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OBATA’S THEOREM FOR KÄHLER MANIFOLDS

G. SANTHANAM

Abstract. It is known that, in a complete Riemannian manifold (M, g),
if the Hessian of a real valued function satisfies some suitable conditions,
then it restricts the geometry of (M, g). In this paper we give a charac-
terization of a certain class of Kähler manifolds admitting a real valued
function u such that the Hessian has two eigenvalues u and 1+u

2
.

1. Introduction

It is known that, in a complete Riemannian manifold (M, g), if the Hes-
sian of a real valued function satisfies some suitable conditions, then we get
information about the geometry of the manifold (M, g). In fact, Obata [5]
gave a characterization showing that a complete Riemannian manifold of di-
mension n ≥ 2 is isometric to the round sphere (Sn, ds2) of constant sectional
curvature 1 if and only if there is a real valued function u ∈ C2(M) such
that the Hessian of u, ∇2u, satisfies the equation ∇2u = −u Id. Also there
are other works characterizing some classes of Riemannian manifolds under
suitable conditions on the Hessian:

For Kähler manifolds, an analogue of Obata’s theorem characterizing the
complex projective space CPn with constant holomorphic sectional curvature
is proved in [6]. In [2], it is shown that compact rank-1 symmetric spaces are
those complete Riemannian manifolds (M, g) admitting a real valued function
u such that the Hessian of u has at most two eigenvalues −u and − 1+u

2 , under
some mild hypothesis on (M, g). See [2], [3] and [6] for details.

In this paper, we give a characterization of a certain class of Kähler mani-
folds. More precisely, we prove:

Theorem 1. Let (M, g, J) be a Kähler manifold of dimension 2n. Let
u ∈ C2(M) be a real valued function with critical points such that

(1) the Hessian of u, ∇2u, has two eigenvalues u and u+1
2 and the eigen-

value u is of multiplicity 2, and
(2) ∇u and J∇u are eigenvectors of ∇2u with eigenvalue u.
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Then the following holds.
(1) If the function u has a minimum, then (M, g) is isometric to the

complex hyperbolic space (CHn, ds2) of constant holomorphic sectional
curvature −1.

(2) If the function u has a maximum, then there exists a totally geodesic
submanifold M0 of co-dimension 2 such that (M, g) is diffeomorphic
to the normal bundle of M0. Furthermore, the fibre over each point in
M0 is isometric to the simply connected surface (H2, ds2) of constant
curvature −1.

2. Preliminaries

We refer to [7] for basic definitions and tools used in this paper.
Let (M, g) be a complete Riemannian manifold and u ∈ C2(M). We let

X := ∇u
‖∇u‖ on {q ∈ M : ∇u(q) 6= 0}.

The following two propositions are proved in [2]. For the sake of complete-
ness, we sketch the proof of these results here.

Proposition 2. Let (M, g) be a complete Riemannian manifold and u ∈
C2(M). Then the integral curves of X are geodesics if and only if ∇u is an
eigenvector of ∇2u.

Proof. Let γ be an integral curve of X. Then γ is a geodesic if and only if
∇XX = 0 along γ. We will now prove that ∇XX = 0 along γ is equivalent
to ∇u being an eigenvector of ∇2u. On {q ∈ M : ∇u(q) 6= 0},

∇XX =
1

‖∇u‖
∇X∇u + X

(
1

‖∇u‖

)
∇u

=
1

‖∇u‖
∇X∇u− X(‖∇u‖)

‖∇u‖2
∇u

=
1

‖∇u‖
∇X∇u− 〈∇X∇u,∇u〉

‖∇u‖3
∇u

=
1

‖∇u‖
∇X∇u− 1

‖∇u‖
〈∇X∇u, X〉X.

Hence ∇XX = 0 if and only if

1
‖∇u‖

∇X∇u =
1

‖∇u‖
〈∇X∇u, X〉X.

This completes the proof. �

Proposition 3. Let (M, g) be a complete Riemannian manifold and u ∈
C2(M) be such that the integral curves of X are geodesics. Then u does not
have saddle points.
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Proof. Let us assume the contrary and arrive at a contradiction.
Let p ∈ M be a saddle point of the function u. Then ∇2u(p) has both

positive and negative eigenvalues. Hence there is an open neighbourhood W
of p ∈ M such that the flow lines of X have the form of hyperbolas near
the point p and in this open set they form a saddle. We may assume that
W = expp(W1), where W1 is an open neighbourhood of 0 ∈ TpM . We also
assume that W is geodesically convex. (See [1] and [4].) Let Eus ⊆ TpM
denote the eigensubspace of ∇2u(p) on which ∇2u(p) is negative definite and
let Es ⊆ TpM denote the eigensubspace of ∇2u(p) on which ∇2u(p) is positive
definite. Let Wus := expp(W1 ∩ Eus) and W s := expp(W1 ∩ Es). Then the
integral curves of X through any point in Wus will start from p and diverge
near p and the integral curves of X through any point in W s will converge to
p. (See [1].)

Let ε > 0 be such that the closed ball B(p, 2ε) of radius ε and center p is
contained in W .

Let x ∈ S(p, ε) \ W s and γx be the integral curve of the vector field X
such that γx(0) = x. Then the geodesic γx passes through B(p, 2ε) and
d(γx(t), γx(s)) ≤ 4ε for γx(t), γx(s) ∈ B(p, 2ε). Therefore, for the proof of
this proposition, we restrict such geodesics to the interval [0, 4ε]. If d(x,W s)
is small, then the exit point of the geodesic γx from B(p, 2ε) is close to Wus.

Now we fix a point q ∈ W s∩S(p, ε). Let qn ∈ S(p, ε)\W s be a sequence of
points converging to the point q. Let γn : [0, 4ε] → W be the integral curve of
X such that γn(0) = qn. By the local compactness of the unit tangent bundle
UM , the sequence (γn(0), γ′n(0)) has a convergent subsequence converging to
a point (q, w) in UM . Without loss of generality we assume that the original
sequence itself is convergent. Let γ : [0, 4ε] → W be the limiting geodesic
with γ(0) = q and γ′(0) = w. Since the sequence of points qn converge to the
point q in W s, the exit point of the sequence of geodesics γn in B(p, 2ε) will
converge to a point in Wus. Hence the limiting geodesic will pass through the
point p and it will be broken at p. Since the geodesics γn are all minimizing,
the geodesic γ is also minimizing. This is a contradiction. Hence the function
u cannot have saddle points. �

In the following lemma, we describe the function u along the integral curves
of X.

Lemma 4. Let (M, g) be a complete Riemannian manifold and u ∈ C2(M)
be such that ∇u is an eigenvector of ∇2u with eigenvalue u. Let γ be an
integral curve of X. Then there exist constants Aγ and Bγ such that u(γ(t)) =
Aγet + Bγe−t for all t in R.

Proof. Let γ be an integral curve of X. We have seen in Proposition 2 that
γ is a geodesic. Since (M, g) is a complete Riemannian manifold, the geodesic
γ is defined on all of R and γ′(t) = X(γ(t)) whenever ∇u(γ(t)) 6= 0.
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We will show that the function u has at most one critical point along
the geodesic γ and there exist constants Aγ and Bγ such that u(γ(t)) =
Aγet + Bγe−t for all t in R.

Let Uγ := {t ∈ R : ∇u(γ(t)) 6= 0}. Then Uγ is the largest open subset of R
on which the geodesic γ is defined as an integral curve of the vector field X.

If the function u does not have critical points along the geodesic γ, then
Uγ = R and

(u ◦ γ)′′(t) =
〈
∇γ′(t)∇u, γ′(t)

〉
= u(γ(t))

for every t in R. Therefore there exist constants Aγ and Bγ such that u(γ(t)) =
Aγet + Bγe−t for all t ∈ R.

Let us now assume that u has critical points along γ and prove the result.
In this case Uγ 6= R. Let U1 be a connected component of Uγ .
Suppose U1 = (a, b) for some a, b ∈ R. First we observe that the points

γ(a) and γ(b) are critical points of the function u. We can show as above that

(u ◦ γ)′′(t) = u(γ(t))

for all t ∈ (a, b). Therefore there exist constants Aγ and Bγ such that
u(γ(t)) = Aγet + Bγe−t for all t ∈ (a, b). Further,

(u ◦ γ)′(t) = 〈∇u(γ(t)), γ′(t)〉

=
〈
∇u(γ(t)),

∇u(γ(t))
‖∇u(γ(t))‖

〉
= ‖∇u(γ(t))‖

for every t ∈ (a, b). Since the points γ(a) and γ(b) are critical points of the
function u, it follows that

0 = ‖∇u(γ(a))‖
= lim

t→a
‖∇u(γ(t))‖

= lim
t→a

(u ◦ γ)′(t)

= lim
t→a

Aγet −Bγe−t

= Aγea −Bγe−a

and by similar arguments Aγeb − Bγe−b = 0. This is possible only if Aγ =
Bγ = 0, a contradiction. This proves that every connected component of Uγ

is an infinite interval. Hence U1 = (−∞, a) or (b,∞) for some real numbers
a, b in R.

Since every connected component of Uγ is an infinite interval, it follows
that either Uγ is connected or Uγ has two connected components and Uγ =
(−∞, a) ∪ (b,∞).



OBATA’S THEOREM FOR KÄHLER MANIFOLDS 1353

Let Uγ = (−∞, a) ∪ (b,∞). We claim that a = b. Suppose a < b. This
means that γ(t) is a critical point of the function u for every point t ∈ [a, b].
Hence ∇u(γ(t)) = 0 for all t ∈ [a, b] and

∂2

∂t2
u(γ(t)) =

∂

∂t
〈∇u(γ(t)), γ′(t)〉

= 0

for all t ∈ [a, b]. In particular, (u ◦ γ)′′(a) = 0 = (u ◦ γ)′′(b). Since ∇u(γ(t)) 6=
0, for t < a, we have that u(γ(t)) = (u ◦ γ)′′(t) for t < a. Therefore

u(γ(a)) = lim
t→a

u(γ(t))

= lim
t→a

(u ◦ γ)′′(t)

= (u ◦ γ)′′(a)
= 0.

Further, (u ◦ γ)′(a) = 0. Therefore, if u(γ(t)) = Aγet + Bγe−t for t ∈ U1,
we get that Aγea + Bγe−a = 0 and Aγea − Bγe−a = 0. This implies that
Aγ = 0 = Bγ , a contradiction.

Hence Uγ = (−∞, a) ∪ (a,∞) and u(γ(t)) = Aγet + Bγe−t for all t ∈ R.
If Uγ is connected, then Uγ = (−∞, a) or (b,∞). Using the same arguments

as above we can show that this is not possible. This completes the proof. �

We will now describe the minimum and maximum of the function u.

Proposition 5. Let (M, g) be a complete Riemannian manifold of di-
mension n and u ∈ C2(M) be such that the Hessian of u, ∇2u, has at most
two eigenvalues u and 1+u

2 , and ∇u is an eigenvector of ∇2u with eigenvalue
u. Let p ∈ M be a critical point of u. Then the following holds.

(1) If the multiplicity of the eigenvalue u is n, then the Hessian of u at
the point p, ∇2u(p), is non-degenerate.

(2) If the multiplicity of the eigenvalue u is not equal to n, then the Hes-
sian ∇2u(p) is non-degenerate iff the point p is a minimum for the
function u.

Proof. Let p ∈ M be a critical point of u.
If the multiplicity of the eigenvalue u is n, then ∇2u = u Id. In this case,

if u has a critical point, it has been proved in [5] and [3] that ∇2u(p) is non-
degenerate. Further, it has also been shown that p is the only critical point
of the function u and u(q) = u(p) cosh d(p, q) for all q ∈ M . Hence we omit
the proof here.

We will now prove the second part of the proposition.
Let p be a critical point of the function u such that∇2u(p) is non-degenerate.

We will show that ∇2u(p) is positive definite.
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Since ∇2u(p) is non-degenerate, there exists an open neighbourhood W of
p such that p is the only critical point of the function u in W . We may assume
that the open neighbourhood W is geodesically convex.

Since u does not have saddle points, the point p must either be a local
maximum or a local minimum. Hence all the integral curves γ of X passing
through the points in W \ {p} must either start from p and diverge near p- if
p is a maximum or converge to p- if p is a minimum in W .

Since W is geodesically convex, given a point q 6= p ∈ W , there exists a
unique geodesic γpq passing through p and q. On the other hand, given a
point q 6= p in W , there is a unique integral curve of X passing through q
which must either converge to the point p or start from the point p. Therefore
the geodesic γpq must be tangential to the vector field X at q. This means
that every vector E ∈ TpM is an eigenvector of ∇2u(p). This proves that
u(p) = 1+u(p)

2 . Hence u(p) = 1 and ∇2u(p) is positive definite. Thus we have
shown that the point p is a local minimum for the function u.

Conversely assume that the point p is a local minimum for the function
u. Hence the Hessian of u at p, ∇2u(p), is positive semi-definite. Since the
eigenvalues of ∇2u(p) are u(p) and 1+u(p)

2 , it is enough to show that u(p) > 0.
Let

E 1+u(p)
2

:= {E ∈ TpM : ∇2u(p)(E) =
1 + u(p)

2
E}.

Since u(p) ≥ 0, the Hessian ∇2u(p) is positive definite on E 1+u(p)
2

. Therefore
there exists an open neighbourhood W1 of 0 in TpM such that on the set W s :=
expp(W1∩E 1+u(p)

2
), the point p is the only critical point of the function u and

the integral curves of the vector field X passing through W s will all converge
to the point p. Therefore, for every unit vector v ∈ E 1+u(p)

2
, there exists an

ε > 0 such that the geodesic γv(t) := expp(tv) is in W s and it is an integral
curve of X in W s\{p}. Since γ(0) = p is the only critical point of the function
u along γ, we can write the function u along γ as u(γ(t)) = Aγet + Bγe−t for
0 < |t| < ε. Since ∇u(γ(0)) = 0, we see that 0 = ‖∇u(γ(0))‖ = Aγ −Bγ , i.e.,
Aγ = Bγ . Therefore u(γ(t)) = 2Aγ cosh t. Now we use the fact that ∇u 6= 0
in W s \ {p} to conclude that Aγ 6= 0. This shows that u(p) > 0 and hence
∇2u(p) is non-degenerate. �

Corollary 6. Let (M, g) and u be as in Proposition 5. Then a crit-
ical point p of the function u is a local maximum iff ∇2u(p) is degenerate.
Furthermore, in this case the value of the function at the point p is −1, i.e.,
u(p) = −1.

Proof. It follows from Proposition 5 that p is a maximum for the function
iff ∇2u(p) is degenerate and negative semi-definite. Therefore u(p) ≤ 0 and
1+u(p)

2 ≤ 0. But, if u(p) = 0, then we get that 1+u(p)
2 > 0, a contradiction.
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On the other hand, if u(p) < 0 and 1+u(p)
2 < 0, then we get that ∇2u(p) is

non-degenerate, a contradiction. Hence u(p) = −1. �

Our proof of the main result depends on the following two theorems.

Theorem 7. Let (M, g) and u be as in Proposition 5. Let p be a minimum
for the function u. Then

(1) u(q) = u(p) cosh d(p, q) for every point q ∈ M , and
(2) expp : TpM → M is a diffeomorphism.

Theorem 8. Let (M, g) and u be as in Proposition 5. Assume that M0 :=
{q ∈ M : u(q) = maxp∈M u(p)} is non-empty. Then M0 is a totally geodesic
submanifold of M .

3. Proof of Theorems 7 and 8

Proof of Theorem 7. Let p be a point of minimum for the function u. Then
it follows from Proposition 5 that ∇2u(p) is non-degenerate and u(p) is the
only eigenvalue of ∇2u(p). If ∇2u has two eigenvalues u and 1+u

2 , then u(p) =
1. If the Hessian has only one eigenvalue, we may assume that u(p) = 1, by
dividing the function u by a suitable constant.

Let γ be a geodesic starting at the point p. We have shown, in Proposition
5, that γ is an integral curve of X on Uγ = R \ {0} and u(γ(t)) = u(p) cosh t
for all t ∈ R.

Let q 6= p ∈ M . Then there is a length minimizing geodesic joining p and
q. We have shown in Proposition 5 that such a geodesic must be an integral
curve of the vector field X and further u(q) = u(p) cosh d(p, q). Therefore
∇u(q) = u(p) sinh d(p, q)∇d(p, q) 6= 0, where ∇d(p, .) denotes the radial vector
field starting at p. This means that the point q is an ordinary point for the
function u and hence there is a unique integral curve γ of the vector field X
passing through the point q. This proves that given a point q 6= p, there is
a unique geodesic γq such that γq(0) = p and d(p, γq(t)) = |t| for all t ∈ R.
Thus we have shown that the geodesics starting at p are rays. Hence the map
expp : TpM → M is a diffeomorphism. �

Using Theorem 7, we prove the following theorem.

Theorem 9. Let (M, g), u and p ∈ M be as in Theorem 7. Then the
following holds.

(1) If the multiplicity of the eigenvalue u is 1, then (M, g) is isometric to
the simply connected hyperbolic space (Hn, ds2) of constant curvature
−1/4.

(2) If the multiplicity of the eigenvalue u is n, then (M, g) is isometric to
the simply connected hyperbolic space (Hn, ds2) of curvature −1.
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Proof. We give a proof for the first claim. The proof is similar to the proof
of Theorem 1(2) of [2].

Since the multiplicity of the eigenvalue u is 1, every vector E ⊥ ∇u is
an eigenvector of ∇2u with eigenvalue 1+u

2 . Therefore the vector subbundle
E 1+u

2
:= {E ∈ TM : ∇2u(E) = 1+u

2 E} is parallel along the integral curves of
X.

Let γ be an integral curve of X. It follows from Theorem 7 that the geodesic
γ passes through the point p. Hence we may assume that γ(0) = p. Therefore
Uγ = (−∞, 0) ∪ (0,∞).

Let W denote the Jacobi field describing the variation of the geodesic γ
such that W (0) = 0 and W ′(0) = E ∈ {E ∈ TM : ∇2u(E) = 1+u

2 E} of unit
norm. Since [W,γ′] = 0 along γ, it follows that ∇XW = ∇W X whenever
∇u(γ(t)) 6= 0. Using the fact u(γ(t)) = cosh t along the geodesic γ, we see
that ∇XW = W ′ along the geodesic γ. Therefore, for every t ∈ Uγ ,

W ′(t) =
1

‖∇u(γ(t))‖
∇W∇u

=
1 + u(γ(t))

2
1

‖∇u(γ(t))‖
W (t)

=
1
2

cosh t
2

sinh t
2

W (t)

and
〈W ′(t),W (t)〉
‖W (t)‖2

=
1
2

cosh t
2

sinh t
2

.

Therefore
d

dt
log

(
‖W ‖
sinh t

2

)
= 0

for all t ∈ R. Hence ‖W ‖
sinh t

2
= ‖W ‖

sinh t
2
|t=0 = 2. Thus ‖W (t)‖ = 2 sinh t

2 along the
geodesic γ. Since E 1+u

2
is parallel along the integral curves of the vector field

X, we can write W (t) = 2 sinh t
2E(t), where E is a unit vector field parallel

along γ. Therefore

R(W,γ′)γ′ = −W ′′

= −1
4
W

along the geodesic γ. Hence the sectional curvature 〈R(E,X)X, E〉 = −1/4
for every unit vector E in E 1+u

2
on M \ {p}.

We are now ready to prove that (M, g) is isometric to (Hn, ds2) of constant
curvature −1/4.

We choose a point o in Hn and fix an isometry i : TpM → ToHn. We define
a map Φ : M → Hn by Φ(q) := expo◦i◦ exp−1

p (q). Then Φ maps the geodesics
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γ starting at p onto the geodesics γ starting at o in Hn and it also maps the
geodesic spheres of radius r around the point p bijectively onto the geodesic
spheres of radius r around o in Hn for all r > 0. To complete the proof, we
need only to show that the derivative dΦ of the map Φ is norm preserving.
But this follows very easily from the observation that any Jacobi field W
describing the variation of any geodesic γ starting at p such that W (0) = 0
and W ′(0) a unit vector in E 1+u

2
is of the form W (t) = 2 sinh t

2E(t), where
E(t) is a vector field parallel along the geodesic γ and its image dΦ(W (t))
is the normal Jacobi field describing the variation of the geodesic γ = Φ(γ)
starting at o in Hn.

The proof of the second part of the theorem is similar. We give a brief
sketch of the proof. In this case, we first observe that ∇2u = u Id. Let γ
be a geodesic starting at the point p. By a similar computation as above, we
conclude that a Jacobi field W describing the variation of the geodesic γ such
that W (0) and W ′(0) ⊥ γ′(0) is of the form W (t) = sinh t E(t), where E is a
parallel vector field along γ. Now the rest of the proof is same as above. (See
also [3].) �

Lemma 10. Let (M, g) and u be as in Theorem 8. Assume that M0 6= ∅.
Let γ be an integral curve of the vector field X. Then

(1) Uγ = (−∞, c) ∪ (c,∞) for some c ∈ R and
(2) u(γ(c)) = −1.

Proof. We have shown in Corollary 6 that M0 := {q ∈ M : u(q) = −1}.
Therefore u(p) ≤ −1 for every point p in M .

Let γ be an integral curve of X. If we show that Uγ 6= R, then we are
through. Assume on the contrary that Uγ = R and let Aγ and Bγ be two
constants such that u(γ(t)) = Aγet + Bγe−t for all t ∈ R.

Assume that Aγ and Bγ are of the same sign. Then there exists a unique
t0 ∈ R such that Aγet0 − Bγe−t0 = 0. Therefore ∇u(γ(t0)) = 0, a contradic-
tion.

Let us now assume that Aγ > 0 and Bγ ≤ 0. Then u(γ(t)) → ∞ as
t → +∞, a contradiction to the fact that maxu = −1. Similarly, if Aγ ≤ 0
and Bγ > 0, then u(γ(t)) → ∞ as t → −∞, a contradiction. Hence Uγ 6= R
and the proof is complete. �

Proof of Theorem 8. If ∇2u has only one eigenvalue u, then, using ex-
actly the same arguments as in the proof of Proposition 5, we can show
that every point q ∈ M0 is a non-degenerate critical point of u and u(p) =
u(q) cosh d(q, p) for every point p in M . Thus q is the unique maximum for
the function u. Hence M0 = {q} and it is totally geodesic in M .

Let us now assume that ∇2u has two eigenvalues u and 1+u
2 and prove the

result.
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Let q ∈ M \ M0 and γq be the integral curve of X passing through the
point q. From Lemma 10, it follows that Uγq = (−∞, c) ∪ (c,∞) for some
c ∈ R and γq(c) ∈ M0. This shows that the map Φ : M → M0 defined by

Φ(q) :=

{
expq(cosh−1(−u(q))X(q)) if q /∈ M0,
q if q ∈ M0,

is onto. This map is also continuous. Hence M0, being the continuous image
of the connected set M , is connected.

Since max u = −1, the Hessian of u at p, ∇2u(p), is − Id on the vector
subspace

Eu(p) := {E ∈ TpM : ∇2u(p)(E) = u(p)E}

for every point p ∈ M0 and the vector subspace

E 1+u(p)
2

= {E ∈ TpM : ∇2u(p)(E) =
1 + u(p)

2
E}

is the kernel of ∇2u(p).
Since the Hessian of u, ∇2u, has at most two eigenvalues −1 and 0 on M0,

the rank of ∇2u is constant on M0. If k is the rank of ∇2u on M0, then M0

is a (n − k)-dimensional submanifold of M and the normal bundle of M0 is
spanned by the vector field X as we move towards M0.

We will now show that M0 is a totally geodesic submanifold of M .
Let q ∈ M0 and v ∈ TqM0. We extend v to a vector field V in a neighbour-

hood of q ∈ M . We write V = V1 + V2, where V1 ∈ Eu with V1(q) = 0 and
V2 ∈ E 1+u

2
such that V2(q) = v. Then

∇V X = ∇V1+V2X

= ∇V1X +∇V2X

=
u

‖∇u‖
V1 +

1 + u

2
1

‖∇u‖
V2.

Since u(q) = −1 and V1(q) = 0, we see that

〈∇V X, V 〉 (q) =
u(q)
‖∇u‖

‖V1(q)‖2 +
1 + u(q)

2
1

‖∇u‖
‖V2(q)‖2

= 0.

Hence M0 is a totally geodesic submanifold in M . �

4. Proof of Theorem 1

Let

Eu := {E ∈ TM : ∇2u(E) = uE}.
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Then Eu is a subbundle of TM and it is spanned by the vector fields ∇u and
J∇u whenever ∇u 6= 0. Similarly, let

E 1+u
2

:= {E ∈ TM : ∇2u(E) =
1 + u

2
E}.

Then E 1+u
2

is also a subbundle of TM and it is orthogonal to Eu.

Proof of Theorem 1(i). Let p be a point of minimum for the function u.
We have proved in Theorem7 that this point is unique and expp : TpM → M
is a diffeomorphism. Therefore {q ∈ M : ∇u(q) 6= 0} = M \ {p}.

For every v ∈ TpM , we let Rv denote the one dimensional vector subspace
spanned by the vector v. Then expp : Rv

⊕
Rw → M is a diffeomorphism

onto its image for any two linearly independent vectors v and w ∈ TpM .
We also denote by H2

v the image of Rv
⊕

RJv under expp for every non-zero
vector v ∈ TpM .

We will now show that the sectional curvature of H2
v is −1.

As first step we will prove that, for every point q ∈ H2
v, the tangent space

TqH2
v = R∇u(q)

⊕
RJ∇u(q) = Eu(q). We will prove this by showing that, if

γ is a unit speed geodesic starting at p and W is the Jacobi field describing
the variation of the geodesic γ such that W (0) = 0 and W ′(0) = Jγ′(0), then
W (t) = J∇u(γ(t)) for t ∈ Uγ = R \ {0}.

Since the manifold (M, g, J) is Kähler, the complex structure J is parallel.
Therefore ∇∇uJ∇u = J∇∇u∇u = uJ∇u on M \ {p}. Further, since J∇u is
also an eigenvector of ∇2u with eigenvalue u, we see that ∇J∇u∇u = uJ∇u =
∇∇uJ∇u. Therefore [J∇u,∇u] = 0 on M \ {p}. If q 6= p, then

R(J∇u(q),∇u(q))∇u(q) = ∇J∇u(q)∇∇u(q)∇u−∇∇u(q)∇J∇u(q)∇u

= ∇J∇u(q)(u∇u)−∇∇u(q)(uJ∇u)

= −‖∇u(q)‖2J∇u(q).

Let γ be a unit speed geodesic starting at the point p. We know that γ′(t) =
∇u(γ(t))
‖∇u(γ(t))‖ on Uγ = R \ {0}. Therefore, from what we have shown above
R(J∇u(γ(t)), γ′(t))γ′(t) = −J∇u(γ(t)) on Uγ . On the other hand, since J
is parallel and ∇u is an eigenvector of ∇2u with eigenvalue u, we see that
D2

dt2 J∇u(γ(t)) = J∇u(γ(t)) on Uγ . Hence D2

dt2 J∇u + R(J∇u, γ′)γ′ = 0 along
the geodesic γ. Thus we have shown that the vector field W (t) := J∇u(γ(t)) is
the Jacobi field describing the variation of the geodesic γ such that W (0) = 0
and W ′(0) = Jγ′(0). Therefore Tγ(t)H2

v = Span{γ′(t), Jγ′(t)} for every t 6= 0.
This proves that Eu |H2

v
is the tangent bundle of H2

v \ {p}.
Since ∇∇uJ∇u = J∇∇u∇u = uJ∇u = ∇J∇u∇u on M \ {p}, it follows

that the submanifold H2
v is also totally geodesic in M . Therefore the sectional

curvature KM (∇u, J∇u)(q) = KH2
v
(q) at all points q 6= p ∈ H2

v.
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We have already shown that

R(J∇u,∇u)∇u = −‖∇u‖2J∇u

in H2
v \ {p}. Hence the sectional curvature KH2

v
(q) = −1 for all points q ∈

H2
v \ {p}. Since the sectional curvature is a continuous function and equal to

−1 on H2
v \ {p}, it follows that KH2

v
≡ −1. This proves that H2

v is isometric
to the simply connected surface H2 of constant curvature −1.

Since H2
v is totally geodesic for every v in TpM , the subbundle Eu |H2

v
,

being the tangent bundle of H2
v, is parallel along the integral curves γ of

the vector field X on M \ {p}. Therefore the subbundle E 1+u
2

, being the
orthogonal complement of Eu, is also parallel along the integral curves γ
of X on M \ {p}. Now an easy computation shows that E 1+u

2
is also an

eigensubbundle of R(· , X)X with eigenvalue −1/4 on M \ {p}. This shows
that, if W is a Jacobi field along γ describing the variation of γ such that
W (0) = 0 and W ′(0) ∈ E 1+u

2
, then W (t) = 2 sinh t

2E(t), where E(t) is a
vector field parallel along γ such that E(t) ∈ E 1+u

2
.

Let w, v ∈ TpM and w ⊥ v, Jv. Then the map expp : R v
⊕

R w → M is a
diffeomorphism onto its image. We will also denote this image by H2

v,w. Then
it follows from what we have done in the paragraph above that the sectional
curvature of H2

v,w is −1/4.
We will now show that (M, g, J) is isometric to (CHn, ds2), the complex

hyperbolic space of constant holomorphic sectional curvature −1.
Let us fix a point o ∈ (CHn, ds2) and an unitary isometry I : TpM →

ToCHn. Let
Φ : M → CHn

be the map defined by

Φ(q) := expo ◦I ◦ exp−1
p (q).

Then for any geodesic γ starting at p, the image curve γ := Φ(γ) is a geodesic
staring at the point o in CHn. To complete the proof of the theorem, we
only have to show that dΦ preserves the lengths of the Jacobi fields along the
geodesics γ starting at p.

Before we start with the proof, we recall a few facts about the Jacobi fields
on CHn.

Let us denote by R the Riemannian curvature tensor of CHn. Let σ be a
geodesic in CHn and W (t) be a Jacobi field along σ such that W (0) = 0 and
‖W ′(0)‖ = 1. Then

(1) W (t) = sinh tE(t), where E(t) is a parallel vector field along σ and
E(t) ∈ E−1 := {w ∈ TCHn : R(w, σ′)σ′ = −w}, if W ′(0) ∈ E−1, and

(2) W (t) = 2 sinh t
2E(t), where E(t) is a parallel vector field along σ and

E(t) ∈ E−1/4 := {w ∈ TCHn : R(w, σ′)σ′ = − 1
4} if W ′(0) ∈ E−1/4 .
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Let γ be a geodesic starting at the point p in M . Let γ′(0) = v and E(t) be a
vector field parallel along γ such that E(t) ∈ Eu. Since the vector field W (t) =
sinh tE(t) is a Jacobi field along γ, it follows that E(t) = 1

sinh td(expp)tv(E(0))
and dΦγ(t) maps d(expp)tv(E(0)) to d(expp)tI(v)(I(E(0))). Using the fact that
the isometry I is unitary, we conclude that the vector d(expp)tI(v)(I(E(0))) ∈
E−1. This proves that d(expp)tI(v)(I(E(0))) = sinh t

t I(E(0)). Hence dΦ is
norm preserving on Eu.

By similar arguments we can show that dΦ is an isometry on E 1+u
2

. Hence
the map Φ : M → CHn is an isometry. �

Proof of Theorem 1(ii). It follows from Theorem 8 that M0 is a totally
geodesic submanifold of M of dimension n − k, where k is the rank of the
Hessian ∇2u on M0.

Using the fact that J is parallel, we see that, if E is an eigenvector of ∇2u,
then JE is also an eigenvector of ∇2u with the same eigenvalue. Since the
multiplicity of the eigenvalue u is 2, it follows that M0 is a co-dimension two
submanifold of M .

Let q ∈ M0 and Nq(M0) := {w ∈ TqM : w ⊥ TqM0} the normal space to
M0 at the point q. Then Nq(M0) = {w ∈ TqM0 : ∇2u(q)(w) = −w} is of
dimension 2. It is also a complex vector subspace. For every vector w ∈ NqM0,
the geodesic γw such that γ′w(0) = w is along the direction of ∇u and hence
such geodesics are rays starting from q. Therefore expq : Nq(M0) → M is
a diffeomorphism onto its image. We have shown in Lemma 10 that, if p
is a point in M and γp an integral curve of X passing through p, then the
geodesic γp meets M0 at a unique point q. Hence the normal exponential map
exp : N(M0) → M is a diffeomorphism onto M .

For every point q ∈ M0, we let H2
q := expq(Nq). Then an argument exactly

same as in the proof of Theorem 1(i) shows that H2
q is isometric to (H2, ds2)

of constant curvature −1. This completes the proof of Theorem 1. �

5. Concluding Remarks

In the statement of Theorem 1, if we assume that u−1
2 as an eigenvalue of

∇2u instead of 1+u
2 , then we can conclude the following:

(1) If the function u has a maximum, then M is isometric to CHn.
(2) If the function u has a minimum, then there exists a totally geodesic

submanifold M0 := {p ∈ M : u(p) = minu} of M such that M is
diffeomorphic to the normal bundle N(M0) of M . Further, the fiber
over each point is isometric to the simply connected surface (H2, ds2)
of constant curvature −1.

The proof is verbatim same as in the proof of Theorem 1 with the words
maxima and the minima interchanged.
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