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THE OLLP AND T -LOCAL REFLEXIVITY OF OPERATOR
SPACES

Z. DONG

Abstract. In this paper, we study two ‘dual’ problems in the operator
space theory. We first show that if L is a finite-dimensional operator
space, then L has the OLLP if and only if for any indexed family of
operator spaces (Wi)i∈I and a free ultrafilter U on I, we have a complete
isometry Y

(L⊗̂Wi)/U = L⊗̂
Y

Wi/U .

Next, we show that if W is an operator space, then (Tn⊗̌W )∗∗ =
Tn⊗̌W ∗∗ holds if and only if W is T -locally reflexive, if and only if
for any finitely representable operator spaces V , we have an isometry
I(V, W ∗) = (V ⊗̌W )∗.

1. Introduction

Many problems in operator spaces are naturally motivated by both Banach
space theory and C∗-algebraic theory. The exactness for C∗-algebras was first
introduced by Kirchberg [10], and extended to operator spaces by Pisier [14].
In [14], Pisier showed that the notion of exactness for operator spaces is closely
connected to a commutation property involving ultraproducts.

Theorem 1.1 ([14]). Suppose that L is a finite-dimensional operator space.
Then L is exact if and only if for any indexed family of operator spaces (Wi)i∈I
and a free ultrafilter U on I, we have a complete isometry∏

(L⊗̌Wi)/U = L⊗̌
∏

Wi/U .
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In this paper, we consider a natural ‘dual’ problem of Theorem 1.1. That
is, which condition is the following completely isometry

(1)
∏

(L⊗̂Wi)/U = L⊗̂
∏

Wi/U

equivalent to? We show in Section 2 that (1) holds for any indexed family of
operator spaces (Wi)i∈I if and only if L has the OLLP.

For any operator space W , we always have

(2) (Mn⊗̌W )∗∗ = Mn⊗̌W ∗∗.

The second problem which we are interested in this paper is sufficient and
necessary conditions for which the following equations hold:

(Mn⊗̂W )∗∗ = Mn⊗̂W ∗∗

and
(Tn⊗̌W )∗∗ = Tn⊗̌W ∗∗.

This can be considered as the ‘dual’ problem of (2). The ‘dual’ problem is
closely related to the notion of ‘T -local reflexivity’. The analysis of T -local
reflexivity rests upon a careful study of finitely representable integrals and
completely ∞-summing mappings. These results are presented in Section 3
and Section 4, respectively. The main result on the second ‘dual’ problem is
proved in Section 5 (Theorem 5.2).

For the convenience of the readers, we recall some of the basic notations
and terminologies in operator spaces; the details can be found in [5], [15].
Given a Hilbert space H, we let B(H) denote the space of all bounded linear
operators on H. For each natural number n ∈ N, there is a canonical norm
‖ · ‖n on the n × n matrix space Mn(B(H)) given by identifying Mn(B(H))
with B(Hn). We call this family of norms {‖ · ‖n} an operator space matrix
norm on B(H). An operator space V is a norm closed subspace of some
B(H) equipped with the distinguished operator space matrix norm inherited
from B(H). An abstract matrix norm characterization of operator spaces
was given in [17]. The morphisms in the category of operator spaces are the
completely bounded linear maps. Given operator spaces V and W , a linear
map ϕ : V →W is completely bounded if the corresponding linear mappings
ϕn : Mn(V ) →Mn(W ) defined by ϕn([xij ]) = [ϕ(xij)] are uniformly bounded,
i.e.,

‖ϕ‖cb = sup{‖ϕn‖ : n ∈ N} <∞.

A map ϕ is completely contractive (respectively, completely isometric, a com-
plete quotient) if ‖ϕ‖cb ≤ 1 (respectively, for each n ∈ N, ϕn is an isometry, a
quotient map). We denote by CB(V,W ) the space of all completely bounded
maps from V into W . It is known that CB(V,W ) is an operator space
with the operator space matrix norm given by identifying Mn(CB(V,W )) =
CB(V,Mn(W )). In particular, if V is an operator space, then its dual space
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V ∗ is an operator space with operator space matrix norm given by the iden-
tification Mn(V ∗) = CB(V,Mn). Given operator spaces V and W , and a
completely bounded mapping ϕ : V →W , the corresponding adjoint mapping
ϕ∗ : W ∗ → V ∗ is completely bounded with ‖ϕ∗‖cb = ‖ϕ‖cb. Furthermore,
ϕ : V →W is a completely isometric injection if and only if ϕ∗ is a completely
quotient mapping. On the other hand, if ϕ : V → W is a surjection, then ϕ
is a completely quotient mapping if and only if ϕ∗ is a completely isometric
injection. We use the notations V ⊗̌W and V ⊗̂W for the injective and projec-
tive operator space tensor products (see [1], [2]). The operator space tensor
products share many of the properties of the Banach space analogues. For
example, we have the natural complete isometries

(V ⊗̂W )∗ = CB(V,W ∗), (V ⊗̂W )∗ = CB(W,V ∗)

and the completely isometric injection

V ∗⊗̌W ↪→ CB(V,W ).

The tensor product ⊗̌ is injective in the sense that if ϕ : W → Y is a com-
pletely isometric injection, then so is

idV ⊗ϕ : V ⊗̌W → V ⊗̌Y.

On the other hand, the tensor product ⊗̂ is projective in the sense that if
ϕ : W → Y is a completely quotient mapping, then so is

idV ⊗ϕ : V ⊗̂W → V ⊗̂Y.

In the following, we give some definitions of local properties for operator
spaces. Given an operator space V , we define:

(1) Exactness (see Pisier [14]). For any finite dimensional subspace L of
V and every ε > 0, there exist an integer n and a subspace S ⊆ Mn

such that dcb(L, S) < 1 + ε.
(2) Local reflexivity (see Effros, Junge and Ruan [6]). For any finite

dimensional operator space L, every complete contraction ϕ : L →
V ∗∗ is the point-weak∗ limit of a net of complete contractions ϕα :
L→ V .

(3) OLLP (see Ozawa [13]). Given any unital C∗-algebra A with ideal
J ⊆ A and a complete contraction ϕ : V → A/J , for every finite
dimensional subspace E of V , there exists a complete contraction
ϕ̃ : E → A such that π ◦ ϕ̃ = ϕ|E , where π : A → A/J is the
canonical quotient mapping. We say that V has the OLP if we can
always take E = V in the preceding definition.

(4) Local lifting property (LLP) (see Kye and Ruan [12]). Given any
operator spaces W ⊆ Y and a complete contraction ϕ : V → Y/W ,
for every finite dimensional subspace E of V and ε > 0, there exists
a completely bounded linear map ϕ̃ : E → Y such that ‖ϕ̃‖cb < 1 + ε



1106 Z. DONG

and π ◦ ϕ̃ = ϕ|E , where π : Y → Y/W is the canonical quotient
mapping.

(5) Finitely representable in {Tn}n∈N (or simply, finitely representable)
(see Effros, Junge and Ruan [6]). For every finite-dimensional sub-
space E of V and ε > 0, there exists a subspace F of some Tn such
that dcb(E,F ) < 1 + ε.

In Section 3 and Section 4, we discuss operator space mapping ideals. An
operator space mapping ideal O is an assignment to each pair of operator
spaces V,W of a linear space O(V,W ) of completely bounded mappings ϕ :
V → W , together with an operator space matrix norm ‖ · ‖O, such that for
each ϕ ∈Mn(O(V,W )),

(a) ‖ϕ‖cb ≤ ‖ϕ‖O, and
(b) for any linear mapping r : U → V and s : W → X

‖sn ◦ ϕ ◦ r‖O ≤ ‖s‖cb · ‖ϕ‖O · ‖r‖cb.

We define the completely nuclear mappings N (V,W ) to be the image of the
canonical mapping Φ : V ∗⊗̂W → V ∗⊗̌W ⊆ CB(V,W ) with the quotient
operator space structure determined by the identification

N (V,W ) ∼=
V ∗⊗̂W
ker Φ

.

We let ν be the corresponding norm on N (V,W ).
Given operator spaces V and W , we define a mapping ϕ : V → W to be

completely integral if

ι(ϕ) = sup{ν(ϕ|S) : S ⊆ V finite dimensional} <∞.

We let I(V,W ) denote the set of all completely integral mappings.
If ϕ : V →W is a linear mapping of operator spaces, then we define π1(ϕ)

in [0,∞] by

π1(ϕ) = ‖ idT∞ ⊗ϕ : T∞⊗̌V → T∞⊗̂W‖
= sup{‖ idTr ⊗ϕ : Tr⊗̌V → Tr⊗̂W‖ : r ∈ N}.

If π1(ϕ) <∞, we say that ϕ is a completely 1-summing mapping from V into
W and let Π1(V,W ) denote the space of all completely 1-summing mappings
from V into W .
N (·, ·), I(·, ·) and Π1(·, ·) are all operator space mapping ideals. The details

may be found in [5].

2. The OLLP

The following lemma is a corollary of Theorem 2.5 in [13], but we can prove
it directly.
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Lemma 2.1. Suppose that L is a finite-dimensional operator space. Then
L has the OLLP if and only if L∗ is exact.

Proof. From Theorem 14.4.1 in [5], L∗ is exact if and only if for any C∗-
algebra A with closed ideal J ⊆ A, the natural mapping

A⊗̌L∗ → (A/J )⊗̌L∗

is a completely quotient mapping. Thus the following commutative diagram

A⊗̌L∗ → (A/J )⊗̌L∗
‖ ‖

CB(L,A) → CB(L,A/J )

implies that L has the OLLP if and only if L∗ is exact. �

The following result can be considered as the ‘dual’ result of Theorem 1.1.

Theorem 2.2. Suppose that L is a finite-dimensional operator space.
Then L has the OLLP if and only if for any indexed family of operator spaces
(Wi)i∈I and a free ultrafilter U on I, we have a complete isometry∏

(L⊗̂Wi)/U = L⊗̂
∏

Wi/U .

Proof. Suppose that we have
∏

(L⊗̂Wi)/U = L⊗̂
∏
Wi/U for any indexed

family of operator spaces (Wi)i∈I . We can identify L∗ with a subspace of
M∞, and we write Pn : M∞ → Mn for the truncation mapping and we let
ρn = (Pn)|L∗ and

Sn = ρn(L∗) ⊆Mn.

If m ≤ n, then Pm ◦ ρn = ρm and thus for each v ∈Mp(L∗),

‖(idMp ⊗ρm)(v)‖ ≤ ‖Pm‖cb · ‖(idMp ⊗ρn)(v)‖
≤ ‖(idMp ⊗ρn)(v)‖.

As in the second proof of Theorem 14.1.1 in [5], we may select n0 ∈ N
such that n ≥ n0 implies that Pn : L∗ → Mn is one-to-one, and therefore
ρn : L∗ → Sn is a linear isomorphism. We let σn = ρ−1

n for n ≥ n0, and
σn = 0 for n < n0, and we fix a ultrafilter U on the set N. The mapping

ρ = (ρn)U : L∗ →
∏

Sn/U

is a completely isometric surjection. In fact, for any x ∈Mp(L∗),

‖(idMp ⊗ρ)(x)‖ = ‖(πU )p((idMp ⊗ρn)(x))‖
= lim

U
‖(idMp ⊗ρn)(x)‖ = ‖x‖.
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From Corollary 10.3.7 in [5],
∏
Sn/U and L∗ have the same finite dimension

and so ρ is also a surjection. The inverse mapping of ρ is

σ = (σn)U :
∏

Sn/U →
∏

L∗/U = L∗.

It follows that σ is a complete isometry. From the hypothesis, we have∏
(L⊗̂Sn)/U = L⊗̂

∏
Sn/U .

From Corollary 10.3.4 in [5], the natural mapping∏
(L⊗̂Sn)∗/U →

(∏
(L⊗̂Sn)/U

)∗
is a completely isometric injection. It follows from Corollary 10.3.7 in [5] that
the dimensions of

∏
(L⊗̂Sn)∗/U and (

∏
(L⊗̂Sn)/U)∗ are the same as the finite

dimension of L⊗̂Sn. So∏
(L⊗̂Sn)∗/U ∼=

(∏
(L⊗̂Sn)/U

)∗
.

Thus, we have

CB
(∏

Sn/U , L∗
)
∼= (L⊗̂

∏
Sn/U)∗ ∼=

(∏
(L⊗̂Sn)/U

)∗
∼=

∏
(L⊗̂Sn)∗/U ∼=

∏
CB(Sn, L∗)/U .

This implies that

lim
U
‖σn‖cb = ‖πU ((σn))‖cb = ‖(σn)U‖ = ‖σ‖cb = 1.

Given ε > 0, there exists an integer n(ε) ≥ n0 such that ‖σn(ε)‖cb < 1 + ε,
and hence dcb(L∗, Sn(ε)) < 1 + ε. Since ε > 0 is arbitrary, it follows that L∗ is
exact. Lemma 2.1 shows that L has the OLLP.

Conversely, suppose that L has the OLLP. For any ε > 0, it follows from
Theorem 2.5 in [13] that we may find a completely bounded isomorphism
r : L→ Q, where Q is a quotient of some Tn, such that

‖r‖cb · ‖r−1‖cb < 1 + ε.

Since Q is a quotient of some Tn, Corollary 10.3.9 in [5] shows that

θ : Q⊗̂
∏

Wi/U ∼=
∏

(Q⊗̂Wi)/U .

Thus, from the following diagram

Q⊗̂
∏
Wi/U

θ−→
∏

(Q⊗̂Wi)/U

r ⊗ id ↑ ↓ (r−1 ⊗ idWi
)U

L⊗̂
∏
Wi/U

∏
(L⊗̂Wi)/U ,

we define
Φ = (r−1 ⊗ idWi)U ◦ θ ◦ (r ⊗ id),
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its inverse
Φ−1 = (r−1 ⊗ id) ◦ θ−1 ◦ (r ⊗ idWi)U

and

‖Φ‖cb ≤ ‖(r−1 ⊗ idWi
)U‖cb · ‖θ‖cb · ‖r ⊗ id ‖cb

≤ lim
U
‖r−1 ⊗ idWi ‖cb · ‖r ⊗ id ‖cb

= ‖r−1‖cb · ‖r‖cb < 1 + ε,

where the second inequality follows from Proposition 10.3.2 in [5]. Similarly,
‖Φ−1‖cb < 1 + ε. Since ε > 0 is arbitrary, Φ and Φ−1 are completely contrac-
tive. Therefore Φ is a completely isometric surjection and

L⊗̂
∏

Wi/U ∼=
∏

(L⊗̂Wi)/U . �

We can give another ultraproduct characterization of exactness.

Corollary 2.3. Suppose that L is a finite-dimensional operator space.
Then L is exact if and only if for any indexed family of operator spaces (Wi)i∈I
and a free ultrafilter U on I, we have a complete isometry∏

(L∗⊗̂Wi)/U = L∗⊗̂
∏

Wi/U .

3. Finite-representably integral mappings

First we recall some equivalent conditions of completely integral mappings
and exactly integral mappings. Given operator spaces V and W , and a linear
mapping ϕ : V → W , it was shown in [6] that ϕ is a completely integral
mapping if and only if

ι(ϕ) = sup
{
‖ idL⊗ϕ : L⊗̌V → L⊗̌W‖ :

∀ finite- dimensional operator space L
}
<∞;

ϕ is an exactly integral mapping if and only if

ιex(ϕ) = sup{‖ idL∗ ⊗ϕ : L∗⊗̌V → L∗⊗̌W‖ : ∀L ⊆Mn, n ∈ N} <∞.

Similarly, we can give the following definition.

Definition 3.1. If ϕ : V → W is a linear mapping of operator spaces,
then we define ιfr(ϕ) in [0,∞] by

ιfr(ϕ) = sup{‖ idL∗ ⊗ϕ : L∗⊗̌V → L∗⊗̂W‖ : L ⊆ Tn, n ∈ N}.
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This definition is ‘stable’ in the sense that we may replace the bounded
norms with completely bounded norms. To see this, let us suppose that
ιfr(ϕ) ≤ 1. Let us fix L ⊆ Tn. We have

‖ idL∗ ⊗ϕ‖cb = sup
p∈N

{‖ idMp
⊗ idL∗ ⊗ϕ : Mp(L∗⊗̌V ) →Mp(L∗⊗̂W )‖}.

Since the inclusion Tp(L) ↪→ Tp(Tn) = Tpn is completely isometric, it follows
from Theorem 8.1.10 in [5] and the definition of ιfr that the two mappings in
the diagram

Mp(L∗⊗̌V ) = Mp(L∗)⊗̌V = Tp(L)∗⊗̌V → Tp(L)∗⊗̂W = (Mp⊗̌L∗)⊗̂W
→Mp⊗̌(L∗⊗̂W ) = Mp(L∗⊗̂W )

are contractions, and thus ‖ idL∗ ⊗ϕ‖cb ≤ 1. If we let L = C, then ‖ϕ‖cb ≤ 1,
and thus ‖ϕ‖cb ≤ ιfr(ϕ).

If ιfr(ϕ) <∞, we say that ϕ is a finitely representable integral (or simply,
f.r. integral) and we refer to ιfr(ϕ) as the f.r. integral norm of ϕ. We let
Ifr(V,W ) denote the space of all f.r. integral mappings from V into W . For
any matrix ϕ = [ϕij ] ∈Mm(Ifr(V,W )),

ιfrm (ϕ) = sup
{
‖ idL∗ ⊗ϕ = [idL∗ ⊗ϕij ] : L∗⊗̌V →Mm(L∗⊗̂W )‖ :

∀L ⊆ Tn, n ∈ N
}
.

It is routine to check that Ifr(V,W ) is a linear space, and ιfr is an operator
space matrix norm on Ifr(V,W ). Let us suppose that we are given mappings
r : U → V, s : W → X, and ϕ : V → Mm(W ). Then it is apparent from the
diagram

L∗⊗̌U idL∗ ⊗r−→ L∗⊗̌V idL∗ ⊗ϕ−→ Mm(L∗⊗̂W )
(idL∗ ⊗s)m−→ Mm(L∗⊗̂X)

that ιfrm (sm ◦ ϕ ◦ r) ≤ ‖s‖cb · ιfrm (ϕ) · ‖r‖cb. Therefore, Ifr(·, ·) is an operator
space mapping ideal.

Proposition 3.2. For any operator spaces V and W , a linear mapping
ϕ : V → W satisfies ιfr(ϕ) ≤ 1 if and only for each n ∈ N, L ⊆ Tn and
complete contraction ψ : L→ V , ν(ϕ ◦ ψ) ≤ 1.

Proof. This is apparent from the commutative diagram

L∗⊗̌V idL∗ ⊗ϕ−→ L∗⊗̂W
‖ ‖

CB(L, V ) −→ N (L,W ) �

From Proposition 3.2, we have

ιfr(ϕ) = sup{ν(ϕ ◦ ψ) : ∀ψ ∈ CB(L, V )‖·‖cb≤1, L ⊆ Tn, n ∈ N}.
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Proposition 3.3. Ifr(·, ·) is a local operator space mapping ideal and
ιfr(ϕ) ≤ ι(ϕ) for any linear mapping ϕ : V →W .

Proof. Since Ifr(·, ·) is an operator space mapping ideal, it is clear that for
every finite-dimensional subspace S ⊆ V ,

ιfr(ϕ|S) ≤ ιfr(ϕ).

On the other hand, for any L ⊆ Tn and any complete contraction ψ : L→ V ,
it follows from Proposition 3.2 that

ν(ϕ ◦ ψ) = ν(ϕ|S ◦ ψ) ≤ ιfr(ϕ|S),

where we let S = ψ(L). Proposition 3.2 shows that

ιfr(ϕ) = sup{ν(ϕ ◦ ψ) : ∀ψ ∈ CB(L, V )‖·‖cb≤1, L ⊆ Tn, n ∈ N}

≤ sup{ιfr(ϕ|S) : ∀ finite-dimensional subspace S ⊆ V }.

This implies that Ifr is a local operator space mapping ideal.
If ν(ϕ) ≤ 1, then for any n ∈ N, L ⊆ Tn, and each complete contraction

ψ : L→ V , we have

ν(ϕ ◦ ψ) ≤ ν(ϕ) · ‖ψ‖cb ≤ 1.

From Proposition 3.2, ιfr(ϕ) ≤ 1 and ιfr(ϕ) ≤ ν(ϕ) in general. Since ιfr is
local,

ιfr(ϕ) = sup{ιfr(ϕ|S) : ∀ finite-dimensional subspace S ⊆ V }
≤ sup{ν(ϕ|S) : ∀ finite-dimensional subspace S ⊆ V }
= ι(ϕ). �

Given a finite-rank mapping ψ : W → V , we define

γST (ψ) = inf{‖a‖cb · ‖b‖cb},

where the infimum is taken over all factorizations

L
b

↗
a

↘
W

ψ−→ V

with L ⊆ Tn and n ∈ N. It is easy to see that this determines a norm on
F(W,V ), and we let γoST (W,V ) denote the corresponding normed space.

Lemma 3.4. If W is finite-dimensional, we have an isometric isomor-
phism Ifr(V,W ) = γoST (W,V )∗.
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Proof. From the definition of ιfr, we have

ιfr(ϕ) = sup{‖ idL∗ ⊗ϕ : L∗⊗̌V → L∗⊗̂W‖ : ∀L ⊆ Tn, n ∈ N}
= sup{‖(idL∗ ⊗ϕ)(u)‖L∗⊗̂W :

‖u‖L∗⊗̌V ≤ 1, L ⊆ Tn, n ∈ N}
= sup{‖(idL∗ ⊗ιW ◦ ϕ)(u)‖L∗⊗̂W∗∗ :

‖u‖L∗⊗̌V ≤ 1, L ⊆ Tn, n ∈ N}
= sup{| < (idL∗ ⊗ϕ)(u), v > | : ‖u‖L∗⊗̌V ≤ 1,

‖v‖L⊗̌W∗ ≤ 1, L ⊆ Tn, n ∈ N},

where the third equation follows from the complete isometric injection L∗⊗̂W
↪→ L∗⊗̂W ∗∗ and since L,W are finite-dimensional, the fourth equation fol-
lows from (L⊗̌W ∗)∗ ∼= L∗⊗̂W ∗∗. Thus, if we let u and v correspond to the
functions a ∈ CB(L, V ) and b ∈ CB(W,L), then a simple calculation with
elementary matrices leads to the formula

ιfr(ϕ) = sup{| trace(ϕ ◦ ψ)| : ψ = a ◦ b, ‖a‖cb, ‖b‖cb ≤ 1}.
We conclude from the definition of γoST that we have an isometric injection

Ifr(V,W ) ↪→ γoST (W,V )∗,

and since W is finite-dimensional,

Ifr(V,W ) = γoST (W,V )∗. �

The following result provides some motivation for our terminology ‘finitely
representable integral mapping’. The identities (2) and (3) in Theorem 3.5
are (complete) isometries.

Theorem 3.5. For any operator space V , the following are equivalent.
(1) V is finitely representable.
(2) I(V, S) = Ifr(V, S) for any finite-dimensional subspace S ⊆ V .
(3) I(V,W ) = Ifr(V,W ) for any operator space W .

Proof. (1)⇒(3): Let ϕ : V → W be a f.r. integral mapping. Since V
is finitely representable, for any finite-dimensional subspace S ⊆ V and ε >
0, there exists a linear isomorphism ψ from S onto an operator subspace
L of some Tn such that ‖ψ‖cb < 1 + ε and ‖ψ−1‖cb < 1. It follows from
Proposition 3.2 that

ι(ϕ|S) = ν(ϕ|S ◦ ψ−1 ◦ ψ) ≤ ν(ϕ|S ◦ ψ−1) · ‖ψ‖cb ≤ ιfr(ϕ|S)(1 + ε).

If we let ε→ 0, we have
ι(ϕ|S) ≤ ιfr(ϕ|S),

and thus by the local property of ι and ιfr,

ι(ϕ) ≤ ιfr(ϕ).
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From Proposition 3.3, we have ι(ϕ) = ιfr(ϕ), and this shows that (1)⇒(3).
(3)⇒(2): This is obvious.
(2)⇒(1): For any fixed finite-dimensional subspace S ⊆ V , it follows from

the definition of γoST that we have a norm-decreasing linear isomorphism (both
sides coincide with the linear space S∗ ⊗ V )

θ : γoST (S, V ) → CB(S, V ).

Let us consider the adjoint of this mapping θ,

θ∗ : CB(S, V )∗ → γoST (S, V )∗.

Since
CB(S, V )∗ = (S∗⊗̌V )∗ = I(V, S)

and from Lemma 3.4,
γoST (S, V )∗ = Ifr(V, S),

it follows from the hypothesis of (2) that θ∗ is an isometry, and thus θ must
itself be an isometry. If ι : S → V is the inclusion mapping, then it follows
that for any ε > 0, we have a commutative diagram

L
b

↗
a

↘
S

ι−→ V

where L is an operator subspace of some Tn, and ‖a‖cb · ‖b‖cb < 1 + ε. Thus,
by definition, S is finitely representable, and the same follows for V . �

4. Completely ∞-summing mappings

Completely 1-summing mappings have been studied by Effros and Ruan
[4] and completely p-summing mappings (1 < p < +∞) have been considered
by Pisier [16]. In this section, we will define and study (completely) ∞-
summing mappings. Although the results for Banach spaces and operator
spaces outlined in this section are largely parallel to each other, we shall find
that some of novel aspects of operator space theory arise when one considers
the behavior under duality.

Definition 4.1. Given Banach spaces X and Y and a linear mapping
ϕ : X → Y , we define the ∞-summing norm of ϕ by

πB∞(ϕ) = ‖ idc0 ⊗ϕ : c0
λ
⊗ X → c0

γ
⊗ Y ‖

= sup
n∈N

{‖ idln∞ ⊗ϕ : ln∞
λ
⊗ X → ln∞

γ
⊗ Y ‖}.
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We say that ϕ is ∞-summing if πB∞(ϕ) < ∞. It is evident that πB∞ is a
norm on the space ΠB

∞(X,Y ) of all ∞-summing mappings, and in fact the
isometric embedding

ΠB
∞(X,Y ) ↪→ B(c0

λ
⊗ X, c0

γ
⊗ Y ) : ϕ 7−→ idc0 ⊗ϕ

may be used to see that it is a Banach space.
We note that if we are given a diagram

D
r→ X

ϕ→ Y
s→ G,

then we have a corresponding diagram

c0
λ
⊗ D

idc0 ⊗r−→ c0
λ
⊗ X

idc0 ⊗ϕ−→ c0
γ
⊗ Y

idc0 ⊗s−→ c0
γ
⊗ G,

from which it follows that

πB∞(s ◦ ϕ ◦ r) ≤ ‖s‖ · πB∞(ϕ) · ‖r‖,

and thus
ΠB
∞ : (X,Y ) 7−→ (ΠB

∞(X,Y ), πB∞)
is a Banach space mapping ideal.

Proposition 4.2. For any Banach spaces X,Y , ϕ : X → Y satisfies
πB∞(ϕ) ≤ 1 if and only if for each n ∈ N and contraction θ : ln1 → X,
νB(ϕ ◦ θ) ≤ 1.

Proof. This is apparent from the commutative diagram

ln∞
λ
⊗ X −→ ln∞

γ
⊗ Y

‖ ‖
B(ln1 , X) −→ NB(ln1 , Y ). �

Corollary 4.3. ΠB
∞ is a local Banach space mapping ideal, and for any

linear mapping ϕ : X → Y , πB∞(ϕ) ≤ ιB(ϕ).

Proof. Since ΠB
∞ is a Banach space mapping ideal, it is clear that for every

finite-dimensional subspace S ⊆ X

πB∞(ϕ|S) ≤ πB∞(ϕ).

On the other hand, suppose that for any finite-dimensional subspace S ⊆ X,
πB∞(ϕ|S) ≤ 1. For every n ∈ N and contraction θ : ln1 → X, we set S = θ(ln1 ).
Since πB∞(ϕ|S) ≤ 1, it follows from Proposition 4.2 that

νB(ϕ ◦ θ) = νB(ϕ|S ◦ θ) ≤ 1.

Proposition 4.2 shows that πB∞(ϕ) ≤ 1 and therefore ΠB
∞ is a local Banach

space mapping ideal.
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If νB(ϕ) ≤ 1, then for each contraction θ : ln1 → X,

νB(ϕ ◦ θ) ≤ νB(ϕ) · ‖θ‖ ≤ 1,

and from Proposition 4.2,

πB∞(ϕ) ≤ νB(ϕ).

Since the mapping ideal is local,

πB∞(ϕ) = sup{πB∞(ϕ|S) : S finite-dimensional in X}
≤ sup{νB(ϕ|S) : S finite-dimensional in X} = ιB(ϕ). �

Theorem 4.4. For any Banach spaces X,Y and a linear map ϕ : X → Y ,
we have πB∞(ϕ) = πB1 (ϕ∗).

Proof. Suppose that πB∞(ϕ) ≤ 1. Thus, for any n ∈ N,

‖ idln∞ ⊗ϕ : ln∞
λ
⊗ X → ln∞

γ
⊗ Y ‖ ≤ 1.

Let us consider the adjoint of this mapping. We have

(ln∞
λ
⊗ X)∗ = ln1

γ
⊗ X∗

and

(ln∞
γ
⊗ Y )∗ = B(ln∞, Y

∗) = ln1
λ
⊗ Y ∗.

It follows that

‖ idln1 ⊗ϕ
∗ : ln1

λ
⊗ Y ∗ → ln1

γ
⊗ X∗‖ ≤ 1.

Therefore,

πB1 (ϕ∗) = sup
n∈N

{‖ idln1 ⊗ϕ
∗ : ln1

λ
⊗ Y ∗ → ln1

γ
⊗ X∗‖} ≤ 1.

Conversely, suppose that πB1 (ϕ∗) ≤ 1. For any n ∈ N, we have

‖ idln1 ⊗ϕ
∗ : ln1

λ
⊗ Y ∗ → ln1

γ
⊗ X∗‖ ≤ 1.

Let us consider the adjoint of this mapping. Since any Banach space is locally
reflexive, Corollary 14.1.2 in [5] implies that

(ln1
λ
⊗ Y ∗)∗ = ln∞

γ
⊗ Y ∗∗

and

(ln1
γ
⊗ X∗)∗ = B(ln1 , X

∗∗) = ln∞
λ
⊗ X∗∗.

It follows that

‖ idln∞ ⊗ϕ
∗∗ : ln∞

λ
⊗ X∗∗ → ln∞

γ
⊗ Y ∗∗‖ ≤ 1

and
‖ idln∞ ⊗ϕ‖ = ‖(idln∞ ⊗ϕ)∗∗‖ = ‖ idln∞ ⊗ϕ

∗∗‖ ≤ 1.
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So

πB∞(ϕ) = sup
n∈N

{‖ idln∞ ⊗ϕ : ln∞
λ
⊗ X → ln∞

γ
⊗ Y ‖} ≤ 1.

Therefore πB∞(ϕ) = πB1 (ϕ∗). �

Corollary 4.5. πB1 (ϕ) = πB∞(ϕ∗).

Proof. From the definition of πB1 and the local reflexivity of any Banach
space, we have πB1 (ϕ) = πB1 (ϕ∗∗). Thus Theorem 4.4 implies that πB∞(ϕ∗) =
πB1 (ϕ∗∗) = πB1 (ϕ). �

We now turn our attention to linear mappings of operator spaces ϕ : V →
W . The analogs of Theorem 4.4 and Corollary 4.5 are not always true in the
theory of operator spaces. This is closely related to the lack of local reflexivity
of B(H).

Definition 4.6. If ϕ : V →W is a linear mapping operator spaces, then
we define π∞ in [0,∞] by

π∞(ϕ) = ‖ idK∞ ⊗ϕ : K∞⊗̌V → K∞⊗̂W‖
= sup{‖ idMn ⊗ϕ : Mn⊗̌V →Mn⊗̂W‖ : ∀n ∈ N}.

This definition is ‘stable’ in the sense that we may replace the bounded
norms with completely bounded norms. To see this, let us suppose that
π∞(ϕ) ≤ 1. Let us fix n. We have

‖ idMn ⊗ϕ‖cb = sup
p∈N

{‖ idMp ⊗ idMn ⊗ϕ : Mp⊗̌(Mn⊗̌V ) →Mp⊗̌(Mn⊗̂W )‖}.

From Theorem 8.1.10 in [5] and the definition of π∞, the two mappings in the
diagram

Mp⊗̌(Mn⊗̌V ) = Mpn⊗̌V →Mpn⊗̂W = (Mp⊗̌Mn)⊗̂W
→Mp⊗̌(Mn⊗̂W )

are contractions, and thus ‖ idMn ⊗ϕ‖cb ≤ 1. If we let n = 1, then ‖ϕ‖cb ≤ 1,
and thus ‖ϕ‖cb ≤ π∞(ϕ). If π∞(ϕ) < ∞, we say that ϕ is completely ∞-
summing and we refer to π∞(ϕ) as the completely ∞-summing norm of ϕ.
We let Π∞(V,W ) denote the space of all completely ∞-summing mappings
from V into W . For any matrix ϕ = [ϕij ] ∈Mm(Π∞(V,W ))

π∞,m(ϕ) = ‖ id⊗ϕ = [id⊗ϕij ] : K∞⊗̌V →Mm(K∞⊗̂W )‖cb.
Suppose r : U → V, s : W → X, and ϕ : V → Mm(W ). Then it is apparent
from the diagram

K∞⊗̌U
id⊗r−→ K∞⊗̌V

id⊗ϕ−→ Mm(K∞⊗̂W )
(id⊗s)m−→ Mm(K∞⊗̂X)
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that
π∞,m(sm ◦ ϕ ◦ r) ≤ ‖s‖cb · π∞,m(ϕ) · ‖r‖cb.

Therefore, Π∞(·, ·) is an operator space mapping ideal.

Proposition 4.7. For any operator spaces V and W , a linear mapping
ϕ : V → W satisfies π∞(ϕ) ≤ 1 if and only for each n ∈ N and complete
contraction ψ : Tn → V , ν(ϕ ◦ ψ) ≤ 1.

Proof. This is apparent from the commutative diagram

Mn⊗̌V
id⊗ϕ−→ Mn⊗̂W

‖ ‖
CB(Tn, V ) −→ N (Tn,W ) �

Corollary 4.8. The bifunctor Π∞ : (V,W ) → (Π∞(V,W ), π∞)is a lo-
cal operator space mapping ideal, and for any linear mapping ϕ : V → W ,
π∞(ϕ) ≤ ιfr(ϕ) ≤ ι(ϕ).

Proof. We may use the argument for the Banach ∞-summing norm as
Corollary 4.3 to show that Π∞(·, ·) is a local operator space mapping ideal.
From Definition 3.1, Definition 4.1 and Proposition 3.3, π∞(ϕ) ≤ ιfr(ϕ) ≤
ι(ϕ). �

Proposition 4.9. Given operator spaces V,W and a linear mapping ϕ :
V →W , we have π1(ϕ∗) ≤ π∞(ϕ).

Proof. Suppose that π∞(ϕ) ≤ 1. Thus for any n ∈ N

‖ idMn
⊗ϕ : Mn⊗̌V →Mn⊗̂W‖ ≤ 1.

Let us consider the adjoint of this mapping. We have

(Mn⊗̌V )∗ = Tn⊗̂V ∗

and
(Mn⊗̂W )∗ = CB(Mn,W

∗) = Tn⊗̌W ∗.

It follows that
‖ idTn ⊗ϕ∗ : Tn⊗̌W ∗ → Tn⊗̂V ∗‖ ≤ 1.

So
π1(ϕ∗) = sup

n∈N
{‖ idTn ⊗ϕ∗ : Tn⊗̌W ∗ → Tn⊗̂V ∗‖} ≤ 1. �

Corollary 4.10. If V is an operator space for which the identity mapping
idV : V → V satisfies π∞(idV ) <∞, then V must be finite dimensional.
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Proof. From Proposition 4.9,

π1(idV ∗) = π1(id∗V ) ≤ π∞(idV ) <∞.

It follows from the Dvoretzky-Rogers Theorem for operator spaces, V ∗ must
be finite-dimensional and so V is finite-dimensional. �

Theorem 4.11. Given operator spaces V,W and a linear mapping ϕ :
V → W , we have π1(ϕ) ≤ π∞(ϕ∗). Moreover, we have π1(ϕ) = π∞(ϕ∗)
for any operator space W and linear mapping ϕ : V → W if and only if
I(V,Mn) = N (V,Mn) for any n ∈ N.

Proof. Since Mn⊗̂V ∗ → (Tn⊗̌V )∗ is norm-decreasing, we conclude that

π1(ϕ) = sup{‖ id⊗ϕ : Tn⊗̌V → Tn⊗̂W‖ : n ∈ N}
= sup{‖(id⊗ϕ)∗ : (Tn⊗̂W )∗ → (Tn⊗̌V )∗‖ : n ∈ N}
≤ sup{‖ id⊗ϕ∗ : Mn⊗̌W ∗ →Mn⊗̂V ∗‖ : n ∈ N}
= π∞(ϕ∗).

If I(V,Mn) = N (V,Mn), then Mn⊗̂V ∗ → (Tn⊗̌V )∗ is isometric, and the
above calculation implies that π1(ϕ) = π∞(ϕ∗).

Conversely, we first prove Π∞(Tn, V ∗) = N (Tn, V ∗). In fact, it follows
from Corollary 4.8 that π∞(ψ) ≤ ν(ψ) for any ψ : Tn → V ∗. Suppose that
π∞(ψ) ≤ 1 for ψ : Tn → V ∗. Proposition 4.7 shows that for idTn : Tn → Tn,

ν(ψ) = ν(ψ ◦ idTn
) ≤ 1.

Therefore, ν(ψ) = π∞(ψ) and Π∞(Tn, V ∗) = N (Tn, V ∗).
Thus we have the isometries

I(V,Mn) = Π1(V,Mn) = Π∞(Tn, V ∗) = N (Tn, V ∗) = N (V,Mn),

where the first equation follows from Proposition15.5.1 in [5], the second from
the hypothesis and the fourth from Proposition 12.2.5 in [5]. �

Corollary 4.12. If V has the LLP, then we have the isometry

I(V,W ) = Π∞(V,W )

for all operator spaces W .

Proof. Let W be an arbitrary operator space and let ϕ ∈ Π∞(V,W ) with
π∞(ϕ) ≤ 1. For any complete contraction ψ : Tn → V , we may identify ψ
with a contractive element in CB(Tn, V ) = Mn⊗̌V . Then π∞(ϕ) ≤ 1 implies
that ϕ ◦ ψ ∈ N (Tn,W ) = Mn⊗̂W with ν(ϕ ◦ ψ) ≤ 1.

Since V has the LLP, it follows from [12] Theorem 3.2 that for any finite-
dimensional operator subspace L ⊆ V and ε > 0 we have maps s : L → Tn
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and t : Tn → V such that ‖s‖cb · ‖t‖cb < 1 + ε and t ◦ s = ιL. Certainly, we
can suppose that ‖t‖cb < 1, ‖s‖cb < 1 + ε. Then

ν(ϕ|L) = ν(ϕ ◦ t ◦ s) ≤ ν(ϕ ◦ t) · ‖s‖cb < 1 + ε.

Since ε is arbitrary, this implies that ν(ϕ|L) ≤ 1. Therefore, ι(ϕ) ≤ 1. �

5. T -local reflexivity

Definition 5.1. We say that an operator space W is T -locally reflexive
if for any L ⊆ Tn, n ∈ N, every complete contraction ϕ : L∗ → W ∗∗ is the
point-weak∗ limit of a net of linear mappings ϕα : L∗ →W with ‖ϕα‖cb ≤ 1.

It is obvious that any locally reflexive operator space is T -locally reflexive.

Theorem 5.2. Suppose that W is an operator space. Then the following
are equivalent.

(1) W is T -locally reflexive.
(2) For any L ⊆ Tn, n ∈ N, we have the isometry L∗⊗̂W ∗ = (L⊗̌W )∗.
(2)’ For any L ⊆ Tn, n ∈ N, we have the isometry N (W,L∗) = I(W,L∗).
(3) For any n ∈ N, we have the isometry Mn⊗̂W ∗ = (Tn⊗̌W )∗.
(3)’ For any n ∈ N, we have the isometry N (W,Mn) = I(W,Mn).
(4) For any operator space V which is finitely representable, we have the

isometry I(V,W ∗) = (V ⊗̌W )∗.
(5) For any finitely representable operator space V , V ⊗̌ : W ∗∗ = V ⊗̌W ∗∗.
(6) For any operator space V , we have the isometry Π1(W,V ) =

Π∞(V ∗,W ∗).

Proof. (2)⇔(2)’ and (3)⇔(3)’ are immediate from Corollary 12.3.4 in [5],
(4)⇔(5) follows from Proposition 14.2.2 in [5], and (3)’ ⇔(6) follows from
Theorem 4.11.

(2)⇒(3): This is obvious.
(3)⇒(2): For any L ⊆ Tn, n ∈ N, we have the commutative diagram

Mn⊗̂W ∗ = (Tn⊗̌W )∗

↓ ↓
L∗⊗̂W ∗ → (L⊗̌W )∗

where the columns are completely quotient mappings and the top row is iso-
metric from the hypothesis of (3). This implies that we have the isometry

L∗⊗̂W ∗ = (L⊗̌W )∗.

(1)⇔(2): Since for any L ⊆ Tn, n ∈ N

(L∗⊗̂W ∗)∗ = CB(L∗,W ∗∗) = L⊗̌W ∗∗,
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(2) holds if and only if we have the natural isometric isomorphism

L⊗̌W ∗∗ = (L⊗̌W )∗∗.

The corresponding mapping is explicitly given by the norm-increasing linear
isomorphism

τ : L⊗̌W ∗∗ → (L⊗̌W )∗∗.

Thus, the relation is isometric if and only if

ϕ ∈ (L⊗̌W ∗∗)‖·‖≤1 = CB(L∗,W ∗∗)‖·‖cb≤1

implies that
ϕ ∈ (L⊗̌W )∗∗‖·‖≤1.

From the bipolar theorem, the latter is the case if and only if ϕ is a weak∗

limit of elements in

(L⊗̌W )‖·‖≤1 = CB(L∗,W )‖·‖cb≤1.

Since it is evident that

τ : CB(L∗,W ∗∗) → (L⊗̌W )∗∗

is a homeomorphism in the point-weak∗ and weak∗ topologies, we are done.
(4)⇒(2): For any L ⊆ Tn, n ∈ N, we have the isometries

L∗⊗̂W ∗ = N (L,W ∗) = I(L,W ∗) = (L⊗̌W )∗.

(2)⇒(4): From (12.3.9) in [5] we see that

Sint : I(V,W ∗) → (V ⊗̌W )∗

is a contractive injection. Let us suppose that the mapping in (2) is isometric.
If we have a contractive functional F ∈ (V ⊗̌W )∗, then F = S(ϕ) for some
ϕ : V → W ∗ (see Chapter 12 in [5]). For any L ⊆ Tn, n ∈ N, and complete
contraction ψ : L→ V , we have

F ◦ (ψ ⊗ idW ) ∈ (L⊗̌W )∗ and ϕ ◦ ψ : L→W ∗.

Since for any x ∈ L, y ∈W ,

(F ◦ (ψ ⊗ idW ))(x⊗ y) = F (ψ(x)⊗ y) = ϕ(ψ(x))(y),

we have F ◦ (ψ ⊗ idW ) = S(ϕ ◦ ψ). Thus from (2) and L∗⊗̂W ∗ = N (L,W ∗),

ν(ϕ ◦ ψ) = ‖F ◦ (ψ ⊗ idW )‖ ≤ ‖F‖.

Proposition 3.2 shows that ιfr(ϕ) ≤ ‖F‖. Since V is finitely representable, it
follows from Theorem 3.5 that ι(ϕ) = ιfr(ϕ) ≤ ‖F‖. Therefore ι(ϕ) = ‖F‖,
ϕ ∈ I(V,W ∗) and thus I(V,W ∗) = (V ⊗̌W )∗. �

Now we can answer the second ‘dual’ problem raised in Section 1.
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Corollary 5.3. For any n ∈ N, we have

(Tn⊗̌W )∗∗ = Tn⊗̌W ∗∗ ⇔W is T -locally reflexive.

Corollary 5.4. For any n ∈ N, we have

(Mn⊗̂W )∗∗ = Mn⊗̂W ∗∗ ⇔W ∗ is T -locally reflexive.

Proof. Since (Mn⊗̂W )∗∗ = (Tn⊗̌W ∗)∗, the result follows from the equiva-
lence of (1) and (3) in Theorem 5.2. �

Corollary 5.5. If W is T -locally reflexive operator space, then any sub-
space X ⊆W is T -locally reflexive.

Proof. For any finitely representable operator space V , this is immediate
from Theorem 5.2 (5) and the commutative diagram

V ⊗∨ X∗∗ → (V ⊗̌X)∗∗

↓ ↓
V ⊗∨W ∗∗ → (V ⊗̌W )∗∗

in which the columns are automatically isometric. �

As in the case of local reflexivity, we can prove the following result.

Proposition 5.6. An operator space W is T -locally reflexive if and only
if that is the case for each separable subspace of W .
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