Illinois Journal of Mathematics Volume 51, Number 4, Winter 2007, Pages 1349–1362 S 0019-2082

OBATA'S THEOREM FOR KÄHLER MANIFOLDS

G. SANTHANAM

ABSTRACT. It is known that, in a complete Riemannian manifold (M, g), if the Hessian of a real valued function satisfies some suitable conditions, then it restricts the geometry of (M, g). In this paper we give a characterization of a certain class of Kähler manifolds admitting a real valued function u such that the Hessian has two eigenvalues u and $\frac{1+u}{2}$.

1. Introduction

It is known that, in a complete Riemannian manifold (M, g), if the Hessian of a real valued function satisfies some suitable conditions, then we get information about the geometry of the manifold (M, g). In fact, Obata [5] gave a characterization showing that a complete Riemannian manifold of dimension $n \geq 2$ is isometric to the round sphere (S^n, ds^2) of constant sectional curvature 1 if and only if there is a real valued function $u \in C^2(M)$ such that the Hessian of $u, \nabla^2 u$, satisfies the equation $\nabla^2 u = -u \operatorname{Id}$. Also there are other works characterizing some classes of Riemannian manifolds under suitable conditions on the Hessian:

For Kähler manifolds, an analogue of Obata's theorem characterizing the complex projective space \mathbb{CP}^n with constant holomorphic sectional curvature is proved in [6]. In [2], it is shown that compact rank-1 symmetric spaces are those complete Riemannian manifolds (M, g) admitting a real valued function u such that the Hessian of u has at most two eigenvalues -u and $-\frac{1+u}{2}$, under some mild hypothesis on (M, g). See [2], [3] and [6] for details.

In this paper, we give a characterization of a certain class of Kähler manifolds. More precisely, we prove:

THEOREM 1. Let (M, g, J) be a Kähler manifold of dimension 2n. Let $u \in C^2(M)$ be a real valued function with critical points such that

- (1) the Hessian of $u, \nabla^2 u$, has two eigenvalues u and $\frac{u+1}{2}$ and the eigenvalue u is of multiplicity 2, and
- (2) ∇u and $J\nabla u$ are eigenvectors of $\nabla^2 u$ with eigenvalue u.

Received May 6, 2006; received in final form August 17, 2007. 2000 Mathematics Subject Classification. 53C20, 53C22, 53C35.

Then the following holds.

- (1) If the function u has a minimum, then (M,g) is isometric to the complex hyperbolic space (\mathbb{CH}^n, ds^2) of constant holomorphic sectional curvature -1.
- (2) If the function u has a maximum, then there exists a totally geodesic submanifold M₀ of co-dimension 2 such that (M, g) is diffeomorphic to the normal bundle of M₀. Furthermore, the fibre over each point in M₀ is isometric to the simply connected surface (ℍ², ds²) of constant curvature -1.

2. Preliminaries

We refer to [7] for basic definitions and tools used in this paper.

Let (M, g) be a complete Riemannian manifold and $u \in C^2(M)$. We let $X := \frac{\nabla u}{\|\nabla u\|}$ on $\{q \in M : \nabla u(q) \neq 0\}$.

The following two propositions are proved in [2]. For the sake of completeness, we sketch the proof of these results here.

PROPOSITION 2. Let (M, g) be a complete Riemannian manifold and $u \in C^2(M)$. Then the integral curves of X are geodesics if and only if ∇u is an eigenvector of $\nabla^2 u$.

Proof. Let γ be an integral curve of X. Then γ is a geodesic if and only if $\nabla_X X = 0$ along γ . We will now prove that $\nabla_X X = 0$ along γ is equivalent to ∇u being an eigenvector of $\nabla^2 u$. On $\{q \in M : \nabla u(q) \neq 0\}$,

$$\nabla_X X = \frac{1}{\|\nabla u\|} \nabla_X \nabla u + X \left(\frac{1}{\|\nabla u\|}\right) \nabla u$$
$$= \frac{1}{\|\nabla u\|} \nabla_X \nabla u - \frac{X(\|\nabla u\|)}{\|\nabla u\|^2} \nabla u$$
$$= \frac{1}{\|\nabla u\|} \nabla_X \nabla u - \frac{\langle \nabla_X \nabla u, \nabla u \rangle}{\|\nabla u\|^3} \nabla u$$
$$= \frac{1}{\|\nabla u\|} \nabla_X \nabla u - \frac{1}{\|\nabla u\|} \langle \nabla_X \nabla u, X \rangle X$$

Hence $\nabla_X X = 0$ if and only if

$$\frac{1}{\|\nabla u\|} \nabla_X \nabla u = \frac{1}{\|\nabla u\|} \langle \nabla_X \nabla u, X \rangle X.$$

This completes the proof.

PROPOSITION 3. Let (M, g) be a complete Riemannian manifold and $u \in C^2(M)$ be such that the integral curves of X are geodesics. Then u does not have saddle points.

Proof. Let us assume the contrary and arrive at a contradiction.

Let $p \in M$ be a saddle point of the function u. Then $\nabla^2 u(p)$ has both positive and negative eigenvalues. Hence there is an open neighbourhood Wof $p \in M$ such that the flow lines of X have the form of hyperbolas near the point p and in this open set they form a saddle. We may assume that $W = \exp_p(W_1)$, where W_1 is an open neighbourhood of $0 \in T_p M$. We also assume that W is geodesically convex. (See [1] and [4].) Let $E^{us} \subseteq T_p M$ denote the eigensubspace of $\nabla^2 u(p)$ on which $\nabla^2 u(p)$ is negative definite and let $E^s \subseteq T_p M$ denote the eigensubspace of $\nabla^2 u(p)$ on which $\nabla^2 u(p)$ is positive definite. Let $W^{us} := \exp_p(W_1 \cap E^{us})$ and $W^s := \exp_p(W_1 \cap E^s)$. Then the integral curves of X through any point in W^{us} will start from p and diverge near p and the integral curves of X through any point in W^s will converge to p. (See [1].)

Let $\varepsilon > 0$ be such that the closed ball $\overline{B(p, 2\varepsilon)}$ of radius ε and center p is contained in W.

Let $x \in S(p,\varepsilon) \setminus W^s$ and γ_x be the integral curve of the vector field X such that $\gamma_x(0) = x$. Then the geodesic γ_x passes through $B(p, 2\varepsilon)$ and $d(\gamma_x(t), \gamma_x(s)) \leq 4\varepsilon$ for $\gamma_x(t), \gamma_x(s) \in B(p, 2\varepsilon)$. Therefore, for the proof of this proposition, we restrict such geodesics to the interval $[0, 4\varepsilon]$. If $d(x, W^s)$ is small, then the exit point of the geodesic γ_x from $B(p, 2\varepsilon)$ is close to W^{us} .

Now we fix a point $q \in W^s \cap S(p, \varepsilon)$. Let $q_n \in S(p, \varepsilon) \setminus W^s$ be a sequence of points converging to the point q. Let $\gamma_n : [0, 4\varepsilon] \to W$ be the integral curve of X such that $\gamma_n(0) = q_n$. By the local compactness of the unit tangent bundle UM, the sequence $(\gamma_n(0), \gamma'_n(0))$ has a convergent subsequence converging to a point (q, w) in UM. Without loss of generality we assume that the original sequence itself is convergent. Let $\gamma : [0, 4\varepsilon] \to W$ be the limiting geodesic with $\gamma(0) = q$ and $\gamma'(0) = w$. Since the sequence of points q_n converge to the point q in W^s , the exit point of the sequence of geodesics γ_n in $B(p, 2\varepsilon)$ will converge to a point in W^{us} . Hence the limiting geodesic will pass through the point p and it will be broken at p. Since the geodesics γ_n are all minimizing, the geodesic γ is also minimizing. This is a contradiction. Hence the function u cannot have saddle points.

In the following lemma, we describe the function u along the integral curves of X.

LEMMA 4. Let (M, g) be a complete Riemannian manifold and $u \in C^2(M)$ be such that ∇u is an eigenvector of $\nabla^2 u$ with eigenvalue u. Let γ be an integral curve of X. Then there exist constants A_{γ} and B_{γ} such that $u(\gamma(t)) = A_{\gamma}e^t + B_{\gamma}e^{-t}$ for all t in \mathbb{R} .

Proof. Let γ be an integral curve of X. We have seen in Proposition 2 that γ is a geodesic. Since (M, g) is a complete Riemannian manifold, the geodesic γ is defined on all of \mathbb{R} and $\gamma'(t) = X(\gamma(t))$ whenever $\nabla u(\gamma(t)) \neq 0$.

We will show that the function u has at most one critical point along the geodesic γ and there exist constants A_{γ} and B_{γ} such that $u(\gamma(t)) = A_{\gamma}e^{t} + B_{\gamma}e^{-t}$ for all t in \mathbb{R} .

Let $U_{\gamma} := \{t \in \mathbb{R} : \nabla u(\gamma(t)) \neq 0\}$. Then U_{γ} is the largest open subset of \mathbb{R} on which the geodesic γ is defined as an integral curve of the vector field X.

If the function u does not have critical points along the geodesic γ , then $U_{\gamma} = \mathbb{R}$ and

$$(u \circ \gamma)''(t) = \left\langle \nabla_{\gamma'(t)} \nabla u, \gamma'(t) \right\rangle$$
$$= u(\gamma(t))$$

for every t in \mathbb{R} . Therefore there exist constants A_{γ} and B_{γ} such that $u(\gamma(t)) = A_{\gamma}e^{t} + B_{\gamma}e^{-t}$ for all $t \in \mathbb{R}$.

Let us now assume that u has critical points along γ and prove the result. In this case $U_{\gamma} \neq \mathbb{R}$. Let U_1 be a connected component of U_{γ} .

Suppose $U_1 = (a, b)$ for some $a, b \in \mathbb{R}$. First we observe that the points $\gamma(a)$ and $\gamma(b)$ are critical points of the function u. We can show as above that

$$(u \circ \gamma)''(t) = u(\gamma(t))$$

for all $t \in (a, b)$. Therefore there exist constants A_{γ} and B_{γ} such that $u(\gamma(t)) = A_{\gamma}e^{t} + B_{\gamma}e^{-t}$ for all $t \in (a, b)$. Further,

$$u \circ \gamma)'(t) = \langle \nabla u(\gamma(t)), \gamma'(t) \rangle$$
$$= \left\langle \nabla u(\gamma(t)), \frac{\nabla u(\gamma(t))}{\|\nabla u(\gamma(t))\|} \right\rangle$$
$$= \|\nabla u(\gamma(t))\|$$

for every $t \in (a, b)$. Since the points $\gamma(a)$ and $\gamma(b)$ are critical points of the function u, it follows that

$$0 = \|\nabla u(\gamma(a))\|$$

=
$$\lim_{t \to a} \|\nabla u(\gamma(t))\|$$

=
$$\lim_{t \to a} (u \circ \gamma)'(t)$$

=
$$\lim_{t \to a} A_{\gamma} e^{t} - B_{\gamma} e^{-t}$$

=
$$A_{\gamma} e^{a} - B_{\gamma} e^{-a}$$

and by similar arguments $A_{\gamma}e^{b} - B_{\gamma}e^{-b} = 0$. This is possible only if $A_{\gamma} = B_{\gamma} = 0$, a contradiction. This proves that every connected component of U_{γ} is an infinite interval. Hence $U_{1} = (-\infty, a)$ or (b, ∞) for some real numbers a, b in \mathbb{R} .

Since every connected component of U_{γ} is an infinite interval, it follows that either U_{γ} is connected or U_{γ} has two connected components and $U_{\gamma} = (-\infty, a) \cup (b, \infty)$.

Let $U_{\gamma} = (-\infty, a) \cup (b, \infty)$. We claim that a = b. Suppose a < b. This means that $\gamma(t)$ is a critical point of the function u for every point $t \in [a, b]$. Hence $\nabla u(\gamma(t)) = 0$ for all $t \in [a, b]$ and

$$\frac{\partial^2}{\partial t^2} u(\gamma(t)) = \frac{\partial}{\partial t} \left\langle \nabla u(\gamma(t)), \gamma'(t) \right\rangle$$

= 0

for all $t \in [a, b]$. In particular, $(u \circ \gamma)''(a) = 0 = (u \circ \gamma)''(b)$. Since $\nabla u(\gamma(t)) \neq 0$, for t < a, we have that $u(\gamma(t)) = (u \circ \gamma)''(t)$ for t < a. Therefore

$$u(\gamma(a)) = \lim_{t \to a} u(\gamma(t))$$
$$= \lim_{t \to a} (u \circ \gamma)''(t)$$
$$= (u \circ \gamma)''(a)$$
$$= 0.$$

Further, $(u \circ \gamma)'(a) = 0$. Therefore, if $u(\gamma(t)) = A_{\gamma}e^{t} + B_{\gamma}e^{-t}$ for $t \in U_{1}$, we get that $A_{\gamma}e^{a} + B_{\gamma}e^{-a} = 0$ and $A_{\gamma}e^{a} - B_{\gamma}e^{-a} = 0$. This implies that $A_{\gamma} = 0 = B_{\gamma}$, a contradiction.

Hence $U_{\gamma} = (-\infty, a) \cup (a, \infty)$ and $u(\gamma(t)) = A_{\gamma}e^t + B_{\gamma}e^{-t}$ for all $t \in \mathbb{R}$.

If U_{γ} is connected, then $U_{\gamma} = (-\infty, a)$ or (b, ∞) . Using the same arguments as above we can show that this is not possible. This completes the proof. \Box

We will now describe the minimum and maximum of the function u.

PROPOSITION 5. Let (M,g) be a complete Riemannian manifold of dimension n and $u \in C^2(M)$ be such that the Hessian of $u, \nabla^2 u$, has at most two eigenvalues u and $\frac{1+u}{2}$, and ∇u is an eigenvector of $\nabla^2 u$ with eigenvalue u. Let $p \in M$ be a critical point of u. Then the following holds.

- (1) If the multiplicity of the eigenvalue u is n, then the Hessian of u at the point p, $\nabla^2 u(p)$, is non-degenerate.
- (2) If the multiplicity of the eigenvalue u is not equal to n, then the Hessian $\nabla^2 u(p)$ is non-degenerate iff the point p is a minimum for the function u.

Proof. Let $p \in M$ be a critical point of u.

If the multiplicity of the eigenvalue u is n, then $\nabla^2 u = u$ Id. In this case, if u has a critical point, it has been proved in [5] and [3] that $\nabla^2 u(p)$ is nondegenerate. Further, it has also been shown that p is the only critical point of the function u and $u(q) = u(p) \cosh d(p,q)$ for all $q \in M$. Hence we omit the proof here.

We will now prove the second part of the proposition.

Let p be a critical point of the function u such that $\nabla^2 u(p)$ is non-degenerate. We will show that $\nabla^2 u(p)$ is positive definite.

Since $\nabla^2 u(p)$ is non-degenerate, there exists an open neighbourhood W of p such that p is the only critical point of the function u in W. We may assume that the open neighbourhood W is geodesically convex.

Since u does not have saddle points, the point p must either be a local maximum or a local minimum. Hence all the integral curves γ of X passing through the points in $W \setminus \{p\}$ must either start from p and diverge near p- if p is a maximum or converge to p- if p is a minimum in W.

Since W is geodesically convex, given a point $q \neq p \in W$, there exists a unique geodesic γ_{pq} passing through p and q. On the other hand, given a point $q \neq p$ in W, there is a unique integral curve of X passing through q which must either converge to the point p or start from the point p. Therefore the geodesic γ_{pq} must be tangential to the vector field X at q. This means that every vector $E \in T_p M$ is an eigenvector of $\nabla^2 u(p)$. This proves that $u(p) = \frac{1+u(p)}{2}$. Hence u(p) = 1 and $\nabla^2 u(p)$ is positive definite. Thus we have shown that the point p is a local minimum for the function u.

Conversely assume that the point p is a local minimum for the function u. Hence the Hessian of u at p, $\nabla^2 u(p)$, is positive semi-definite. Since the eigenvalues of $\nabla^2 u(p)$ are u(p) and $\frac{1+u(p)}{2}$, it is enough to show that u(p) > 0. Let

$$E_{\frac{1+u(p)}{2}} := \{E \in T_p M \colon \nabla^2 u(p)(E) = \frac{1+u(p)}{2}E\}.$$

Since $u(p) \geq 0$, the Hessian $\nabla^2 u(p)$ is positive definite on $E_{\frac{1+u(p)}{2}}$. Therefore there exists an open neighbourhood W_1 of 0 in T_pM such that on the set $W^s := \exp_p(W_1 \cap E_{\frac{1+u(p)}{2}})$, the point p is the only critical point of the function u and the integral curves of the vector field X passing through W^s will all converge to the point p. Therefore, for every unit vector $v \in E_{\frac{1+u(p)}{2}}$, there exists an $\varepsilon > 0$ such that the geodesic $\gamma_v(t) := \exp_p(tv)$ is in W^s and it is an integral curve of X in $W^s \setminus \{p\}$. Since $\gamma(0) = p$ is the only critical point of the function u along γ , we can write the function u along γ as $u(\gamma(t)) = A_\gamma e^t + B_\gamma e^{-t}$ for $0 < |t| < \varepsilon$. Since $\nabla u(\gamma(0)) = 0$, we see that $0 = \|\nabla u(\gamma(0))\| = A_\gamma - B_\gamma$, i.e., $A_\gamma = B_\gamma$. Therefore $u(\gamma(t)) = 2A_\gamma \cosh t$. Now we use the fact that $\nabla u \neq 0$ in $W^s \setminus \{p\}$ to conclude that $A_\gamma \neq 0$. This shows that u(p) > 0 and hence $\nabla^2 u(p)$ is non-degenerate.

COROLLARY 6. Let (M,g) and u be as in Proposition 5. Then a critical point p of the function u is a local maximum iff $\nabla^2 u(p)$ is degenerate. Furthermore, in this case the value of the function at the point p is -1, i.e., u(p) = -1.

Proof. It follows from Proposition 5 that p is a maximum for the function iff $\nabla^2 u(p)$ is degenerate and negative semi-definite. Therefore $u(p) \leq 0$ and $\frac{1+u(p)}{2} \leq 0$. But, if u(p) = 0, then we get that $\frac{1+u(p)}{2} > 0$, a contradiction.

On the other hand, if u(p) < 0 and $\frac{1+u(p)}{2} < 0$, then we get that $\nabla^2 u(p)$ is non-degenerate, a contradiction. Hence u(p) = -1.

Our proof of the main result depends on the following two theorems.

THEOREM 7. Let (M, g) and u be as in Proposition 5. Let p be a minimum for the function u. Then

(1) $u(q) = u(p) \cosh d(p,q)$ for every point $q \in M$, and

(2) $\exp_p: T_pM \to M$ is a diffeomorphism.

THEOREM 8. Let (M, g) and u be as in Proposition 5. Assume that $M_0 := \{q \in M : u(q) = \max_{p \in M} u(p)\}$ is non-empty. Then M_0 is a totally geodesic submanifold of M.

3. Proof of Theorems 7 and 8

Proof of Theorem 7. Let p be a point of minimum for the function u. Then it follows from Proposition 5 that $\nabla^2 u(p)$ is non-degenerate and u(p) is the only eigenvalue of $\nabla^2 u(p)$. If $\nabla^2 u$ has two eigenvalues u and $\frac{1+u}{2}$, then u(p) =1. If the Hessian has only one eigenvalue, we may assume that u(p) = 1, by dividing the function u by a suitable constant.

Let γ be a geodesic starting at the point p. We have shown, in Proposition 5, that γ is an integral curve of X on $U_{\gamma} = \mathbb{R} \setminus \{0\}$ and $u(\gamma(t)) = u(p) \cosh t$ for all $t \in \mathbb{R}$.

Let $q \neq p \in M$. Then there is a length minimizing geodesic joining p and q. We have shown in Proposition 5 that such a geodesic must be an integral curve of the vector field X and further $u(q) = u(p) \cosh d(p,q)$. Therefore $\nabla u(q) = u(p) \sinh d(p,q) \nabla d(p,q) \neq 0$, where $\nabla d(p,.)$ denotes the radial vector field starting at p. This means that the point q is an ordinary point for the function u and hence there is a unique integral curve γ of the vector field X passing through the point q. This proves that given a point $q \neq p$, there is a unique geodesic γ_q such that $\gamma_q(0) = p$ and $d(p, \gamma_q(t)) = |t|$ for all $t \in \mathbb{R}$. Thus we have shown that the geodesics starting at p are rays. Hence the map $\exp_p: T_pM \to M$ is a diffeomorphism. \Box

Using Theorem 7, we prove the following theorem.

THEOREM 9. Let (M, g), u and $p \in M$ be as in Theorem 7. Then the following holds.

- (1) If the multiplicity of the eigenvalue u is 1, then (M, g) is isometric to the simply connected hyperbolic space (\mathbb{H}^n, ds^2) of constant curvature -1/4.
- (2) If the multiplicity of the eigenvalue u is n, then (M,g) is isometric to the simply connected hyperbolic space (\mathbb{H}^n, ds^2) of curvature -1.

Proof. We give a proof for the first claim. The proof is similar to the proof of Theorem 1(2) of [2].

Since the multiplicity of the eigenvalue u is 1, every vector $E \perp \nabla u$ is an eigenvector of $\nabla^2 u$ with eigenvalue $\frac{1+u}{2}$. Therefore the vector subbundle $E_{\frac{1+u}{2}} := \{E \in TM : \nabla^2 u(E) = \frac{1+u}{2}E\}$ is parallel along the integral curves of X.

Let γ be an integral curve of X. It follows from Theorem 7 that the geodesic γ passes through the point p. Hence we may assume that $\gamma(0) = p$. Therefore $U_{\gamma} = (-\infty, 0) \cup (0, \infty)$.

Let W denote the Jacobi field describing the variation of the geodesic γ such that W(0) = 0 and $W'(0) = E \in \{E \in TM : \nabla^2 u(E) = \frac{1+u}{2}E\}$ of unit norm. Since $[W, \gamma'] = 0$ along γ , it follows that $\nabla_X W = \nabla_W X$ whenever $\nabla u(\gamma(t)) \neq 0$. Using the fact $u(\gamma(t)) = \cosh t$ along the geodesic γ , we see that $\nabla_X W = W'$ along the geodesic γ . Therefore, for every $t \in U_{\gamma}$,

$$W'(t) = \frac{1}{\|\nabla u(\gamma(t))\|} \nabla_W \nabla u$$
$$= \frac{1 + u(\gamma(t))}{2} \frac{1}{\|\nabla u(\gamma(t))\|} W(t)$$
$$= \frac{1}{2} \frac{\cosh \frac{t}{2}}{\sinh \frac{t}{2}} W(t)$$

and

$$\frac{\langle W'(t), W(t) \rangle}{\|W(t)\|^2} = \frac{1}{2} \frac{\cosh \frac{t}{2}}{\sinh \frac{t}{2}}.$$

Therefore

$$\frac{d}{dt}\log\left(\frac{\|W\|}{\sinh\frac{t}{2}}\right) = 0$$

for all $t \in \mathbb{R}$. Hence $\frac{\|W\|}{\sinh \frac{t}{2}} = \frac{\|W\|}{\sinh \frac{t}{2}}|_{t=0} = 2$. Thus $\|W(t)\| = 2\sinh \frac{t}{2}$ along the geodesic γ . Since $E_{\frac{1+u}{2}}$ is parallel along the integral curves of the vector field X, we can write $W(t) = 2\sinh \frac{t}{2}E(t)$, where E is a unit vector field parallel along γ . Therefore

$$R(W, \gamma')\gamma' = -W''$$
$$= -\frac{1}{4}W$$

along the geodesic γ . Hence the sectional curvature $\langle R(E,X)X,E\rangle = -1/4$ for every unit vector E in $E_{\frac{1+u}{2}}$ on $M \setminus \{p\}$.

We are now ready to prove that (M, g) is isometric to (\mathbb{H}^n, ds^2) of constant curvature -1/4.

We choose a point o in \mathbb{H}^n and fix an isometry $i: T_p M \to T_o \mathbb{H}^n$. We define a map $\Phi: M \to \mathbb{H}^n$ by $\Phi(q) := \exp_o \circ i \circ \exp_p^{-1}(q)$. Then Φ maps the geodesics

 γ starting at p onto the geodesics $\overline{\gamma}$ starting at o in \mathbb{H}^n and it also maps the geodesic spheres of radius r around the point p bijectively onto the geodesic spheres of radius r around o in \mathbb{H}^n for all r > 0. To complete the proof, we need only to show that the derivative $d\Phi$ of the map Φ is norm preserving. But this follows very easily from the observation that any Jacobi field W describing the variation of any geodesic γ starting at p such that W(0) = 0 and W'(0) a unit vector in $E_{\frac{1+u}{2}}$ is of the form $W(t) = 2 \sinh \frac{t}{2}E(t)$, where E(t) is a vector field parallel along the geodesic γ and its image $d\Phi(W(t))$ is the normal Jacobi field describing the variation of the geodesic $\overline{\gamma} = \Phi(\gamma)$ starting at o in \mathbb{H}^n .

The proof of the second part of the theorem is similar. We give a brief sketch of the proof. In this case, we first observe that $\nabla^2 u = u$ Id. Let γ be a geodesic starting at the point p. By a similar computation as above, we conclude that a Jacobi field W describing the variation of the geodesic γ such that W(0) and $W'(0) \perp \gamma'(0)$ is of the form $W(t) = \sinh t E(t)$, where E is a parallel vector field along γ . Now the rest of the proof is same as above. (See also [3].)

LEMMA 10. Let (M, g) and u be as in Theorem 8. Assume that $M_0 \neq \emptyset$. Let γ be an integral curve of the vector field X. Then

(1) $U_{\gamma} = (-\infty, c) \cup (c, \infty)$ for some $c \in \mathbb{R}$ and (2) $u(\gamma(c)) = -1$.

Proof. We have shown in Corollary 6 that $M_0 := \{q \in M : u(q) = -1\}$. Therefore $u(p) \leq -1$ for every point p in M.

Let γ be an integral curve of X. If we show that $U_{\gamma} \neq \mathbb{R}$, then we are through. Assume on the contrary that $U_{\gamma} = \mathbb{R}$ and let A_{γ} and B_{γ} be two constants such that $u(\gamma(t)) = A_{\gamma}e^t + B_{\gamma}e^{-t}$ for all $t \in \mathbb{R}$.

Assume that A_{γ} and B_{γ} are of the same sign. Then there exists a unique $t_0 \in \mathbb{R}$ such that $A_{\gamma}e^{t_0} - B_{\gamma}e^{-t_0} = 0$. Therefore $\nabla u(\gamma(t_0)) = 0$, a contradiction.

Let us now assume that $A_{\gamma} > 0$ and $B_{\gamma} \leq 0$. Then $u(\gamma(t)) \to \infty$ as $t \to +\infty$, a contradiction to the fact that max u = -1. Similarly, if $A_{\gamma} \leq 0$ and $B_{\gamma} > 0$, then $u(\gamma(t)) \to \infty$ as $t \to -\infty$, a contradiction. Hence $U_{\gamma} \neq \mathbb{R}$ and the proof is complete.

Proof of Theorem 8. If $\nabla^2 u$ has only one eigenvalue u, then, using exactly the same arguments as in the proof of Proposition 5, we can show that every point $q \in M_0$ is a non-degenerate critical point of u and $u(p) = u(q) \cosh d(q, p)$ for every point p in M. Thus q is the unique maximum for the function u. Hence $M_0 = \{q\}$ and it is totally geodesic in M.

Let us now assume that $\nabla^2 u$ has two eigenvalues u and $\frac{1+u}{2}$ and prove the result.

Let $q \in M \setminus M_0$ and γ_q be the integral curve of X passing through the point q. From Lemma 10, it follows that $U_{\gamma_q} = (-\infty, c) \cup (c, \infty)$ for some $c \in \mathbb{R}$ and $\gamma_q(c) \in M_0$. This shows that the map $\Phi : M \to M_0$ defined by

$$\Phi(q) := \begin{cases} \exp_q(\cosh^{-1}(-u(q))X(q)) & \text{if } q \notin M_0 \\ q & \text{if } q \in M_0 \end{cases}$$

is onto. This map is also continuous. Hence M_0 , being the continuous image of the connected set M, is connected.

Since $\max u = -1$, the Hessian of u at p, $\nabla^2 u(p)$, is -Id on the vector subspace

$$E_{u(p)} := \{ E \in T_p M \colon \nabla^2 u(p)(E) = u(p)E \}$$

for every point $p \in M_0$ and the vector subspace

$$E_{\frac{1+u(p)}{2}} = \{E \in T_p M \colon \nabla^2 u(p)(E) = \frac{1+u(p)}{2}E\}$$

is the kernel of $\nabla^2 u(p)$.

Since the Hessian of u, $\nabla^2 u$, has at most two eigenvalues -1 and 0 on M_0 , the rank of $\nabla^2 u$ is constant on M_0 . If k is the rank of $\nabla^2 u$ on M_0 , then M_0 is a (n-k)-dimensional submanifold of M and the normal bundle of M_0 is spanned by the vector field X as we move towards M_0 .

We will now show that M_0 is a totally geodesic submanifold of M.

Let $q \in M_0$ and $v \in T_q M_0$. We extend v to a vector field V in a neighbourhood of $q \in M$. We write $V = V_1 + V_2$, where $V_1 \in E_u$ with $V_1(q) = 0$ and $V_2 \in E_{\frac{1+u}{2}}$ such that $V_2(q) = v$. Then

$$\nabla_V X = \nabla_{V_1+V_2} X$$

= $\nabla_{V_1} X + \nabla_{V_2} X$
= $\frac{u}{\|\nabla u\|} V_1 + \frac{1+u}{2} \frac{1}{\|\nabla u\|} V_2$

Since u(q) = -1 and $V_1(q) = 0$, we see that

$$\langle \nabla_V X, V \rangle(q) = \frac{u(q)}{\|\nabla u\|} \|V_1(q)\|^2 + \frac{1+u(q)}{2} \frac{1}{\|\nabla u\|} \|V_2(q)\|^2$$

= 0.

Hence M_0 is a totally geodesic submanifold in M.

4. Proof of Theorem 1

Let

$$E_u := \{ E \in TM : \nabla^2 u(E) = uE \}.$$

Then E_u is a subbundle of TM and it is spanned by the vector fields ∇u and $J\nabla u$ whenever $\nabla u \neq 0$. Similarly, let

$$E_{\frac{1+u}{2}} := \{ E \in TM : \nabla^2 u(E) = \frac{1+u}{2}E \}.$$

Then $E_{\frac{1+u}{2}}$ is also a subbundle of TM and it is orthogonal to E_u .

Proof of Theorem 1(i). Let p be a point of minimum for the function u. We have proved in Theorem 7 that this point is unique and $\exp_p: T_p M \to M$ is a diffeomorphism. Therefore $\{q \in M : \nabla u(q) \neq 0\} = M \setminus \{p\}.$

For every $v \in T_p M$, we let $\mathbb{R}v$ denote the one dimensional vector subspace spanned by the vector v. Then $\exp_p : \mathbb{R}v \bigoplus \mathbb{R}w \to M$ is a diffeomorphism onto its image for any two linearly independent vectors v and $w \in T_p M$. We also denote by \mathbb{H}^2_v the image of $\mathbb{R}v \bigoplus \mathbb{R}Jv$ under \exp_p for every non-zero vector $v \in T_p M$.

We will now show that the sectional curvature of \mathbb{H}^2_v is -1.

As first step we will prove that, for every point $q \in \mathbb{H}^2_v$, the tangent space $T_q \mathbb{H}^2_v = \mathbb{R} \nabla u(q) \bigoplus \mathbb{R} J \nabla u(q) = E_{u(q)}$. We will prove this by showing that, if γ is a unit speed geodesic starting at p and W is the Jacobi field describing the variation of the geodesic γ such that W(0) = 0 and $W'(0) = J\gamma'(0)$, then $W(t) = J \nabla u(\gamma(t))$ for $t \in U_{\gamma} = \mathbb{R} \setminus \{0\}$.

Since the manifold (M, g, J) is Kähler, the complex structure J is parallel. Therefore $\nabla_{\nabla u} J \nabla u = J \nabla_{\nabla u} \nabla u = u J \nabla u$ on $M \setminus \{p\}$. Further, since $J \nabla u$ is also an eigenvector of $\nabla^2 u$ with eigenvalue u, we see that $\nabla_{J \nabla u} \nabla u = u J \nabla u =$ $\nabla_{\nabla u} J \nabla u$. Therefore $[J \nabla u, \nabla u] = 0$ on $M \setminus \{p\}$. If $q \neq p$, then

$$R(J\nabla u(q), \nabla u(q))\nabla u(q) = \nabla_{J\nabla u(q)}\nabla_{\nabla u(q)}\nabla u - \nabla_{\nabla u(q)}\nabla_{J\nabla u(q)}\nabla u$$
$$= \nabla_{J\nabla u(q)}(u\nabla u) - \nabla_{\nabla u(q)}(uJ\nabla u)$$
$$= -\|\nabla u(q)\|^2 J\nabla u(q).$$

Let γ be a unit speed geodesic starting at the point p. We know that $\gamma'(t) = \frac{\nabla u(\gamma(t))}{\|\nabla u(\gamma(t))\|}$ on $U_{\gamma} = \mathbb{R} \setminus \{0\}$. Therefore, from what we have shown above $R(J\nabla u(\gamma(t)), \gamma'(t))\gamma'(t) = -J\nabla u(\gamma(t))$ on U_{γ} . On the other hand, since J is parallel and ∇u is an eigenvector of $\nabla^2 u$ with eigenvalue u, we see that $\frac{D^2}{dt^2}J\nabla u(\gamma(t)) = J\nabla u(\gamma(t))$ on U_{γ} . Hence $\frac{D^2}{dt^2}J\nabla u + R(J\nabla u, \gamma')\gamma' = 0$ along the geodesic γ . Thus we have shown that the vector field $W(t) := J\nabla u(\gamma(t))$ is the Jacobi field describing the variation of the geodesic γ such that W(0) = 0 and $W'(0) = J\gamma'(0)$. Therefore $T_{\gamma(t)}\mathbb{H}_v^2 = \mathrm{Span}\{\gamma'(t), J\gamma'(t)\}$ for every $t \neq 0$. This proves that $E_u|_{\mathbb{H}_v^2}$ is the tangent bundle of $\mathbb{H}_v^2 \setminus \{p\}$.

Since $\nabla_{\nabla u} J \nabla u = J \nabla_{\nabla u} \nabla u = u J \nabla u = \nabla_{J \nabla u} \nabla u$ on $M \setminus \{p\}$, it follows that the submanifold \mathbb{H}^2_v is also totally geodesic in M. Therefore the sectional curvature $K_M(\nabla u, J \nabla u)(q) = K_{\mathbb{H}^2_v}(q)$ at all points $q \neq p \in \mathbb{H}^2_v$.

We have already shown that

$$R(J\nabla u, \nabla u)\nabla u = -\|\nabla u\|^2 J\nabla u$$

in $\mathbb{H}_v^2 \setminus \{p\}$. Hence the sectional curvature $K_{\mathbb{H}_v^2}(q) = -1$ for all points $q \in \mathbb{H}_v^2 \setminus \{p\}$. Since the sectional curvature is a continuous function and equal to -1 on $\mathbb{H}_v^2 \setminus \{p\}$, it follows that $K_{\mathbb{H}_v^2} \equiv -1$. This proves that \mathbb{H}_v^2 is isometric to the simply connected surface \mathbb{H}^2 of constant curvature -1.

Since \mathbb{H}_v^2 is totally geodesic for every v in T_pM , the subbundle $E_u \mid_{\mathbb{H}_v^2}$, being the tangent bundle of \mathbb{H}_v^2 , is parallel along the integral curves γ of the vector field X on $M \setminus \{p\}$. Therefore the subbundle $E_{\frac{1+u}{2}}$, being the orthogonal complement of E_u , is also parallel along the integral curves γ of X on $M \setminus \{p\}$. Now an easy computation shows that $E_{\frac{1+u}{2}}$ is also an eigensubbundle of $R(\cdot, X)X$ with eigenvalue -1/4 on $M \setminus \{p\}$. This shows that, if W is a Jacobi field along γ describing the variation of γ such that W(0) = 0 and $W'(0) \in E_{\frac{1+u}{2}}$, then $W(t) = 2\sinh\frac{t}{2}E(t)$, where E(t) is a vector field parallel along γ such that $E(t) \in E_{\frac{1+u}{2}}$.

Let $w, v \in T_p M$ and $w \perp v, Jv$. Then the map $\exp_p : \mathbb{R} v \bigoplus \mathbb{R} w \to M$ is a diffeomorphism onto its image. We will also denote this image by $\mathbb{H}^2_{v,w}$. Then it follows from what we have done in the paragraph above that the sectional curvature of $\mathbb{H}^2_{v,w}$ is -1/4.

We will now show that (M, g, J) is isometric to (\mathbb{CH}^n, ds^2) , the complex hyperbolic space of constant holomorphic sectional curvature -1.

Let us fix a point $o \in (\mathbb{C}\mathbb{H}^n, ds^2)$ and an unitary isometry $I: T_pM \to T_o\mathbb{C}\mathbb{H}^n$. Let

$$\Phi: M \to \mathbb{C}\mathbb{H}^n$$

be the map defined by

$$\Phi(q) := \exp_{q} \circ I \circ \exp_{p}^{-1}(q).$$

Then for any geodesic γ starting at p, the image curve $\overline{\gamma} := \Phi(\gamma)$ is a geodesic staring at the point o in \mathbb{CH}^n . To complete the proof of the theorem, we only have to show that $d\Phi$ preserves the lengths of the Jacobi fields along the geodesics γ starting at p.

Before we start with the proof, we recall a few facts about the Jacobi fields on \mathbb{CH}^n .

Let us denote by \overline{R} the Riemannian curvature tensor of \mathbb{CH}^n . Let σ be a geodesic in \mathbb{CH}^n and W(t) be a Jacobi field along σ such that W(0) = 0 and ||W'(0)|| = 1. Then

- (1) $W(t) = \sinh t E(t)$, where E(t) is a parallel vector field along σ and $E(t) \in E_{-1} := \{ w \in T \mathbb{C} \mathbb{H}^n : \overline{R}(w, \sigma') \sigma' = -w \}$, if $W'(0) \in E_{-1}$, and
- (2) $W(t) = 2 \sinh \frac{t}{2} E(t)$, where E(t) is a parallel vector field along σ and $E(t) \in E_{-1/4} := \{ w \in T \mathbb{C} \mathbb{H}^n : \overline{R}(w, \sigma') \sigma' = -\frac{1}{4} \}$ if $W'(0) \in E_{-1/4}$.

Let γ be a geodesic starting at the point p in M. Let $\gamma'(0) = v$ and E(t) be a vector field parallel along γ such that $E(t) \in E_u$. Since the vector field $W(t) = \sinh t E(t)$ is a Jacobi field along γ , it follows that $E(t) = \frac{1}{\sinh t} d(\exp_p)_{tv}(E(0))$ and $d\Phi_{\gamma(t)}$ maps $d(\exp_p)_{tv}(E(0))$ to $d(\exp_p)_{tI(v)}(I(E(0)))$. Using the fact that the isometry I is unitary, we conclude that the vector $d(\exp_p)_{tI(v)}(I(E(0))) \in E_{-1}$. This proves that $d(\exp_p)_{tI(v)}(I(E(0))) = \frac{\sinh t}{t}I(E(0))$. Hence $d\Phi$ is norm preserving on E_u .

By similar arguments we can show that $d\Phi$ is an isometry on $E_{\frac{1+u}{2}}$. Hence the map $\Phi: M \to \mathbb{C}\mathbb{H}^n$ is an isometry. \Box

Proof of Theorem 1(ii). It follows from Theorem 8 that M_0 is a totally geodesic submanifold of M of dimension n - k, where k is the rank of the Hessian $\nabla^2 u$ on M_0 .

Using the fact that J is parallel, we see that, if E is an eigenvector of $\nabla^2 u$, then JE is also an eigenvector of $\nabla^2 u$ with the same eigenvalue. Since the multiplicity of the eigenvalue u is 2, it follows that M_0 is a co-dimension two submanifold of M.

Let $q \in M_0$ and $N_q(M_0) := \{w \in T_qM : w \perp T_qM_0\}$ the normal space to M_0 at the point q. Then $N_q(M_0) = \{w \in T_qM_0 : \nabla^2 u(q)(w) = -w\}$ is of dimension 2. It is also a complex vector subspace. For every vector $w \in N_qM_0$, the geodesic γ_w such that $\gamma'_w(0) = w$ is along the direction of ∇u and hence such geodesics are rays starting from q. Therefore $\exp_q : N_q(M_0) \to M$ is a diffeomorphism onto its image. We have shown in Lemma 10 that, if p is a point in M and γ_p an integral curve of X passing through p, then the geodesic γ_p meets M_0 at a unique point q. Hence the normal exponential map $\exp : N(M_0) \to M$ is a diffeomorphism onto M.

For every point $q \in M_0$, we let $\mathbb{H}_q^2 := \exp_q(N_q)$. Then an argument exactly same as in the proof of Theorem 1(i) shows that \mathbb{H}_q^2 is isometric to (\mathbb{H}^2, ds^2) of constant curvature -1. This completes the proof of Theorem 1.

5. Concluding Remarks

In the statement of Theorem 1, if we assume that $\frac{u-1}{2}$ as an eigenvalue of $\nabla^2 u$ instead of $\frac{1+u}{2}$, then we can conclude the following:

- (1) If the function u has a maximum, then M is isometric to \mathbb{CH}^n .
- (2) If the function u has a minimum, then there exists a totally geodesic submanifold $M_0 := \{p \in M : u(p) = \min u\}$ of M such that M is diffeomorphic to the normal bundle $N(M_0)$ of M. Further, the fiber over each point is isometric to the simply connected surface (\mathbb{H}^2, ds^2) of constant curvature -1.

The proof is verbatim same as in the proof of Theorem 1 with the words maxima and the minima interchanged.

Acknowledgements. We thank the referee for several comments which helped us in our presentation.

References

- V. I. Arnold, Ordinary differential equations, Springer Textbook, Springer-Verlag, Berlin, 1992, Translated from the third Russian edition by Roger Cooke. MR 1162307 (93b:34001)
- [2] A. Ranjan and G. Santhanam, A generalization of Obata's theorem, J. Geom. Anal. 7 (1997), 357–375. MR 1674796 (2000c:53036)
- M. Kanai, On a differential equation characterizing a Riemannian structure of a manifold, Tokyo J. Math. 6 (1983), 143–151. MR 707845 (85c:58103)
- [4] J. Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. MR 0163331 (29 #634)
- [5] M. Obata, Certain conditions for a Riemannian manifold to be iosometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340. MR 0142086 (25 #5479)
- [6] R. Molzon and K. Pinney Mortensen, A characterization of complex projective space up to biholomorphic isometry, J. Geom. Anal. 7 (1997), 611–621. MR 1669219 (2000d:32042)
- [7] P. Petersen, *Riemannian geometry*, Graduate Texts in Mathematics, vol. 171, Springer-Verlag, New York, 1998. MR 1480173 (98m:53001)

G. SANTHANAM, DEPARTMENT OF MATHEMATICS AND STATISTICS, INDIAN INSTITUTE OF TECHNOLOGY, KANPUR-208016, INDIA

E-mail address: santhana@iitk.ac.in