (]

Added in proof. The authors and J. Trlifaj, in “On the cogeneration of
cotorsion pairs” (to appear in J. Algebra), have extended Corollary 0.3 to
modules N of arbitrary cardinality over Dedekind domains with countable
spectrum; in the extension “divisible” is replaced by “cotorsion”.
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