
Illinois Journal of Mathematics
Volume 51, Number 4, Winter 2007, Pages 1397–1407
S 0019-2082

A SPHERICAL INITIAL IDEAL FOR PFAFFIANS

JAKOB JONSSON AND VOLKMAR WELKER

Abstract. We determine a term order on the monomials in the vari-
ables Xij , 1 ≤ i < j ≤ n, such that corresponding initial ideal of the
ideal of Pfaffians of degree r of a generic n by n skew-symmetric ma-
trix is the Stanley-Reisner ideal of a join of a simplicial sphere and a
simplex. Moreover, we demonstrate that the Pfaffians of the 2r by 2r
skew-symmetric submatrices form a Gröbner basis for the given term or-
der. The same methods and similar term orders as for the Pfaffians also
yield squarefree initial ideals for certain determinantal ideals. Yet, in
contrast to the case of Pfaffians, the corresponding simplicial complexes
are balls that do not decompose into a join as above.

1. Introduction

The ideal Pn,r of Pfaffians of degree r of a generic n × n skew-symmetric
matrix is one of the classical ideals in commutative algebra. Many of its
properties are well understood. In particular, Herzog and Trung [11] have
constructed a term order for which the standard generators of Pn,r constitute a
Gröbner basis. Indeed, this term order has many nice properties, including the
property that the corresponding initial ideal is squarefree and is the Stanley-
Reisner ideal of a simplicial ball. In this paper, we determine a different
term order � leading to the same Gröbner basis and a corresponding initial
ideal that is squarefree and the Stanley-Reisner ideal of a simplicial ball. Yet,
in contrast to Herzog and Trung’s situation, our term order � satisfies the
following conditions:

(S) The initial ideal in�(Pn,r) is the Stanley-Reisner ideal of a simplicial
complex that decomposes into a join ∆ ∗ 2Θ of a simplicial sphere ∆
and a full simplex 2Θ on ground set Θ.

(M) The cardinality of the set Θ is the absolute value of the a-invariant of
the quotient of the polynomial ring by Pn,r.
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If condition (S) is satisfied, then we say that � is a term order with spherical
initial ideal. Note that if the set Θ from condition (S) is nonempty, then the
simplicial complex ∆ ∗ 2Θ is a ball. As mentioned above, the initial ideal
of Herzog and Trung’s term order [11] is also the Stanley-Reisner ideal of a
simplicial ball. However, this ball does not decompose into a join as postulated
in (S).

Condition (M) assures a certain minimality of the initial ideal. Indeed,
among all squarefree ideals occurring as initial ideals of Pn,r, an ideal satisfy-
ing this condition is one that uses the least number of variables in its minimal
generating set.

Recently, term orders satisfying (S) and (M) have been constructed for
several classes of ideals [1], [3], [16], [17], [18]; see in particular [3] for a survey.
In all these cases, the ideals were the defining ideals of affine semigroup rings
or were reduced to this case by a flat deformation. This paper provides the
first instance of a ring that is not an affine semigroup ring for which this
construction can be performed.

In addition to the Pfaffian case, in Section 6 we study similar term orders
for ideals generated by r × r minors of matrices whose generic entries form
a stack polyomino shape. Again the initial ideals are squarefree, but this
time the corresponding simplicial complexes do not decompose into a join of
a simplicial sphere and a simplex.

2. Basic facts and the main result

Let Sn = k[Xij : 1 ≤ i < j ≤ n] be the polynomial ring over the field k in
the entries of a generic n× n skew-symmetric matrix

An =



0 X12 X13 · · · X1n−1 X1n

−X12 0 X23 · · · X2n−1 X2n

−X13 −X23 0 · · · X3n−1 X3n

· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·

−X1n−1 −X2n−1 −X3n−1 · · · 0 Xn−1n

−X1n −X2n −X3n · · · −Xn−1n 0


.

It is a well-known fact from linear algebra that det(An) = 0 if n is odd
and det(An) = p2

An
if n is even for a certain polynomial pAn ∈ Sn of degree

n. The polynomial pAn is called the Pfaffian of An. For 1 ≤ r ≤ bn
2 c and

indices 1 ≤ j1 < · · · < j2r ≤ n, we denote by Aj1,...,j2r the submatrix of An

constructed by selecting the rows and columns indexed by j1, . . . , j2r. Clearly,
the matrices Aj1,...,j2r are the only skew-symmetric submatrices of An of size
2r. We denote by Pn,r the ideal in Sn generated by the Pfaffians of the
matrices Aj1,...,j2r , 1 ≤ j1 < · · · < j2r ≤ n.
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Before proceeding, we briefly mention some well-known definitions and facts
about simplicial complexes and Gröbner bases. We refer to Bruns and Herzog
[2, Section 5] for more details on simplicial complexes and to Fröberg [8] for
more details on Gröbner bases.

Let T = k[x1, . . . , x`] be the polynomial ring in ` variables x1, . . . , x`. A
monomial in T is a product m =

∏`
1=1 xai

i , where each ai is a nonnegative
integer. The monomial m is called squarefree if ai ∈ {0, 1} for 1 ≤ i ≤ `. An
ideal I in T is called a (squarefree) monomial ideal if I is generated by a set
of (squarefree) monomials. The Stanley-Reisner ideal I∆ ⊆ T of a simplicial
complex ∆ over ground set [`] is the ideal generated by all monomials xσ =∏

i∈σ xi such that σ 6∈ ∆. Conversely, each squarefree monomial ideal in T
is the Stanley-Reisner ideal of some simplicial complex on ground set [`] :=
{1, . . . , `}.

If f ∈ T and � is a term order, then we denote by in�(f) the leading
monomial of f with respect to � (i.e., 0 if f = 0 and the largest monomial
with respect to � occurring in f otherwise). For an ideal J , we write in�(J)
for the initial ideal of J , i.e., the ideal generated by {in�(f) : f ∈ J}. Clearly,
in�(J) is a monomial ideal.

If ∆ and Γ are simplicial complexes on disjoint ground sets, then the join
∆ ∗ Γ is the simplicial complex

∆ ∗ Γ := {σ ∪ τ : σ ∈ ∆, τ ∈ Γ}.

We are now in position to state the main results of this paper.

Theorem 2.1. Let 1 ≤ r ≤ bn+1
2 c. Then there is a term order � on the

monomials in Sn such that

in�(Pn,r) = I∆n,r−1∗2Θn,r−1 ,

where ∆n,r−1 is a simplicial sphere of dimension (r − 1)(n− 2r + 1)− 1 and
2Θn,r−1 is the full simplex on a set Θn,r−1 of size n(r − 1).

To describe the simplicial complex ∆n,r−1 appearing in the formulation of
Theorem 2.1, we need to recall some more facts from the theory of simplicial
complexes.

An element σ ∈ ∆ of a simplicial complex is called a face of ∆. The
dimension dim(σ) of σ is defined as dim(σ) := #σ − 1. The dimension of ∆
is defined as dim(∆) = max{dim(σ) : σ ∈ ∆}. If all inclusionwise maximal
faces σ of ∆ are of dimension dim(∆), then ∆ is called pure.

Let Ωn = {(i, j) : 1 ≤ i < j ≤ n}. We can visualize the elements of Ωn

as edges and diagonals in a convex n-gon with vertices labelled in clockwise
order 1, . . . , n. Clearly, Ωn is in bijection with the variables of the polynomial
ring Sn. Therefore, for any simplicial complex ∆ on ground set Ωn, we may
consider I∆ as an ideal in Sn. We introduce a distance function d on [n] by



1400 JAKOB JONSSON AND VOLKMAR WELKER

setting
dij = min{|j − i|, |n + i− j|}.

Equivalently, if we again regard i and j as vertices of a convex n-gon, then
dij − 1 is the minimum of the number of vertices on the left-hand side and
the number of vertices on the right-hand side of the diagonal through i and
j. We denote by Ωn,r the set of elements (i, j) ∈ Ωn such that dij ≥ r + 1.

Let ∆n,r be the simplicial complex on ground set Ωn,r whose simplices are
those subsets σ ⊆ Ωn,r for which there is no τ ⊆ σ such that #τ = r + 1
and any two diagonals in τ intersect; by intersection we mean transversal
intersection in the interior of the n-gon.

Proposition 2.2. Let 1 ≤ r ≤ bn+1
2 c.

(i) [6] The simplicial complex ∆n,r−1 triangulates a PL-sphere of dimen-
sion dim(∆n,r−1) = (r − 1)(n− 2r + 1)− 1.

(ii) [12] The number of faces of ∆n,r−1 of dimension (r−1)(n−2r+1)−1
is given by ∏

1≤i≤j≤n−2r+1

2(r − 1) + i + j

i + j
.

We close this section by recalling some facts that link invariants of simpli-
cial complexes and invariants of rings. If J is a finitely generated ideal in a
ring T such that J is homogeneous with respect to the standard grading on
monomials, then R := T/J ∼=

⊕
i≥0 Ri is a standard graded ring, where Ri is

the k-vectorspace of elements of degree i. In this situation, the Hilbert series
Hilb(R, t) =

∑
i≥0 dimk Rit

i is a rational function

Hilb(R, t) =
hR(t)

(1− t)d
,

where hR(t) is a polynomial and d is the Krull dimension dim(R) of R. The
a-invariant a(R) of R is then defined as the difference of the degree of the
polynomial hR(t) and d. If ∆ is a simplicial complex, then dim(T/I∆) =
dim(∆) + 1 [2, Theorem 5.1.4]. The number hR(1) is called the multiplicity
e(R) of R. If J = I∆, then e(T/I∆) is the number of faces σ ∈ ∆ such that
dim(σ) = dim(∆).

3. Consequences of Herzog and Trung’s term order

Let Σn,r be the simplicial complex on ground set Ωn such that the minimal
nonfaces of Σn,r are those sets τ of size r + 1 such that any two diagonals ab
and cd in τ are nested, meaning that a < c < d < b (assuming a < b, c < d,
and a ≤ c).



A SPHERICAL INITIAL IDEAL FOR PFAFFIANS 1401

Proposition 3.1 ([11]). Let 1 ≤ r ≤ bn+1
2 c. Then there is a term order

�′ on the monomials in Sn such that

in�′(Pn,r) = IΣn,r−1 .

Using the term order in Proposition 3.1, Herzog and Trung [11] derived a
determinant formula for the multiplicity of Sn/ Pn,r. Using the same term or-
der, Ghorpade and Krattenthaler [9] obtained a similar determinant formula,
which they simplified to the following product formula via a determinant iden-
tity due to Krattenthaler [13, Th. 7]:

Proposition 3.2 ([9]). We have that

e(Sn/ Pn,r) =
∏

1≤i≤j≤n−2r+1

2(r − 1) + i + j

i + j
.

Earlier, Harris and Tu [10] discovered a different determinant formula and
also a different product formula for the same multiplicity.

By Proposition 3.2, the multiplicities of the two quotient rings Sn/ Pn,r

and Sn/I∆n,r−1∗2Θn,r−1 coincide; apply Proposition 2.2 (ii).
De Negri [4] derived a determinant formula for the Hilbert series of Sn/ Pn,r

and hence for the h-vector of Σn,r−1. Ghorpade and Krattenthaler [9] recov-
ered this formula and also provided two alternative determinant formulas for
the same Hilbert series.

By Proposition 3.1, Theorem 2.1 implies the following:

Corollary 3.3. Let 1 ≤ r ≤ bn+1
2 c. Then the two simplicial complexes

∆n,r−1 and Σn,r−1 have the same h-vector.

4. The new term order

Using the distance function d from Section 2, we define a linear order � on
the set of variables such that Xij ≺ Xkl whenever dij < dkl and extend � to
monomials using reverse lexicographic term order. Precisely, m ≺ m′ if and
only if either deg m < deg m′ or deg m = deg m′ and m is lexicographically
smaller than m′, where the variables in m and m′ are arranged in increasing
order. Note that the term order � does not depend on the parameter r.

For example, for n = 5, we may choose the order

X12 ≺ X23 ≺ X34 ≺ X45 ≺ X15 ≺ X13 ≺ X24 ≺ X35 ≺ X14 ≺ X25.

The order of the terms that appear in the Pfaffian of some Ai1,i2,i3,i4 then
becomes

X12X34 ≺ X12X45 ≺ X12X35 ≺ X23X45 ≺ X23X15

≺ X23X14 ≺ X34X15 ≺ X34X25 ≺ X45X13 ≺ X15X24

≺ X13X24 ≺ X13X25 ≺ X24X35 ≺ X35X14 ≺ X14X25.
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Note that the monomials in the last row correspond to the minimal nonfaces
of ∆5,1.

Lemma 4.1. Let 1 ≤ r ≤ n
2 and set Θn,r := Ωn\Ωn,r. Then I∆n,r−1∗Θn,r−1

⊆ in�(Pn,r).

Proof. The lemma is trivially true for r = 1; thus assume that r > 1. For
every minimal nonface σ of ∆n,r−1, we need to prove that m =

∏
ij∈σ Xij is

the leading term of some element in Pn,r. Write

σ = {j1jr+1, j2jr+2, . . . , jrj2r},

where j1 < j2 < . . . < j2r. It suffices to prove that m is maximal among all
terms in the Pfaffian of Aj1,j2,...,j2r . Assume to the contrary that there is a
term m′ in the given Pfaffian such that m ≺ m′.

By symmetry, we may assume that Xj1jr+1 is minimal among the variables
in m and that jr+1 − j1 ≤ n + j1 − jr+1. The latter property implies that
Xjkjl

� Xj1jr+1 whenever 1 ≤ k < l ≤ r + 1. By assumption, m′ contains no
such term Xjkjl

, except possibly Xj1jr+1 itself.
Recall that we may identify any term in the Pfaffian of Aj1,j2,...,j2r with a

perfect matching on the set {j1, . . . , j2r}. We say that jk is matched with jl

in such a term if the term contains the variable Xjkjl
.

We identify two cases:

• m′ does not contain Xj1jr+1 . Then each i ∈ [r + 1] must be matched
with some element from [r+2, 2r], because otherwise m′ would contain
variables that are strictly smaller than Xj1jr+1 . However, this is a
contradiction, because [r + 2, 2r] has size only r − 1.

• m′ does contain Xj1jr+1 . Consider the two monomials m̂ = m/Xj1jr+1

and m̂′ = m′/Xj1jr+1 , which both appear in the Pfaffian of the matrix
Aj2,...,jr,jr+2,...,j2r . By induction on r, we have that m̂′ � m̂, because
σ − j1jr+1 is a minimal nonface of ∆n,r−2. Yet, this implies that

m′ = Xj1jr+1m̂
′ � Xj1jr+1m̂ = m,

which is a contradiction. �

5. Proof of the main theorem

To prove Theorem 2.1, we need the following simple lemma about the
inclusion of monomial ideals. We are grateful to Ezra Miller for pointing out
to us that various generalizations and disguises of Lemma 5.1 appear in the
literature. Notably, [3, Lemma 4.2] together with Exercise 8.13 from [15] leads
to the seemingly most general version (see the notes to Chapter 8 in [15] for
further references).
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Lemma 5.1. Let T = k[x1, . . . , x`] be the polynomial ring in ` variables.
Suppose that I ⊆ J are monomials ideals in T such that the following hold:

(i) dim(T/I) = dim(T/J).
(ii) e(T/I) = e(T/J).
(iii) I = I∆ for a pure simplicial complex ∆ on ground set [`].

Then I = J .

Proof. Since dim(T/I∆) = dim(∆) + 1, it follows by (i) that dim(∆) =
dim(T/J)− 1. Let Jpol be the polarization of J that lives in the polynomial
ring T ′ in `′ variables. We refer the reader to Fröberg [7] for the definition
and basics of polarization. We can assume that T ⊆ T ′. It is well known [7]
that dim(T ′/Jpol) = dim(T/J)+(`′−`). Let I ′ be the ideal generated by I in
T ′. Then I ′ is the Stanley-Reisner ideal of a simplicial complex ∆′ = ∆ ∗ 2Θ

for some set Θ of cardinality `′ − `. In particular,

dim(∆′) = dim(∆) + (`′ − `) = dim(T ′/Jpol)− 1.

Since Jpol is a squarefree monomial ideal, there is a simplicial complex Γ on
ground set [`′] for which Jpol = IΓ. By I ′ = I∆′ ⊆ Jpol = IΓ, it follows that
Γ ⊆ ∆′. Moreover, dim(Γ) = dim(∆′).

The number of faces of ∆ in top dimension dim(∆) coincides with the
number of faces of ∆′ in top dimension dim(∆′) and is equal to the multiplicity
e(T/I) = e(T ′/I ′) of T/I and T ′/I ′. Since the multiplicity does not change
under polarization [7], it follows that e(T/J) = e(T ′/Jpol). Since e(T ′/Jpol)
equals the number of faces of Γ in top dimension dim(Γ) = dim(∆′), we may
conclude by (i) and (ii) that Γ and ∆′ have the same number of faces in
this dimension. By Γ ⊆ ∆′, it follows that these faces are indeed the same.
From the fact (iii) that ∆ is pure, we obtain that any face of ∆ is contained
in a top-dimensional face. Since purity of ∆ implies purity of ∆′, the same
holds for ∆′. But then Γ ⊆ ∆′ implies Γ = ∆′. Therefore, the minimal
monomial generating set of Jpol = IΓ uses only the variables from T . Thus
J = Jpol ∩ T = I∆ = I. �

Proof of Theorem 2.1: Let Sn, Pn,r+1, ∆n,r, Ωn, Ωn,r, Θn,r and � be as
in Sections 2 and 4.

We set I := I∆n,r∗Θn,r and J := in�(Pn,r+1).
By Lemma 4.1, we know that I ⊆ J .
By Proposition 2.2 (i), we know that ∆n,r and hence ∆n,r ∗Θn,r are pure

simplicial complexes. Moreover, the dimension of ∆n,r is r(n − 2r − 1) − 1,
which yields that

dim(∆n,r ∗ 2Θn,r ) = r(n− 2r − 1) + #Θn,r − 1.

Simple enumeration shows that #Θn,r = nr; thus

dim(∆n,r ∗ 2Θn,r ) = r(2n− 2r − 1)− 1.
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Hence dim(Sn/I) = r(2n − 2r − 1), which coincides [11] with the dimension
dim(Sn/ Pn,r+1). Since by general Gröbner basis theory

dim(Sn/ Pn,r+1) = dim(Sn/in�(Pn,r+1)) = dim(Sn/J),

it follows that dim(Sn/I) = dim(Sn/J).
The number of maximal faces of ∆n,r coincides with the number of maximal

faces of ∆n,r ∗2Θn,r and therefore with e(Sn/I). Again general Gröbner basis
theory says that

e(Sn/ Pn,r+1) = e(Sn/in�(Pn,r+1)) = e(Sn/J).

By Proposition 2.2 (ii) and Proposition 3.2, it follows that e(Sn/I) = e(Sn/J).
Therefore, the ideals I and J satisfy the assumptions of Lemma 5.1. Thus

I = J , which concludes the proof. �

Recently, in a more general setting, Krattenthaler [14] obtained a degree-
preserving bijection between the sets of monomials in the two quotient rings
Sn/I∆n,r−1∗2Θn,r−1 and Sn/IΣn,r−1 . The bijection is based on a variation of
the Robinson-Schensted-Knuth correspondence. Using this bijection, one may
prove Theorem 2.1 without using Propositions 2.2 (ii) and 3.2.

6. Determinantal ideals

Using Lemma 5.1, we prove that certain simplicial complexes related to a
given determinantal ideal have the same h-vector, thereby generalizing enu-
merative results due to the first author [12] presented in Proposition 6.2 below.
This time, the derived initial ideals are not spherical in general.

Let

M =


X11 X12 X13 · · ·
X21 X22 X23 · · ·
X31 X32 X33 · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·


be a generic matrix indexed by P2, where P = {1, 2, 3, . . .}. Let Λ be a finite
subset of P2 such that the following hold:

• If ab := (a, b) ∈ Λ, then cb ∈ Λ for 1 ≤ c ≤ a.
• If ab1, ab2 ∈ Λ and b1 ≤ b2, then ad ∈ Λ for b1 ≤ d ≤ b2.

We refer to Λ as a stack polyomino. If in addition a1 ∈ Λ whenever ab ∈ Λ
for some b, then Λ is a Ferrers diagram.

Define M(Λ) = (mab) by

mab =
{

Xab if ab ∈ Λ;
0 otherwise.
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For r ≥ 1 and index sets α = {a1, . . . , ar} and β = {b1, . . . , br} of size r, we
denote by Mα,β(Λ) the submatrix of M(Λ) constructed by selecting the rows
indexed by α and the columns indexed by β. Define

Dα,β(Λ) =
{

det Mα,β(Λ) if aibj ∈ Λ for 1 ≤ i, j ≤ r;
0 otherwise.

Let RΛ = k[Xab : ab ∈ Λ] be the polynomial ring over the field k in the
variables indexed by Λ. We denote by DΛ,r the ideal in RΛ generated by the
polynomials Dα,β(Λ) for all possible choices of index sets α and β of size r.
Note that all but finitely many of these polynomials are zero.

Two elements ab and cd form a 2-diagonal in Λ if a < c, b < d, and the
2× 2 square {ab, ad, cb, cd} = {a, c} × {b, d} is a subset of Λ. More generally,
a1b1, . . . , arbr form an r-diagonal in Λ if the following hold:

• a1 < a2 < . . . < ar and b1 < b2 < . . . < br

• The r× r square {aibj : i, j ∈ [1, r]} = {a1, . . . , ar} × {b1, . . . , br} is a
subset of Λ.

For r ≥ 1, define ∆Λ,r−1 as the family of subsets σ of Λ such that σ does not
contain any set forming an r-diagonal in Λ. Clearly, ∆Λ,r−1 is a simplicial
complex.

Define a linear order on the set of variables in Λ such that Xij ≺ Xkl

whenever i > k and also whenever i = k and j < l. Extend � to monomials
using reverse lexicographic term order in the same manner as in Section 4.
Again, the term order � does not depend on r.

Lemma 6.1. Let r ≥ 1. Then I∆Λ,r−1 ⊆ in�(DΛ,r).

Proof. The lemma is trivially true for r = 1; thus assume that r > 1. As in
the proof of Lemma 4.1, we need to prove that m =

∏
ab∈σ Xab is the leading

term of some element in Dn,r for every minimal nonface σ of ∆Λ,r−1. Write

σ = {a1b1, a2b2, . . . , arbr},
where a1 < a2 < . . . < ar and b1 < b2 < . . . < br. Let α = {a1, . . . , ar} and
β = {b1, . . . , br}. It suffices to prove that m is maximal among all terms in
Dα,β(Λ). Now, each monomial in Dα,β(Λ) contains one variable from each row
in α and one variable from each column in β. As a consequence, the smallest
variable in any term of Dα,β(Λ) appears in row ar. In particular, the maximal
term of Dα,β(Λ) contains the element Xarbr . Proceeding by induction on r
with Dα\{ar},β\{br}(Λ) in the same manner as in the proof of Lemma 6.1, we
conclude that m is indeed maximal in Dα,β(Λ). �

We may identify any given stack polyomino Λ with the sequence (λ1,
λ2, λ3, . . .) defined by λj = max{i : (i, j) ∈ Λ}. Note that λj is the num-
ber of elements in column j in Λ. The content of Λ is the Ferrers diagram
obtained by arranging the elements λ1, λ2, λ3, . . . in decreasing order.
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Proposition 6.2 (Jonsson [12]). Let Λ be a stack polyomino and let Λ′

be its content. Then ∆Λ,r−1 and ∆Λ′,r−1 are pure complexes of the same
dimension with the same number of maximal faces.

Proposition 6.3 (Herzog and Trung [11]). Let Λ be a Ferrers diagram.
Then I∆Λ,r−1 = in�(DΛ,r).

Theorem 6.4. Let Λ be a stack polyomino. Then I∆Λ,r−1 = in�(DΛ,r).

Proof. Set I := I∆Λ,r−1 and J := in�(DΛ,r).
By Lemma 6.1, we know that I ⊆ J .
By Proposition 6.2, we have that dim(RΛ/I) = dim(RΛ′/I ′), where Λ′ is

the content of Λ and I ′ := I∆Λ′,r−1
. By Proposition 6.3, it follows that

dim(RΛ′/I ′) = dim(RΛ′/ DΛ′,r).

Since RΛ/ DΛ,r and RΛ′/ DΛ′,r are isomorphic, we conclude that this equals

dim(RΛ/ DΛ,r) = dim(RΛ/J);

hence dim(RΛ/I) = dim(RΛ/J).
By Proposition 6.2, we have that e(RΛ/I) = e(RΛ′/I ′). Another applica-

tion of Proposition 6.3 yields that

e(RΛ′/I ′) = e(RΛ′/ DΛ′,r) = e(RΛ/ DΛ,r) = e(RΛ/J).

Summarizing, we deduce that e(RΛ/I) = e(RΛ/J).
Applying Lemma 5.1, we obtain that I = J , and we are done. �

Corollary 6.5. Let Λ and Λ′ be stack polyominoes with the same con-
tent. Then ∆Λ,r−1 and ∆Λ′,r−1 have the same f-vector.

The bijection of Krattenthaler [14] mentioned at the end of Section 5 applies
also to this situation for the special case that Λ is a Ferrers diagram and Λ′ is
the (horizontal) reflection of Λ. In particular, Corollary 6.5 is a consequence
of this bijection for the given special case.
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