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MINIMAL MONOMIAL REDUCTIONS AND THE
REDUCED FIBER RING OF AN EXTREMAL IDEAL

POOJA SINGLA

Abstract. Let I be a monomial ideal in a polynomial ring A =
K[x1, . . . , xn]. We call a monomial ideal J a minimal monomial re-
duction ideal of I if there exists no proper monomial ideal L ⊂ J such
that L is a reduction ideal of I. We prove that there exists a unique
minimal monomial reduction ideal J of I and we show that the maxi-
mum degree of a monomial generator of J determines the slope p of the
linear function reg(It) = pt+c for t� 0. We determine the structure of
the reduced fiber ring F(J)red of J and show that F(J)red is isomorphic
to the inverse limit of an inverse system of semigroup rings determined
by convex geometric properties of J .

Introduction

Let I be a monomial ideal in a polynomial ring A = K[x1, . . . , xn] over a
field K. Let G(I) denote the unique minimal monomial set of generators of I.

Cutkosky-Herzog-Trung [5] and independently Kodiyalam [10] have shown
that for any graded ideal I in a polynomial ring A = K[x1, . . . , xn], the
regularity of It is a linear function pt + c for large enough t. Also the co-
efficient p of the linear function is known and it is given by the min{θ(J) :
J is a graded reduction ideal of I}; see [10]. Here θ(J) denotes the maximum
of the degrees of elements in G(J).

In Section 2 we give a convex geometric interpretation for this coefficient
p for any monomial ideal I ⊂ A: let S be any set of monomials in A. We
denote by Γ(S) ⊂ Nn the set of exponents of the monomials in S. Now let J
be the monomial ideal which is determined by the property that Γ(G(J)) =
ext(I), where ext(I) denotes the extreme points of the convex set conv(I).
Here conv(I) denotes the convex hull of the elements of the set Γ(I) in Rn.
This convex set is commonly called the Newton polyhedron of I. We show in
Proposition 2.1 that the ideal J is the unique minimal monomial reduction
ideal of I, that is, there exists no proper monomial ideal L ⊂ J such that L
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is again a reduction ideal of I. It turns out that p = θ(J). In other words,
p = max{deg xa : a ∈ ext(I)}.

We call a reduction ideal L of I to be a Kodiyalam reduction if θ(L) = p.
Thus the ideal J generated by monomials whose exponents belong to ext(I)
is a Kodiyalam reduction.

We call a monomial ideal L to be an extremal ideal if Γ(G(L)) = ext(L).
In other words, L is an extremal ideal if L is its own minimal monomial
reduction. Notice that each squarefree monomial ideal is an extremal ideal.
Let µ(L) denote the number of generators in a minimal generating set of a
graded ideal L. It is easy to see that µ(Rad I) is bounded above by | ext(I)|
for any monomial ideal I ⊂ A.

In Section 3 we describe the faces of conv(Im) for a monomial ideal I, and
compare the supporting hyperplanes and the faces of conv(In1) and conv(In2)
for two positive integers n1, n2.

In Section 4 we determine the structure of the reduced fiber ring F(L)red
of an extremal ideal L. For any graded ideal L ⊂ A = K[x1, . . . , xn], the
fiber ring F(L) is defined to be R(L)/mR(L) =

⊕
n≥0 L

n/mLn, where R(L)
is the Rees ring and m = (x1, . . . , xn) ⊂ A is the graded maximal ideal of
A. The main motivation to study the structure of the reduced fiber ring
of an extremal ideal is to determine the dimension of the fiber ring of an
arbitrary monomial ideal. Let I ⊂ A be a monomial ideal and J ⊂ I be its
minimal monomial reduction. Then J is an extremal ideal, and dimF(I) =
dimF(J) = dimF(J)red. So as far as dimension is concerned, it is enough
to consider the reduced fiber ring F(J)red of the extremal ideal J , whose
structure is in general much simpler than that of F(J).

Let Fc denote the set of all compact faces of conv(I). It is shown in Lemma
3.1 that for each F ∈ Fc, we have F = conv{aj1 , . . . , ajt}, where F ∩ ext(I) =
{aj1 , . . . , ajt}. For each F ∈ Fc we put K[F ] = K[xaj t : aj ∈ F ]. As the main
result of Section 4 we show in Theorem 4.9 that F(J)red ∼= lim←−F∈FcK[F ].
As an application of Theorem 4.9 we get in the particular case of monomial
ideals a result of Carles Bivia-Ausina [4] on the analytic spread of a Newton
non-degenerate ideal.

Let L denote the integral closure of an ideal L. In Section 5, using convex
geometric arguments, we show in Theorem 5.1 that I` = JI`−1, where ` is the
analytic spread of I. If we assume that Ia is integrally closed for a ≤ ` − 1,
then, as a corollary of Theorem 5.1, we obtain that I` = JI`−1, and that I is
a normal ideal.

I am very much grateful to Prof. Herzog for many helpful discussions and
comments.
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1. Some preliminaries on the convex geometry of monomial ideals

Let I be a monomial ideal in a polynomial ring A = K[x1, . . . , xn] over a
field K. We denote by G(I) the unique minimal monomial generating set of
I.

For a monomial u = xa = x
a(1)
1 · · ·xa(n)

n ∈ A, we denote by Γ(u) the
exponent vector (a(1), . . . , a(n)) of u. Similarly, if S is any set of monomials
in A, we set Γ(S) = {Γ(u) : u ∈ S}.

We denote the convex hull of Γ(I) by conv(I). Here Γ(I) = {a : xa ∈ I}.
Recall that conv(I) is a polyhedron. A polyhedron can be defined as the
intersection of finitely many closed half spaces. A polyhedron may also be
thought of as the sum of a polytope (which is the convex hull of a finite set
of points) and the positive cone generated by a finite set of vectors. Indeed
these two notions are equivalent; see [15, Theorem 1.2].

Suppose that G(I) = {xa1 , . . . , xas}. Then

conv(I) = conv{a1, a2, . . . , as}+ Rn
≥0;

see [12, Lemma 4.3]. Here the positive cone Rn
≥0 denotes the set of vectors

u ∈ Rn such that u(i) ≥ 0 for all i = 1, . . . , n. It follows that conv(I) is a
polyhedron. It is called the Newton polyhedron of I.

Let Hi = {v ∈ Rn | 〈v, ui〉 = ci}, where ui ∈ Rn , ci ∈ R for i = 1, . . . ,m,
be the hyperplanes in Rn such that conv(I) = {v ∈ Rn| 〈v, ui〉 ≥ ci, i =
1, . . . ,m}. We observe:

Lemma 1.1. The vectors ui belong to Rn
≥0 for i = 1, . . . ,m.

The zero dimensional faces of a convex set X ∈ Rn are called exposed
points. A point a ∈ X is said to be an extreme point, provided b, c ∈ X,
0 < λ < 1, and a = λb+ (1− λ)c, implies a = b = c (see [7]).

We denote the extreme points of conv(I) by ext(I) and the exposed points
of conv(I) by exp(I). We have the following result:

Proposition 1.2. Let I be a monomial ideal in a polynomial ring A =
K[x1, . . . , xn] over a field K. Then, a ∈ exp(I) implies xa ∈ G(I).

Remark 1.3. For any closed convex set X ⊂ Rn, one has exp(X) ⊂
ext(X) and ext(X) ⊂ cl(exp(X)), where cl(exp(X)) denotes the closure of X
in Rn with respect to the usual topology (see [7, Statement 3 and 9, Section
2.4 ]). In case X = conv(I), one has that exp(I) is a finite set. Therefore
cl(exp(I)) = exp(I), and hence exp(I) = ext(I) ⊂ Γ(G(I)).

2. Minimal monomial reduction ideal

In this section we show that for any monomial ideal I ∈ A = K[x1, . . . , xn],
there exists a unique minimal monomial reduction ideal J of I. We also show
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that the minimal monomial reduction ideal J of a monomial ideal I is a
Kodiyalam reduction of I

Let L ⊂ A = K[x1, . . . , xn] be a graded ideal. An ideal N ⊂ L is said
to be a reduction ideal of L, if there exists a positive integer m such that
NLm−1 = Lm. Let Ī denote the integral closure of an ideal I. It is known
that N ⊂ L is a reduction ideal of L if and only if N = L (see [3, Exercise
10.2.10(c)]).

Now let I ⊂ K[x1, . . . , xn] be a monomial ideal. We call a monomial ideal
J ⊂ I a minimal monomial reduction ideal of I if there exists no proper
monomial ideal J ′ ⊂ J such that J ′ is a reduction ideal of I. For a monomial
ideal one has

Γ(Ī) = conv(I) ∩ Nn

(see [6, Exercise 4.22 ]). Hence a monomial ideal J ⊂ I is a reduction ideal of
I if and only if conv(J) = conv(I). Using this fact and

conv(I) = conv(ext(I)) + Rn
≥0,(1)

one easily obtains:

Proposition 2.1. Let I be a monomial ideal in a polynomial ring A =
K[x1, . . . , xn] over a field K with ext(I) = {a1, . . . , ar}. Then the ideal J =
(xa1 , . . . , xar ) is the unique minimal monomial reduction ideal of I.

For the following corollary, we need to define the notion of a supporting
hyperplane and a face of a convex set conv(I).

We say that H = {v ∈ Rn | 〈v, u〉 = c} is a supporting hyperplane of
conv(I) if conv(I) ⊂ H+ = {v ∈ Rn | 〈v, u〉 ≥ c} and conv(I) ∩ H 6= ∅.
Again, we may notice as in Lemma 1.1 that for every supporting hyperplane
H = {v ∈ Rn | 〈v, u〉 = c} ⊂ Rn of conv(I) one has u ∈ Rn

≥0.
A set F ⊂ conv(I) is called a face of conv(I), if either F = ∅, or F =

conv(I), or if there exists a supporting hyperplane H of conv(I) such that
F = conv(I) ∩ H. We call F to be a proper face of conv(I) if F 6= conv(I)
and F 6= ∅.

Let F be a proper face of conv(I). Let H = {v ∈ Rn | 〈v, u〉 = c} be
a supporting hyperplane of conv(I) such that F = H ∩ conv(I). It may
be observed that F is a compact face of conv(I) if and only if the vector
u ∈ (R+\{0})n, i.e., u(j) > 0 for all j = 1, . . . , n.

For all nonnegative integersm, we define the ideal J [m] := (xma1 , . . . , xmar ).

Corollary 2.2. The ideal J [m] is the unique minimal monomial reduc-
tion ideal of Im for all m.

Proof. Let us fix an m, and denote by Jm the unique monomial reduction
ideal of Im. First notice that J [m] is a monomial reduction ideal of Im.
Indeed, as J [m] is a monomial reduction ideal of Jm and Jm is a monomial
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reduction ideal of Im, we have that J [m] is a reduction ideal of Im. Therefore
Jm ⊂ J [m], by Theorem 2.1.

Next we claim that ext(Im) ⊃ {ma1, . . . ,mar}, and this will imply that
J [m] ⊂ Jm, by Theorem 2.1.

Let Hi = {v ∈ Rn | 〈v, ui〉 = ci} be a supporting hyperplane of conv(I)
such that Hi ∩ conv(I) = {ai} for i = 1, . . . , r. We define the hyperplanes
mHi = {v ∈ Rn | 〈v, ui〉 = mci}, i = 1, . . . , r, and show that mHi is a
supporting hyperplane of conv(Im) with mHi ∩ conv(Im) = {mai}. This
then will imply the above claim.

It is clear that mai ∈ mHi ∩ conv(Im). Now let a ∈ Γ(Im) be an arbitrary
element. Then a =

∑m
j=1 aij + v, where v ∈ Nn. It follows that 〈a, ui〉 ≥ mci,

and is equal to mci if and only if a = mai, as ui ∈ (R+/{0})n. Therefore
〈b, ui〉 ≥ mci for all b ∈ conv(Im), and equality holds if and only if b =
mai. �

Let I be a graded ideal in a polynomial ring A = K[x1, . . . , xn] over a
field K. The ith regularity of an ideal I is defined to be regi(I) = max{j :
TorA

i (I,K)i+j 6= 0} and the Castelnuovo-Mumford regularity of I is defined
to be reg(I) = max{regi(I)}.

Cutkosky-Herzog-Trung [5] and independently Kodiyalam [10] have shown
that reg(It) = pt + c for t � 0. Also the coefficient of the linear function is
known and it is given by

p = min{θ(J) : J is a graded reduction ideal of I};
see [10]. Here θ(J) denotes the maximum of the degrees of elements in G(J).
We define a reduction ideal J of I to be a Kodiyalam reduction if θ(J) = p.

More generally, it is shown in [5] that regi(It) = pit + qi for t � 0 are
linear functions. From the arguments in Kodiyalam’s paper [10] it follows
immediately that p0 = p.

Corollary 2.3. Let I be a monomial ideal in K[x1, . . . , xn]. Then the
minimal monomial reduction ideal J of I is a Kodiyalam reduction.

Proof. The proof proceeds along the lines of arguments of Kodiyalam (see
[10, Proposition 4]). By the very definition of p, we have θ(J) ≥ p. We
now show that θ(J) ≤ p. It is enough to find a monomial reduction ideal L
such that θ(L) ≤ p, as G(J) ⊂ G(L) because Γ(G(J)) = ext(I) = ext(L) ⊂
Γ(G(L)). Notice that ext(I) = ext(L), as L ⊂ I being a reduction ideal of I,
we have conv(I) = conv(L).

Consider the minimal monomial generating system of I, given by f1, . . . , fs,
where deg fi = di for all i and d1 ≤ · · · ≤ ds. Let j be the largest integer such
that fk

j /∈ mIk for any k, where m is the maximal graded ideal in A. Then
reg0(It) ≥ djt for all t. Set L = (f1, . . . , fj) and P = (fj+1, . . . , fs). Clearly,
L is a monomial ideal with θ(L) = dj . We claim that L is a reduction ideal
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of I. By the very choice of j, P t ⊂ mIt for some t. Then It = (L + P )t =
L(L + P )t−1 + P t ⊂ LIt−1 + mIt. Hence, by Nakayama’s lemma, it follows
that L is a reduction ideal of I. Now, as θ(L) = dj and djt ≤ pt + q0 for
t� 0, we have dj ≤ p. Hence θ(L) ≤ p. �

We call a monomial ideal L an extremal ideal, if G(L) = ext(L). In other
words, a monomial ideal L is an extremal ideal if it is the minimal monomial
reduction of itself. In particular, the ideal J in Theorem 2.1 is an extremal
ideal.

Remarks 2.4. 1. Every squarefree monomial ideal is an extremal ideal.
Let N ⊂ A be a squarefree monomial ideal and let xa ∈ G(N) be a monomial
generator. We show that a ∈ ext(N). As N is squarefree, for all i, one has
a(i) = 1 or a(i) = 0. Let r ≤ n be the cardinality of i’s such that a(i) = 1. We
define a vector u ∈ Nn given by u(i) = 1 if a(i) = 1 and u(i) = n+1 if a(i) = 0.
We claim that the hyperplane S = {v ∈ Rn : 〈v, u〉 = r} is a supporting
hyperplane of conv(N) with S ∩ conv(N) = {a}, which will imply that a ∈
ext(N). Clearly, S∩conv(N) ⊃ {a}. Let b ∈ conv(N) = conv(Γ(G(N))+Rn

≥0

with b 6= a be an arbitrary element. We claim that 〈b, u〉 > r. Notice that
it is enough to consider b ∈ Γ(G(N)). Since xa, xb ∈ G(N), we notice that
there exists an i such that b(i) = 1 and a(i) = 0. Hence 〈b, u〉 ≥ n+ 1 and so
〈b, u〉 > r. Hence the claim.

Let µ(L) denote the number of generators in a minimal generating set of a
graded ideal L.

2. Let I ⊂ A be a monomial ideal. Then we have µ(Rad I) ≤ | ext(I)|. In
fact, let J ⊂ I be the minimal monomial reduction ideal of I. Then one has
RadJ = Rad I. Hence µ(Rad I) = µ(RadJ) ≤ µ(J) = |G(J)| = | ext(I)|.

3. A description of the faces of conv(Im)

Let I = (xa1 , xa2 , . . . , xas) ⊂ A = K[x1, . . . , xn] be a monomial ideal.
We may assume that ext(I) := {a1, . . . , ar} is the set of extremal points
of the convex hull of I after a proper rearrangement of generators. Then
J = (xa1 , xa2 , . . . , xar ) is the minimal monomial reduction ideal of I; see
Theorem 2.1.

Next we consider the set of faces of conv(I). Let F denote the set of proper
faces and let Fc ⊂ F denote the set of compact faces of conv(I). Let F ∈ F
and S := {v ∈ Rn | 〈v, u〉 = c} be a supporting hyperplane of conv(I) such
that S∩conv(I) = F . It may be observed that F ∈ Fc if and only if the vector
u ∈ (R+\{0})n. For j = 1, . . . , n, we define ej = (0, . . . , 0, 1, . . . , 0) ∈ Rn to
be the unit vectors, 1 being at the jth place.

With this notation, we have:

Lemma 3.1. Let F ∈ F be a face of conv(I), and let S = {v ∈ Rn : 〈v, u〉 =
c} be a supporting hyperplane of conv(I) such that F = S ∩ conv(I). Then
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F ∩ ext(I) 6= ∅, and

F = conv{aj1 , . . . , ajt
}+

∑
{j : u(j)=0}

R≥0ej ,

where F ∩ ext(I) = {aj1 , . . . , ajt}.

As an immediate consequence of Lemma 3.1 we obtain:

Corollary 3.2. Let S = {v ∈ Rn | 〈v, u〉 = c} be a hyperplane. Then
S is a supporting hyperplane of conv(I) if and only if 〈ai, u〉 ≥ c for all
ai ∈ ext(I) and 〈aj , u〉 = c for some aj ∈ ext(I).

Lemma 3.3. Let S = {v ∈ Rn | 〈v, u〉 = c}, where u ∈ Rn, c ∈ R, be a
hyperplane, and let n1, n2 ≥ 1 be two integers and q = n2/n1. Then S is a
supporting hyperplane of conv(In1) if and only if qS = {v ∈ Rn | 〈v, u〉 = qc}
is a supporting hyperplane of conv(In2).

Proof. We know by Corollary 2.2 that ext(Im) = (ma1, . . . ,mar) for all
m ≥ 1. Now S is a supporting hyperplane of conv(In1) if and only if
〈n1ai, u〉 ≥ c for all n1ai ∈ ext(In1) and 〈n1aj , u〉 = c for some n1aj ∈
ext(In1). This is the case if and only if 〈n2ai, u〉 = 〈(n2/n1)n1ai, u〉 =
q〈n1ai, u〉 ≥ qc and 〈n2aj , u〉 = q〈n1aj , u〉 = qc. This is equivalent to saying
that qS is a supporting hyperplane of conv(In2); see Corollary 3.2. �

Let F be the set of proper faces of conv(I). For each F ∈ F we choose
a hyperplane S = {v ∈ Rn | 〈v, u〉 = c} with F = S ∩ conv(I). Then by
Lemma 3.3, for any nonnegative integer m, the hyperplane mS is a supporting
hyperplane of conv(Im), and we set mF = mS ∩ conv(Im). It is easy to see
that this definition does not depend on the choice of S. Indeed,

mF = conv{maj1 , . . . ,majt
}+

∑
{j : u(j)=0}

R≥0ej

if F ∩ ext(I) = {aj1 , . . . , ajt}. We denote by mF the set of proper faces of
conv(Im).

As an immediate consequence of Lemma 3.3 we get:

Corollary 3.4. The map F → mF , F 7→ mF is bijective.

4. The structure of the reduced fiber ring of an extremal ideal

The main result of this section is Theorem 4.9, which gives us the structure
of the reduced fiber ring of an extremal ideal. We proceed gradually towards
it preparing the ground to prove it. We will use all the notation from previous
section.
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Recall that a monomial ideal L ⊂ A = K[x1, . . . , xn] is said to be an
extremal ideal if Γ(G(L)) = ext(L). In other words, an extremal ideal is the
minimal monomial reduction of itself; see Proposition 2.1.

The main motivation to study the structure of the reduced fiber ring
F(J)red of an extremal ideal is to determine the dimension of the fiber ring
F(I) for any monomial ideal I. As dimF(I) = dimF(J) = dimF(J)red, it is
enough to consider the reduced fiber ring F(J)red as far as the dimension is
concerned. We will see that in general the structure of the reduced fiber ring
of an extremal ideal is more simple than that of the original fiber ring.

For the proof of Theorem 4.3 we shall need the following result:

Lemma 4.1. Let a =
∑r

i=1 liai, where li are nonnegative integers,
∑
li =

m, and ext(I) = {a1, . . . , ar}. If {ai : li 6= 0} 6⊂ F for some F ∈ F , then
a /∈ mF .

Proof. Let S = {v ∈ Rn | 〈v, u〉 = c} be a supporting hyperplane of conv(I)
such that S∩conv(I) = F . ThenmS = {v ∈ Rn | 〈v, u〉 = mc} is a supporting
hyperplane of conv(Im) such that mS ∩ conv(Im) = mF .

Suppose that a ∈ mF . Then we have 〈a, u〉 = mc. Since {ai : li 6= 0} 6⊂ F ,
there exists at least one j such that 〈aj , u〉 > c. This implies that 〈a, u〉 > mc,
a contradiction. �

Remark 4.2. From the above lemma, it follows that if {ai : li 6= 0} 6⊂ F
for any F ∈ F , then a /∈ G for any G ∈ mF . Indeed, for every G ∈ mF there
exists F ∈ F such that G = mF , by Corollary 3.4.

The following theorem is crucial in our study of the structure of the reduced
fiber ring of an extremal ideal.

Theorem 4.3. Let J be an extremal ideal with G(J) = {f1, . . . , fr} and
fj = xaj for j = 1, . . . , r. Let Z = {aj1 , . . . , ajt} be a subset of Γ(G(J)).
Then the following conditions are equivalent:

(1) Z ⊂ F for some compact face F ∈ F .
(2) For all li ≥ 0 one has f l1

j1
· · · f lt

jt
∈ G(Jm), where m =

∑t
i=1 li.

(3) For all li � 0 one has f l1
j1
· · · f lt

jt
∈ G(Jm), where m =

∑t
i=1 li.

Proof. (1) =⇒ (2): Suppose there exist some nonnegative integers li such
that f ′ = f l1

j1
· · · f lt

jt
/∈ G(Jm), where m =

∑
li. Then there exists g ∈ G(Jm)

such that f ′ = hg, where deg h > 0. Let S := {v ∈ Rn | 〈v, u〉 = c}
be a supporting hyperplane such that F = S ∩ conv(J). Notice that, as F
is a compact face, the vector u belongs to (R+\{0})n. Now since Z ⊂ F ,
〈ajk

, u〉 = c for all k = 1, . . . , t. Then we have 〈Γ(f ′), u〉 = mc, but since
〈Γ(h), u〉 > 0 and 〈Γ(g), u〉 ≥ mc, one has 〈Γ(hg), u〉 > mc, a contradiction.

(2) =⇒ (3) is trivial.
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(3) =⇒ (1): Suppose that Z 6⊂ F for any compact face F ∈ F . We will
prove that for all li � 0 we have f l1

j1
· · · f lt

jt
/∈ G(Jm), where m =

∑t
i=1 li.

Let f = fj1 · · · fjt . We will show that fm0 = fm0
j1
· · · fm0

jt
/∈ G(Jm0t) for

some positive integer m0. From this it clearly follows that f l1
j1
· · · f lt

jt
/∈ G(Jm)

for all li ≥ m0, where m =
∑
li .

Notice that in order to show that fm /∈ G(Jmt) for some m, it is enough
to show that fk /∈ G(Jkt) for some k. Let fk /∈ G(Jkt) for some k. Then
fk = gh, where h ∈ G(Jkt) and deg g > 0. Now, as h ∈ G(Jkt), hk1 ∈ Jktk1

for some k1, which implies that fkk1 = gk1hk1 /∈ G(Jktk1). Hence, taking
m = kk1, we have fm /∈ G(Jmt).

We have assumed that Z 6⊂ F for any compact face F ∈ F , but nevertheless
Z may be a subset of a noncompact face in F . We divide the proof in two
cases depending on whether Z is a subset of some noncompact face or not.

Case 1: First we assume that Z 6⊂ F for any face (compact or noncompact)
F ∈ F . Suppose fm ∈ G(Jmt) for all m. Without loss of generality, let x1|f .
Since f ∈ G(J t), g = f/x1 /∈ J t. Hence f ∈ conv(J t) and g /∈ conv(J t). Let
l be the line segment joining Γ(f) and Γ(g). Then l intersects conv(J t) at
some point p ∈ tF , where F is a face of conv(J); see Corollary 3.4. Notice
that p 6= Γ(f); see Remark 4.2. Hence, Γ(f) = p + v, where 0 < ‖v‖ < 1.
Now, for any m, consider the line segment joining Γ(fm) and Γ(gm). Denote
this line segment by ml. We have Γ(fm) = mp + mv, where mp ∈ mtF

and mtF is a face of conv(Jmt). Again, as fm ∈ G(Jmt), fm/x1 /∈ Jmt.
Notice that Γ(fm/x1) and mp lie on ml, and since Γ(fm/x1) /∈ conv(Jmt) and
mp ∈ conv(Jmt), we have ‖mv‖ = ‖mp−Γ(fm)‖ ≤ ‖Γ(fm)−Γ(fm/x1)‖ = 1
for any m, a contradiction.

Case 2: Now assume that Z ⊂ G for some noncompact face G ∈ F and
that {aj1 , . . . , ajt} 6⊂ F for any compact face F ∈ F . We prove that fm /∈
G(Jmt) for some m = m0 by induction on dimG. If dimG = 1, then f /∈
G(J t), because it follows from Lemma 3.1 that the only point on tG which
corresponds to a generator of J t is an extremal point of conv(J t) and certainly
a = aj1 + · · · + ajt is not an extremal point of conv(J t); see Corollary 2.2.
Now let dimG = p > 1. We may assume that {aj1 , . . . , ajt} 6⊂ G′ for any
proper face G′ of G. If {aj1 , . . . , ajt} ⊂ G′ for some proper face G′ of G, then
G′ is a noncompact face of G with dimG′ < dimG and we are through by
induction.

Let S := {v ∈ Rn | 〈v, u〉 = c} be the supporting hyperplane of conv(J)
such that S ∩ conv(J) = G. Since G is a noncompact face, there exists j
such that u(j) = 0. Consider aλ := aj1 + · · · + ajt

− λ(0, . . . , 1, . . . , 0), 1
being at the jth place, λ ≥ 0. Notice that there exists λ0 > 0 such that
aλ0 /∈ conv(J). Let l0 be the line segment joining a and aλ0 . As a ∈ l0 ∩ tG,
the intersection of l0 with tG is a nonempty convex set. Let l = l0∩ tG be the
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line segment joining a and aλ′ , where aλ′ lies on some proper face tG′ of tG
and λ′ > 0, as dimG′ < dimG. Also aλ′ < a, so we have a = aλ′ + w, with
‖w‖ = λ′ > 0. For any positive integer m, maλ′ ∈ mtG′ and ‖ma−maλ′‖ =
m‖a − aλ′‖ = m‖w‖ > 0. Let for m = m0, m‖w‖ ≥ 1. Then for m = m0,
ma and ma − (0, . . . , 1, . . . , 0) lies on mtG, 1 being at the jth place, so that
Γ(fm/xj) ∈ mtG, which implies that fm/xj ∈ Jmt and hence fm 6∈ G(Jmt)
for m = m0. �

Let S = K[x1, . . . , xn, y1, . . . , yr] be a bigraded polynomial ring with deg xi

= (1, 0) and deg yj = (dj , 1). Recall that J = (f1, . . . , fr), where fj = xaj

and deg fj = dj . Let ϕ be the surjective homomorphism from S to R(J) =
K[x1, . . . , xn, f1t, . . . , frt], given by xi 7→ xi and yj 7→ fjt so that S/L ∼=
R(J), where the ideal L is generated by binomials of the type g1h1 − g2h2,
where g1, g2 are monomials in xi and h1, h2 are monomials in yj . Notice that
deg h1 = deg h2.

Now consider the fiber ring F(J) = R(J)/mR(J) of the ideal J , where
m = (x1, . . . , xn) ⊂ A. Then F(J) ∼= S/(L,m) ∼= T/D and hence F(J)red ∼=
T/RadD, where D is the image of the ideal L in T = S/m, and T =
K[y1, . . . , yr]. Let ψ = ϕ ⊗ S/m : T → F(J) be the induced epimorphism.
We have D = Kerψ. Notice that the ideal D is generated by monomials and
homogeneous binomials in the yj . In fact, if g1h1 − g2h2 is a generator of L,
then its image in T is a monomial if one of the gi belongs to m; otherwise it
is a homogeneous binomial. We have the following lemma:

Lemma 4.4. Let b = b1 − b2 ∈ D be a homogeneous binomial generator
of D with b1 = yl1

i1
· · · ylu

iu
, b2 = ym1

j1
· · · ymv

jv
and

∑u
i=1 li =

∑v
j=1mj = t. If

{ai1 , . . . , aiu} ⊂ G for some G ∈ Fc, then also {aj1 , . . . , ajv} ⊂ G .

Proof. As b ∈ D, we have ψ(b) = 0, i.e., ψ(b1) = ψ(b2). Therefore we have
xl1ai1 · · ·xluaiu = xm1aj1 · · ·xmvajv , and so

∑u
p=1 lpaip =

∑v
k=1mkajk

. Let
{ai1 , . . . , aiu} ⊂ G for some G ∈ Fc. We show that {aj1 , . . . , ajv} ⊂ G. Let
S := {v ∈ Rn | 〈v, u〉 = c}, be the supporting hyperplane of conv(J) such
that S ∩ conv(J) = G.

We have 〈
∑v

k=1mkajk
, u〉 = 〈

∑u
p=1 lpaip , u〉 = tc. Suppose {aj1 , . . . , ajv} 6⊂

G. Then there exists at least one k0 ∈ {1, . . . , v} such that ajk0
/∈ G. Since

〈ajk
, u〉 ≥ c for all k, it follows that 〈ajk0

, u〉 > c, which in turn implies that
〈
∑v

k=1 lkajk
, u〉 > tc, a contradiction. �

We denote by Fc the set of compact faces, and by Fmc the set of maximal
compact faces of conv(J). Let F ∈ Fmc; we set PF = (yj : aj /∈ F ) and we
denote by BF the kernel of θF : K[yj : aj ∈ F ] → K[F ] := K[fjt : aj ∈ F ],
where θF (yj) = fjt.

With the notation introduced we have:
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Proposition 4.5. We have RadD = (
⋂

F∈Fmc
PF ,

∑
F∈Fmc

BF ) =⋂
F∈Fmc

(PF , BF ).

Proof. For the proof we proceed in several steps.

Step 1: Let f be a monomial in T . We claim that f ∈ RadD ⇐⇒ f ∈⋂
F∈Fmc

PF .
We may assume that f is squarefree. So let f = yj1 . . . yjk

with j1 < j2 <
· · · < jk and assume that f ∈ RadD. Then fn0 ∈ D for some integer n0,
and hence ψ(fn0) = 0. This implies that xn0aj1 · · ·xn0ajk ∈ mJn0k. Hence
xnaj1 · · ·xnajk is not a minimal generator of Jnk for any n ≥ n0. Now Theorem
4.3 implies that {aj1, . . . , ajk} 6⊂ F for any compact face F ∈ F . This shows
that f ∈

⋂
F∈Fmc

PF .
Conversely, assume that f ∈

⋂
F∈Fmc

PF . Then {aj1 , . . . , ajk
} 6⊂ F for

any F ∈ Fmc. This implies that {aj1 , . . . , ajk
} 6⊂ F for any compact face.

From Theorem 4.3 we conclude that there exists an integer m such that
(xaj1 · · ·xajk )m ∈ mJkm. Since ψ(fm) = (xaj1 · · ·xajk )m it follows that
fm ∈ D, and hence f ∈ RadD.

Step 2: D ⊂ (
⋂

F∈Fmc
PF ,

∑
F∈Fmc

BF ).
It follows from the first step that all monomial generators in D belong

to the ideal (
⋂

F∈Fmc
PF ,

∑
F∈Fmc

BF ). Now let b = b1 − b2 be one of the
homogeneous binomial generators of D with b1 = yl1

i1
· · · ylu

iu
, b2 = ym1

j1
· · · ymv

jv

and
∑u

i=1 li =
∑v

j=1mj = t. As b ∈ D, we have ψ(b) = 0, i.e., ψ(b1) = ψ(b2).
Therefore we have xl1ai1 · · ·xluaiu = xm1aj1 · · ·xmvajv , and so

∑u
p=1 lpaip =∑v

k=1mkajk
. We show that b ∈

∑
F∈Fmc

BF , if b /∈
⋂

F∈Fmc
PF . In fact, if

b /∈
⋂

F∈Fmc
PF , then one of the bi, say b1, satisfies b1 /∈

⋂
F∈Fmc

PF . This
implies that {a11, . . . , a1u} ⊆ G for some compact face G ∈ Fmc and then
from Lemma 4.4, {a21, . . . , a2v} ⊆ G. Hence, b = b1 − b2 ∈ BG.

Step 3:
∑

F∈Fmc
BF ⊂ D.

Notice that BF = Ker θF and D = Kerψ. Certainly, for each F ∈ Fmc,
Ker θF ⊂ Kerψ and hence

∑
F∈Fmc

BF ⊂ D.

Step 4:
⋂

F∈Fmc
(PF , BF ) = (

⋂
F∈Fmc

PF ,
∑

F∈Fmc
BF ).

For each F ∈ Fmc, let QF = (PF , BF ), and let M =
⋂

F∈Fmc
PF and

B =
∑

F∈Fmc
BF . In order to show that (M,B) =

⋂
F∈Fmc

QF , we proceed
in the following steps:

(i) First we show (M,B) ⊂
⋂

F∈Fmc
QF . Clearly, for each F ∈ Fmc, M ⊂

QF . Now we also prove that B ⊂ QF for all F ∈ Fmc. Take b = b1 − b2 ∈ B
with b1 = yl1

i1
· · · ylu

iu
, b2 = ym1

j1
· · · ymv

jv
and

∑u
i=1 li =

∑v
j=1mj = t. Suppose

that b /∈ BG. We will prove b ∈ PG. As b /∈ BG, this implies that for one of
the bi, say for b1, there exists yip |b1 such that aip /∈ G. Once we have shown
that there exists also some k ∈ {1, . . . , v} such that yjk

|b2 and ajk
/∈ G, it will
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follow that b1, b2 ∈ PG and hence b ∈ PG. Suppose this is not the case. Then
{aj1 , . . . , ajv} ⊆ G. But then from Lemma 4.4, we have {ai1 , . . . , aiv} ⊆ G,
which is a contradiction. Hence we have (M,B) ⊂

⋂
F∈Fmc

QF .
(ii) Notice that for each F ∈ Fmc, QF is a prime ideal. Indeed, QF being

the kernel of the surjective map πF : K[y1, . . . , yr]→ K[fit : ai ∈ F ] given by
πF (yj) = fjt, if aj ∈ F and πF (yj) = 0, if aj /∈ F , the assertion follows.

(iii) We claim that {QF : F ∈ Fmc} is the set of all minimal prime ideals
containing (M,B). Let P be any prime ideal containing (M,B). Then P ⊃
M =

⋂
Fmc

PF and so P ⊃ PG for some G ∈ Fmc. Also, P ⊃ B =
∑
BF .

Hence P ⊃ QG.
(iv) We claim that (M,B) is a radical ideal, that is, Rad(M,B) = (M,B).

This amounts to proving that for all QF , (M,B)TQF
= QFTQF

. Fix G ∈ Fmc.
Then {yi : ai ∈ G} ⊂ T\QG, and hence all yi such that ai ∈ G are invertible
in TQG

. For all PF , F 6= G, there exists at least one yj ∈ PF such that
yj ∈ G, as otherwise PF ⊂ PG, which implies that F ⊃ G, a contradiction.
Hence for all F 6= G, PFTQG

= TQG
. Therefore we have (M,B)TQG

=
(
⋂

F∈Fmc
PF ,

∑
F∈Fmc

BF )TQG
= (PG,

∑
F∈Fmc

BF )TQG
= (PG, BG)TQG

=
QGTQG

.

Since by (iii) we have Rad(M,B) =
⋂

F∈Fmc
QF , it follows then that

(M,B) =
⋂

F∈Fmc
QF . Now by Step 1, Step 2 and Step 3, one has

D ⊂
( ⋂

F∈Fmc

PF ,
∑

F∈Fmc

BF

)
⊂ RadD.

Finally by Step 4, we have (
⋂

F∈Fmc
PF ,

∑
F∈Fmc

BF ) =
⋂

F∈Fmc
(PF , BF ),

which is a radical ideal. Hence we have RadD = (
⋂

F∈Fmc
PF ,

∑
F∈Fmc

BF ) =⋂
F∈Fmc

(PF , BF ). �

We denote by Min(R) the set of minimal prime ideals of a ring R.

Corollary 4.6. Let I ⊂ A be a monomial ideal. Then there is an injec-
tive map

Fmc → Min(F(I)).
This map is bijective if I is an extremal ideal.

Proof. Let J be the minimal monomial reduction ideal of I. Then J is an
extremal ideal. From the above proposition, F(J)red ∼= T/

⋂
F∈Fmc

(PF , BF ),
where (PF , BF ) is a prime ideal for each F ∈ Fmc. Hence there is a bijective
map

ρ1 : Fmc → Min(F(J))
given by F 7→ (PF , BF )/D.

As F(I) is integral over F(J), for each P ∈ Min(F(J)) there exists a
minimal prime ideal Q ∈ Min(F(I)) such that P = Q ∩ F(J). Therefore
there exists an injective map ρ2 from Min(F(J)) to Min(F(I)), and hence
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ρ = ρ2 ◦ ρ1 : Fmc → Min(F(I)) is the desired injective map. Finally, if I is
extremal, then I = J and ρ = ρ1 is a bijection. �

The next corollary gives a combinatorial characterization of the property
that the fiber ring of an extremal ideal J is a domain.

Corollary 4.7. Let J = (xa1 , . . . , xar ) be an extremal ideal. Then the
following conditions are equivalent:

(1) The fiber ring F(J) is a domain.
(2) The reduced fiber ring F(J)red is a domain.
(3) |Fmc| = 1.

Proof. (1) =⇒ (2) is obvious, and (2)⇐⇒ (3) follows from Corollary 4.6.
(3) =⇒ (1): Let |Fmc| = 1. Then it follows from Proposition 4.5 that

RadD = (BF , PF ), where F ∈ Fmc. Notice that, as there is only one maximal
compact face F , the ideal PF is the zero ideal. Hence (PF , BF ) = BF . Also
by Step 3 in the proof of Proposition 4.5 we have BF ⊂ D. Therefore we
have RadD = D = BF , which is a prime ideal. Hence F(J) ∼= T/D is a
domain. �

By the above corollary the fiber ring of an extremal ideal J is a domain if
and only if there is only one maximal compact face of conv(J). But in general
the property of being reduced cannot be characterized in terms of combina-
torial properties of conv(J), as the following simple example demonstrates:

Example 4.8. Consider the two extremal ideals J1 = (x6, x2y, xy2, y6)
and J2 = (x8, x6y, x2y7, y12) in the polynomial ring A = K[x, y]. It is easy to
see that conv(J1) and conv(J2) have the same face lattices. Nevertheless the
fiber ring of the ideal J1 given by

F(J1) ∼= K[y1, y2, y3, y4]/(y1y4, y2y4, y1y3)

is reduced, while the fiber ring of the ideal J2 given by

F(J2) ∼= K[y1, y2, y3, y4]/(y1y4, y2y2
4 , y

2
2y4 − y1y2

3 , y
2
1y3)

is not reduced.

Next we define an inverse system of semigroup rings K[F ] for F ∈ Fc

(the set of compact faces of conv(I)), where K[F ] = K[fit : ai ∈ F ] with
fi = xai . For G ⊂ F , define the ring homomorphism πGF : K[F ] → K[G],
given by πGF (fit) = fit, if ai ∈ G, and πGF (fit) = 0, otherwise. Notice that
πGF is well defined. To see this, we need to show that if fi1fi2 · · · fik

tk =
fj1fj2 · · · fjk

tk, where {ai1 , . . . , aik
}, {aj1 , . . . , ajk

} ⊂ F , then

πGF (fi1fi2 · · · fik
tk) = πGF (fj1fj2 · · · fjk

tk).

If πGF (fi1 · · · fik
tk) = 0, then {ai1 , . . . , aik

} 6⊂ G. Since yi1 · · · yik
−yj1 · · · yjk

∈
D, it follows from Lemma 4.4 that {aj1 , . . . , ajk

} 6⊂ G, too. Hence
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πGF (fj1 · · · fjk
tk) = 0. On the other hand, if πGF (fi1 · · · fik

tk) 6= 0, then
πGF (fj1 · · · fjk

tk) 6= 0, and so

πGF (fi1 · · · fik
tk) = fi1 · · · fik

tk = fj1 · · · fik
tk = πGF (fj1 · · · fik

tk).

Hence πGF (fi1 · · · fik
tk) = πGF (fj1 · · · fjk

tk) in both cases.
Also we may notice that for H ⊂ G ⊂ F and F ∈ Fc, one has πHG ◦πGF =

πHF . Hence the inverse system is well defined.

Theorem 4.9. F (J)red ∼= lim←−F∈FcK[F ].

Proof. For each F ∈ Fc consider the ring homomorphism πF from
K[y1, . . . , yr] to K[F ] given by πF (yj) = fjt, if aj ∈ F , and πF (yj) = 0,
if aj /∈ F .

Notice that KerπF is equal to the ideal QF := (BF , PF ). We define the
map

π : K[y1, . . . yr] −→
⊕

F∈Fc

K[F ],

given by π = (πF )F∈Fc . We have Kerπ =
⋂

F∈Fc
QF =

⋂
F∈Fc

(BF , PF ). We
claim that for all G ⊂ F one has QF ⊂ QG. Indeed, for all G ⊂ F , PF ⊂ PG,
and by the proof of Proposition 4.5, Step 4(i), we have BF ⊂ (BG, PG). It
follows that

Kerπ =
⋂

F∈Fmc

QF .

Therefore, Proposition 4.5 implies that Kerπ = RadD. Thus we have

K[y1, . . . , yr]/Kerπ ∼= F (J)red.

It remains to show that Im(π) = lim←−F∈FcK[F ]. First notice that Im(π) ⊂
lim←−F∈Fc

K[F ], since πGF ◦ πF = πG for all G ⊂ F .
Now let v = (mF )F∈Fc

∈ lim←−F∈Fc
K[F ]. We may assume that for each

F ∈ Fc, the element mF is a monomial in K[F ], since all homomorphisms
in the inverse system are multigraded. For each F ∈ Fc, we choose gF ∈
K[y1, . . . , yr] such that πF (gF ) = mF and with the property that whenever
mF = mG in K[x1, . . . , xn, t], then gF = gG. (Notice that for each F ∈ F , the
K-algebra K[F] can be naturally embedded in the K-algebra K[x1, . . . , xn, t].)

Let Z = {mF : mF 6= 0, F ∈ Fc} = {m1, . . . ,ml}. For each i = 1, . . . , l, we
define the set Ai = {F ∈ Fc : mF = mi}. We claim that for each Ai one has⋂

F∈Ai
F ∈ Ai. Fix an i, and notice that it is enough to show that for any

F,G ∈ Ai we have F ∩ G ∈ Ai. Let mF = fi1 · · · fip
tp = fj1 · · · fjp

tp = mG.
Then it follows by Lemma 4.4 that {ai1 , . . . , aip}, {aj1 , . . . , ajp} ⊂ F ∩G = H.
Therefore πHF (mF ) = mF and πHG(mG) = mG. Also, as v = (mF )F∈Fc ∈
lim←−F∈FcK[F ], we have πHF (mF ) = mH = πHG(mG). Hence mG = mF =
mH , so H ∈ Ai. Hence Hi =

⋂
F∈Ai

F ∈ Ai, i = 1, . . . , l.
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For each i, we choose a monomial gHi
∈ K[y1, . . . , yr] such that πHi

(gHi
) =

mHi . For all F ∈ Ai, we define gF = gHi , i = 1, . . . , l, and for all F ∈
Fc\

⋃l
i=1Ai, we define gF = 0. Notice that for all F ∈ Fc, we have πF (gF ) =

mF . Indeed, let F ∈ Fc. If F ∈ Fc\
⋃l

i=1Ai, then gF = 0 = mF and we
have πF (gF ) = mF . If F ∈ Ai for some i, then, as we have πHiF ◦ πF = πHi

and πHi(gF ) = mHi = mF , it follows, by the very definition of the map πHiF ,
that πF (gF ) = mF . Moreover, by our choice of the gF , we also have gF = gG

whenever mF = mG.
Now let S = {gF : F ∈ Fmc}, and let g =

∑
gF∈S gF . We claim that

π(g) = v, i.e., πG(g) = mG for all G ∈ Fc. Notice that it is enough to show
that πG(g) = mG for all G ∈ Fmc. In fact, if H ∈ Fc, there exists G ∈ Fmc

such that H ⊂ G, and since πG(g) = mG, we have πH(g) = πHG(πG(g)) =
πHG(mG) = mH .

Now let G ∈ Fmc. We claim that πG(gF ) = 0 for all gF 6= gG, so that we
have πG(g) = mG, as asserted.

To prove this claim, let gF = yi1 · · · yip and suppose that πG(gF ) 6= 0.
Then we have {ai1 , . . . , aip} ⊂ G ∩ F . Let H = G ∩ F . Then H ∈ Fc. Since
v ∈ lim←−F∈FcK[F ] and H is a common face of F and G, we have πHF (mF ) =
mH = πHG(mG). As {ai1 , . . . , aip

} ⊂ H, we have 0 6= mF = πHF (mF ) =
mH = πHG(mG) = mG. Hence gF = gG, a contradiction. �

The analytic spread ` of any ideal I in a Noetherian local ring (R,m) is
given by the Krull dimension of the fiber ring F(I) of I. It has been shown by
Carles Bivia-Ausina [4] that the analytic spread of any non-degenerate ideal
I ⊂ C[[x1, . . . , xn]] is equal to c(I) + 1, where

c(I) = max{dimF : F is a compact face of conv(I)}.

Next we show that for monomial ideals this result is an immediate conse-
quence of our structure theorem (Theorem 4.9).

Corollary 4.10. Let I ⊂ A = K[x1, . . . , xn] be any monomial ideal. Let
` = dimF(I) be the analytic spread of ideal I. Then

` = c(I) + 1 = max{dimF : F is a compact face of conv(I)}+ 1.

Proof. Let J be the minimal monomial reduction ideal of I. We have ` =
dimF(I) = dimF(J) = dimF(J)red. By Theorem 4.9, we have F(J)red =
lim←−F∈FcK[F ] ⊂

⊕
F∈Fc

K[F ]. Therefore dim(F(J)) ≤ max{dimK[F ] : F ∈
Fc}. As dimK[F ] = dimF + 1, it follows that ` ≤ c(I) + 1.

For proving ` ≥ c(I) + 1, we notice that the canonical homomorphisms

π̄G : lim←−F∈Fc
K[F ]→ K[G]

are surjective for all G ∈ Fc.
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Indeed, if m is a monomial in K[G] and v = (mF )F∈Fc
∈ lim←−F∈Fc

K[F ]
with

mF =

{
m, if supp(m) ⊂ F ,
0, if supp(m) 6⊂ F ,

then π̄F (v) = m. Here supp(m) of some monomial m = xa1
1 · · ·xan

n ∈ A is
defined to be supp(m) = {ai : ai 6= 0}.

It follows that dimF (J) ≥ dimK[F ] for all F ∈ Fmc. Therefore we have
` ≥ c(I) + 1, as desired. �

5. On the reduction number of a monomial ideal

In this section we consider the reduction number of a monomial ideal I ∈ A
with respect to the minimal monomial reduction ideal J . We show in Corollary
5.3 that if Im is integrally closed for m ≤ `, then I is normal and the reduction
number of I with respect to J is less than `− 1. Here ` denotes the analytic
spread of the monomial ideal I and the reduction number of an ideal I with
respect to J is defined to be the minimum of m such that JIm = Im+1.

Theorem 5.1. Let I ⊂ A = K[x1, . . . , xn] be a monomial ideal and J its
minimal monomial reduction ideal. Let ` be the analytic spread of I. Then

Im = JIm−1 for all m ≥ `.

Proof. We may assume that I is a proper ideal, and let I = (xa1 , . . . , xas),
where fi = xai = x

ai(1)
1 x

ai(2)
2 · · ·xai(n)

n for i = 1, . . . , s. Without loss of
generality, let J = (xa1 , xa2 , . . . , xar ) be the minimal monomial reduction
ideal of I so that ext(I) = {a1, . . . , ar}. Let m ≥ `. We will show that
Im ⊂ JIm−1, the other inclusion being trivial. Let xb ∈ Im = Jm, where
xb = x

b(1)
1 · · ·xb(n)

n .
For the proof we consider the following two cases:

Case 1: b ∈ F , where F is a face of conv(Im).
First we claim that b = b1 + v, where b1 ∈ G for some compact face G

of conv(Im) and v ∈ Rn
≥0. If F is a compact face, then we take v = 0 and

b1 = b. Now let F be a noncompact face. We prove the claim by induction
on dimF . If dimF = 1, then clearly b = mai + v, where v ∈ Rn

≥0 for some
ai ∈ ext(I). Now let dimF = t > 1. Let S = {v ∈ Rn | 〈v, u〉 = c} (where
u = (u(1), . . . , u(n)) ∈ Rn, c ∈ R) be a supporting hyperplane of conv(Im)
such that S ∩ conv(Im) = F . Since F is an noncompact face, there exists
u(j) such that u(j) = 0. Consider bλ := b− λ(0, . . . , 1, . . . , 0), 1 being at the
jth place, λ ≥ 0. Notice that there exists λ0 > 0 such that bλ0 /∈ conv(Im).
Let l0 be the line segment joining b and bλ0 . The intersection of l0 with F
is nonempty and therefore is a convex set. It follows that l = l0 ∩ F is a
line segment joining b and bλ′ , where bλ′ lies on some proper face F ′ of F
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and λ′ ≥ 0. Therefore bbλ′ + w with bλ′ ∈ F ′ and w ∈ Rn
≥0. By induction,

bλ′ = b1 + w′, where b1 ∈ G for some compact face G and w′ ∈ Rn
≥0. Hence

b = b1 + v with v = w + w′ ∈ Rn
≥0. Hence the claim.

As G is a compact face, we have dimG ≤ ` by Corollary 4.10. Now, since
b1 ∈ G, there exist p ≤ ` affinely independent vectors {ai1 , . . . , aip} ⊂ ext(I)
such that b1 =

∑p
j=1 kjaij with

∑
ki = m. Since p ≤ ` ≤ m, there exists

aij0
such that b1 − aij0

∈ conv(Im−1). Therefore, b − aij0
= b1 − aij0

+ v ∈
conv(Im−1) ∩ Nn = Γ(Im−1). Hence b ∈ Γ(JIm−1).

Case 2: b /∈ F for any face F of conv(Im).
Let f = xb. We may assume that f ∈ G(Jm). Without loss of generality,

let x1|f . Since f ∈ G(Jm), g = f/x1 /∈ Jm. Hence b ∈ conv(Im) and
Γ(g) /∈ conv(Im). Let l be the line segment joining b and Γ(g). Then l
intersects conv(Im) at some point a ∈ F , where F is a face of conv(Im).
Hence b = a + v, where v ∈ Rn

≥0. Now by the proof of first case, we may
write a = a1 + v1, where a1 ∈ G for some compact face G of conv(Im) and
v1 ∈ Rn

≥0. Hence b = a1 +w, where w = v+v1 ∈ Rn
≥0. Hence, as in the above

case, we get that xb ∈ JIm−1. �

Remark 5.2. There is a related result by Wiebe. He shows that for
the maximal graded ideal m in a positive normal affine semigroup ring S of
dimension d one has mn+1 = mmn for all n ≥ d− 2, and that an+1 = aan for
all n ≥ d− 1 if a ⊂ S is an integrally closed ideal; see [1, Theorem 2.1].

Corollary 5.3. Let Ia be integrally closed for all a ≤ ` − 1. Then
I` = JI`−1 and I is normal, i.e., Ia is integrally closed for all a.

Proof. By the above theorem we have I` ⊂ JI`−1, and since I`−1 = I`−1,
we see that I` ⊂ JI`−1. Hence I` = JI`−1.

Also, I` = JI`−1 = JI`−1 ⊂ I` ⊂ I`. Hence I` = I`. By applying
induction on a, one has Ia = Ia for all a. �

Remarks 5.4. (a) Corollary 5.3 is a generalization of a result by Reid,
Roberts and Vitulli [11, Proposition 2.3] . They proved that if I ⊂ A =
K[x1, . . . , xn] is a monomial ideal and Im is integrally closed for m ≤ n − 1,
then I is a normal ideal.

(b) In Corollary 5.3, once we assume that the monomial ideal I is normal,
then the bound on the reduction number with respect to monomial reductions
can be obtained as a consequence of a theorem by Valabrega-Valla [14] and the
improved version of the Briancon-Skoda theorem due to Aberbach and Huneke
[2]. In fact, if I is a normal monomial ideal, then R(I) is Cohen-Macaulay
and hence the associated graded ring G(I) is Cohen-Macaulay. Thus, by
Valabrega-Valla [14] and Aberbach-Huneke [2], the reduction number of I
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with respect to monomial reductions is less than the analytic spread ` of I. I
am thankful to Prof. Verma for this remark.
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