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VANISHING EXPONENTIAL INTEGRABILITY FOR RIESZ
POTENTIALS OF FUNCTIONS IN ORLICZ CLASSES

YOSHIHIRO MIZUTA AND TETSU SHIMOMURA

Abstract. Our aim in this paper is to show the vanishing exponential
integrability for Riesz potentials of functions in Orlicz classes, as an
improvement of continuity results of Sobolev functions. We also show
the vanishing double exponential integrability.

1. Introduction

For 0 < α < n, we define the Riesz potential of order α for a nonnegative
measurable function f on Rn by

Rαf(x) =
∫
|x− y|α−nf(y) dy.

Here we assume that Rαf 6≡ ∞, or equivalently,

(1.1)
∫

(1 + |y|)α−nf(y) dy <∞;

see [12, Theorem 1.1, Chapter 2]. In the present paper, we deal with functions
f satisfying the Orlicz condition of the form

(1.2)
∫

Φp(f(y)) dy <∞,

where Φp(r) is of the form rpϕ(r) with 1 < p <∞. Exact condition on ϕ will
be given in the next section (see (2.2) below). For a set E ⊂ Rn and an open
set G ⊂ Rn, we define

Cα,Φp(E;G) = inf
g

∫
G

Φp(g(y)) dy,

where the infimum is taken over all nonnegative measurable functions g on Rn

such that g vanishes outside G and Rαg(x) ≥ 1 for every x ∈ E (cf. Adams
and Hurri-Syrjänen [3], Meyers [9] and the first author [12]). We say that E
is of Cα,Φp-capacity zero if Cα,Φp(E ∩ G;G) = 0 for every bounded open set
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G. A property is said to hold Cα,Φp
-quasi everywhere in G if it holds on G

except for a set of Cα,Φp-capacity zero.
For a measurable function u on Rn, we define the integral mean over a

measurable set E ⊂ Rn of positive measure by

−
∫

E

u(x) dx =
1
|E|

∫
E

u(x) dx.

The famous Trudinger inequality ([17]) shows that Sobolev functions in
W 1,n satisfy finite exponential integrability (see also [1], [4], [15], [18]). Re-
cently great progress has been made for Riesz potentials in the limiting case
αp = n (see, e.g., [5], [6], [7], [13], [14]). In this paper, we are concerned with
the continuity (or differentiability) property for Riesz potentials, and we aim
to show vanishing exponential integrability, as an improvement of the result
by Adams and Hurri-Syrjänen [2, Theorem 1.6]. In fact, we obtain the fol-
lowing two results as corollaries of more general theorems on Riesz potentials
of Orlicz functions (see Theorems 3.2, 4.5 and 5.2 below).

Theorem A. Let f be a nonnegative measurable function on Rn satisfy-
ing (1.1) and the Orlicz condition

(1.3)
∫
Rn

f(y)p[log(e+ f(y))]a[log(e+ log(e+ f(y)))]b dy <∞

for some numbers p, a and b. If αp = n, a < p − 1, β = p/(p − 1 − a) and
γ = b/(p− 1− a), then

lim
r→0

−
∫

B(x0,r)

{
exp(A|Rαf(x)−Rαf(x0)|β(1.4)

×(log(e+ |Rαf(x)−Rαf(x0)|))γ)− 1} dx = 0

holds for Cα,Φp
-quasi every x0 ∈ Rn and all A > 0.

We see that (1.4) is true for every β > 0 (and γ > 0) when a = p − 1. In
the case when a > p− 1, it is known that Rαf is continuous on Rn (see [10]
and [16]).

In the case a = p − 1, we are also concerned with vanishing double expo-
nential integrability.

Theorem B. Let f be a nonnegative measurable function on Rn satisfy-
ing (1.1) and the Orlicz condition∫

Rn

f(y)p[log(e+ f(y))]p−1[log(e+ log(e+ f(y)))]b dy <∞

for some numbers p and b. If αp = n, b < p− 1 and β = p/(p− 1− b), then

(1.5) lim
r→0

−
∫

B(x0,r)

{
exp(A exp(B|Rαf(x)−Rαf(x0)|β))− eA

}
dx = 0
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holds for Cα,Φp
-quasi every x0 ∈ Rn and all A,B > 0.

In the case when b > p − 1, Rαf is continuous on Rn (see [10] and [16]),
so that (1.5) holds for every x0 ∈ Rn and β > 0.

2. Orlicz functions

We deal with nonnegative measurable functions f satisfying the Orlicz
condition

(2.1)
∫

Φp(f(y)) dy <∞.

Here Φp(r) is of the form rpϕ(r), where 1 < p < ∞ and ϕ is a positive
monotone function on the interval [0,∞) of log-type; that is, there exists a
positive constant M such that

(2.2) M−1ϕ(r) ≤ ϕ(r2) ≤Mϕ(r) for r > 0.

It follows from condition (2.2) that ϕ satisfies the doubling condition, that is,

(2.3) C−1ϕ(r) ≤ ϕ(2r) ≤ Cϕ(r) for r > 0,

where C is a positive constant. If δ > 0, then, in view of [12], we can find a
positive constant C = C(δ) for which

(2.4) sδϕ(s) ≤ Ctδϕ(t) whenever t > s > 0.

This implies that

lim
r→0

Φp(r) = 0 (= Φp(0)) .

If ϕ is nondecreasing, then we have for η > 1,

(2.5)
(∫ η

1

ϕ(r)−p′/pr−1dr

)1/p′

≥ ϕ(η)−1/p(log η)1/p′ ,

where p′ denotes the Hölder conjugate, that is, 1/p+ 1/p′ = 1.
For a measurable set E ⊂ Rn, we denote by |E| the Lebesgue measure of

E, and by B(x, r) the open ball centered at x with radius r. We also use the
symbol C to denote a positive constant whose value may change from line to
line.

Let us state two fundamental results.

Lemma 2.1 (cf. [12, Remark 1.2, p. 60]). There exists C > 0 such that∫
E

|x− y|α−n dy ≤ C|E|α/n for every measurable set E ⊂ Rn.
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Lemma 2.2 (cf. [10], [14]). Let αp = n. If f is a nonnegative measurable
function on an open set G and η ≥ 2, then∫

{y∈G:1<f(y)<η}
|x− y|α−nf(y) dy

≤ C

(∫ η

1

ϕ(r)−p′/pr−1dr

)1/p′ (∫
G

Φp(f(y)) dy
)1/p

,

where C is a positive constant independent of f , η and G.

We next prove some lemmas which are used to establish vanishing expo-
nential integrability for Riesz potentials.

Lemma 2.3 (cf. [7], [8], [14]). Let G be a bounded open set in Rn. For
x0 ∈ G and a nonnegative measurable function u on G, the following are
equivalent:

(i) lim
r→0

−
∫

B(x0,r)

{exp(Au(x))− 1} dx = 0 for every A > 0;

(ii) lim
r→0

sup
q≥1

1
q

(
−
∫

B(x0,r)

u(x)q dx

)1/q

= 0.

Proof. First suppose (i) holds. By the power series expansion of ex, we
have

−
∫

B(x0,r)

{exp(Au(x))− 1} dx =
∞∑

q=1

1
q!
−
∫

B(x0,r)

{Au(x)}q dx.

Set

ε1(r) = −
∫

B(x0,r)

{exp(Au(x))− 1} dx.

Then we have by Stirling’s formula

1
qq
−
∫

B(x0,r)

u(x)q dx ≤ Cε1(r)
√
qe−qA−q

for q ≥ 1. Noting that limr→0 ε1(r) = 0 by our assumption, we obtain

sup
q≥1

1
q

(
−
∫

B(x0,r)

u(x)q dx

)1/q

≤ CA−1

for small r > 0. Since A is arbitrary, we see that

lim
r→0

sup
q≥1

1
q

(
−
∫

B(x0,r)

u(x)q dx

)1/q

= 0,

as required.
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Conversely, suppose (ii) holds. Set

ε2(r) = sup
q≥1

1
q

(
−
∫

B(x0,r)

u(x)q dx

)1/q

.

Then note that limr→0 ε2(r) = 0 by (ii). By Stirling’s formula again, we have

−
∫

B(x0,r)

{exp(Au(x))− 1} dx =
∞∑

q=1

1
q!
−
∫

B(x0,r)

{Au(x)}q dx

≤ C

∞∑
q=1

{eAε2(r)}q.

We note that the last series converges when eAε2(r) < 1 and that it tends to
zero with r, since limr→0 ε2(r) = 0. �

Corollary 2.4. Let G be a bounded open set in Rn. For β > 0, x0 ∈ G
and a nonnegative measurable function u on G, the following are equivalent:

(i) lim
r→0

−
∫

B(x0,r)

{exp(Au(x)β)− 1} dx = 0 for every A > 0;

(ii) lim
r→0

sup
q≥1

1
q1/β

(
−
∫

B(x0,r)

u(x)q dx

)1/q

= 0.

Lemma 2.5 (cf., e.g., [18, p. 89]). Let G be a bounded open set in Rn and
0 < θ < 1. Then[∫

G

{Rαf(x)}q2 dx

]1/q2

≤ Cq2
1−1/q1

{∫
G

f(y)q1 dy

}1/q1

whenever 1 ≤ q1 < q2 < ∞, 1/q1 − α/n ≤ (1− θ)/q2 and f is a nonnegative
measurable function on G, where C is a positive constant independent of q1,
q2 and f .

By change of variables, we can prove the following result.

Corollary 2.6. If αp = n, then[
−
∫

B(x0,r)

{Rαf(x)}q dx

]1/q

≤ Cq1/p′

[
−
∫

B(x0,r)

{rαf(y)}p dy

]1/p

= Cq1/p′

{∫
B(x0,r)

f(y)p dy

}1/p

whenever q ≥ 1 and f is a nonnegative measurable function on B(x0, r) with
0 < r < 1.
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Consider the set

Ef =

{
x ∈ Rn :

∫
|x− y|α−nf(y) dy = ∞

}
.

The following can be obtained readily from the definition of Cα,Φp ; see [12,
Theorem 1.1, Chapter 2].

Lemma 2.7. If f is a nonnegative measurable function on Rn satisfying
(1.1) and (2.1), then

Cα,Φp
(Ef ) = 0.

As in the proof of Lemma 7.3 and Corollary 7.2 in [11], we can prove the
following result.

Lemma 2.8.

(i) For 0 < r < 1/2, Cα,Φp(B(0, r);B(0, 1)) ≤ Cϕ∗(r)1−p, where

ϕ∗(r) =
∫ 1

r

ϕ(t−1)−1/(p−1)t−1dt.

(ii) For a nonnegative measurable function f on Rn satisfying (2.1), set

Ff = {x ∈ Rn : lim sup
r→0

ϕ∗(r)p−1

∫
B(x,r)

Φp(f(y)) dy > 0}.

Then Cα,Φp(Ff ) = 0.

3. Vanishing exponential integrability when ϕ is nondecreasing

In this section we are concerned with the case when ϕ is nondecreasing.
In view of Lemmas 2.1, 2.2 and Corollary 2.6, we have the following result.

Lemma 3.1. Suppose αp = n and ϕ is nondecreasing. If η2 > η1 ≥ 1 and
η2 > 2, then[
−
∫

B(x0,r)

{Rαf(x)}q
dx

]1/q

≤ Cη1r
α

+ C

{∫ η2

1

ϕ(t)−p′/pt−1dt

}1/p′
{∫

{y∈B(x0,r):η1<f(y)<η2}
Φp(f(y)) dy

}1/p

+ Cq1/p′{ϕ(η2)}−1/p

{∫
{y∈B(x0,r):f(y)≥η2}

Φp(f(y)) dy

}1/p

for all q ≥ 1 and nonnegative measurable functions f on B(x0, r) with 0 <
r < 1.

Now we show vanishing exponential integrability when ϕ is nondecreasing.
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Theorem 3.2. Let ϕ be a positive nondecreasing function on [0,∞) of
log-type such that

(3.1)
∫ ∞

1

ϕ(t)−p′/pt−1dt = ∞.

Let β > 0 and ψ be a positive monotone function on [0,∞) of log-type which
satisfies one of the following conditions:

(i) ψ is nondecreasing and

(3.2) lim sup
q→∞

q−1/βΨ((log q)−1)

(∫ eq

1

ϕ(t)−p′/pt−1dt

)1/p′

<∞,

where

(3.3) Ψ(δ) ≡ sup
t>1

t−δψ(t) <∞ for δ > 0.

(ii) ψ is nonincreasing, lim
t→∞

ψ(t) = 0 and

(3.4) lim sup
q→∞

q−1/βψ(q)

(∫ eq

1

ϕ(t)−p′/pt−1dt

)1/p′

<∞.

If αp = n and f is a nonnegative measurable function on Rn satisfying (1.1)
and (2.1), then

lim
r→0

−
∫

B(x0,r)

{exp(A(|Rαf(x)−Rαf(x0)|ψ(|Rαf(x)−Rαf(x0)|))β)−1} dx = 0

holds for Cα,Φp
-quasi every x0 ∈ Rn and all A > 0.

Proof. For a nonnegative measurable function f on Rn satisfying (1.1) and
(2.1), consider the set Ef . By Lemma 2.7, Cα,Φp

(Ef ) = 0. For x0 ∈ Rn \Ef ,
we write

Rαf(x)−Rαf(x0)

=
∫

B(x0,2|x−x0|)
|x− y|α−nf(y) dy

+
∫
Rn\B(x0,2|x−x0|)

|x− y|α−nf(y) dy −Rαf(x0)

= U1(x) + U2(x).

If y ∈ Rn \ B(x0, 2|x − x0|), then |x0 − y| ≤ 2|x − y|, so that we can apply
Lebesgue’s dominated convergence theorem to obtain

lim
x→x0

U2(x) = 0.
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This implies that

(3.5) lim
r→0

sup
q≥1

1
q1/β

[
−
∫

B(x0,r)

{|U2(x)|ψ(|U2(x)|)}q dx

]1/q

= 0.

Note here that

U1(x) ≤
∫

B(x0,2r)

|x− y|α−nf(y) dy ≡ Rαfr(x)

for x ∈ B(x0, r). Hence, in view of Lemma 2.3, it suffices to show that

(3.6) lim
r→0

sup
q≥1

1
q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

= 0.

First we consider the case when ψ is nondecreasing. If p < q < ∞ and
0 < δ < 1, then we have by (3.3)

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

(3.7)

≤ ψ(1)

[
−
∫
{x∈B(x0,r):Rαfr(x)≤1}

{Rαfr(x)}q
dx

]1/q

+ Ψ(δ)

[
−
∫
{x∈B(x0,r):Rαfr(x)>1}

{Rαfr(x)}q(1+δ)
dx

]1/q

.

It follows from Corollary 2.6 that

lim
r→0

[
−
∫

B(x0,r)

{Rαfr(x)}q dx

]1/q

= 0,

which implies that

(3.8) lim
r→0

1
q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

= 0

for each fixed q ≥ 1.
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For η > 2, 0 < δ < 1 and 0 < r < 1, we see from (3.7) and Lemma 3.1 that[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ ψ(1) + Ψ(δ)

[
−
∫

B(x0,r)

{Rαfr(x)}q(1+δ) dx

]1/q

≤ C + CΨ(δ)

[
rα +

{∫ η

1

ϕ(t)−p′/pt−1dt

}1/p′

×

{∫
{y∈B(x0,2r):1≤f(y)<η}

Φp(f(y)) dy

}1/p

+ q1/p′{ϕ(η)}−1/p

{∫
{y∈B(x0,2r):f(y)≥η}

Φp(f(y)) dy

}1/p
1+δ

.

If we take η = eq and δ = (log q)−1 < 1, then we have by (2.5) and (3.2)

q−1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ Cq−1/β + CrαΨ((log q)−1)q−1/β

+ C

Ψ((log q)−1)q−1/β

{∫ eq

1

ϕ(t)−p′/pt−1dt

}1/p′
1+(log q)−1

×

{∫
B(x0,2r)

Φp(f(y)) dy

}(1+(log q)−1)/p

≤ Cq−1/β + CrαΨ((log q)−1)q−1/β

+ C

{∫
B(x0,2r)

Φp(f(y)) dy

}(1+(log q)−1)/p

.

For ε > 0, take q0 > e such that Ψ((log q)−1)q−1/β < ε whenever q ≥ q0.
Then it follows that

sup
q≥q0

1
q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ Cε(1 + rα) + C

{∫
B(x0,2r)

Φp(f(y)) dy

}1/p

,
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which together with (3.8) implies (3.6).
Next we consider the case when ψ is nonincreasing. In this case we see

from Corollary 2.6 that

(3.9) lim
r→0

1
q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

= 0

for each fixed q ≥ 1. We have by (2.4) with ϕ = ψ[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ Cηψ(η)

+ ψ(η)

[
−
∫

B(x0,r)

{Rαfr(x)}q
dx

]1/q

for η > 1. If eq > η > 1, then we have by Lemma 3.1 and (2.5)[
−
∫

B(x0,r)

{Rαfr(x)}q
dx

]1/q

≤ Cηrα

+ C

{∫ eq

1

ϕ(t)−p′/pt−1dt

}1/p′ {∫
{y∈B(x0,2r):f(y)≥η}

Φp(f(y)) dy

}1/p

,

so that[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ Cηψ(η)(1 + rα)

+ Cψ(η)

{∫ eq

1

ϕ(t)−p′/pt−1dt

}1/p′ {∫
B(x0,2r)

Φp(f(y)) dy

}1/p

.

Now, taking η = q1/β and noting that ψ(q1/β) ≤ Cψ(q) by (2.2) with ϕ
replaced by ψ, we obtain by (3.4)

sup
q≥q0

1
q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ Cψ(q1/β
0 )(1 + rα) + C

{∫
B(x0,2r)

Φp(f(y)) dy

}1/p

,

which together with (3.9) yields (3.6).
Now we obtain the required assertion from Lemma 2.3. �

Corollary 3.3. Let f be a nonnegative measurable function on Rn sat-
isfying (1.1) and (2.1) when 0 < a < p − 1 or when a = 0 and b ≥ 0. If
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αp = n, then

lim
r→0

−
∫

B(x0,r)

{
exp(A|Rαf(x)−Rαf(x0)|β

×(log(e+ |Rαf(x)−Rαf(x0)|))γ)− 1} dx = 0

holds for Cα,Φp-quasi every x0 ∈ Rn and all A > 0, where β = p/(p− 1− a)
and γ = b/(p− 1− a).

Corollary 3.3 follows from Theorem 3.2, as in the proof of Corollary 2 in
[14].

In fact, let ϕ(t) = (log t)a(log log t)b when t ≥ t0 > e and ϕ(t) = ϕ(t0)
when t < t0. If t0 is sufficiently large, then ϕ is nondecreasing. In this case,
it suffices to consider ψ(t) = {log(e + t)}b/p and hence Ψ(δ) = δ−b/p when
b > 0.

Remark 3.4. If αp = n and (3.1) does not hold, then it is known (cf. [10]
and [16]) that Rαf is continuous on Rn, so that the conclusion of Theorem
3.2 remains true.

4. Vanishing exponential integrability when ϕ is nonincreasing

In this section let ϕ be a positive nonincreasing function on [0,∞) satisfying
(2.2). In this case we need the following easy results.

Lemma 4.1 ([14, Lemma 5]). If q > 0, then

t−1/qϕ(eq) ≤ Cϕ(t) whenever t > 1.

Lemma 4.2 ([14, Lemma 6]).

lim
q→∞

{ϕ(eq)}1/q = 1.

By Lemma 2.5 and a change of variables, we obtain the next result.

Lemma 4.3. Let 0 < θ < 1. If 0 < r < 1, then[
−
∫

B(x0,r)

{Rαf(x)}q2 dx

]1/q2

≤ Crαq2
1−1/q1

{
−
∫

B(x0,r)

f(y)q1 dy

}1/q1

whenever 1 ≤ q1 < q2 < ∞, 1/q1 − α/n ≤ (1− θ)/q2 and f is a nonnegative
measurable function on B(x0, r), where C is a positive constant independent
of q1, q2, r and f .
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Let f be a nonnegative measurable function on Rn satisfying (1.2), and let
p = n/α > 1. In view of Lemmas 2.1, 2.2 and 4.3, we have

[
−
∫

B(x0,r)

{Rαfr(x)}q2 dx

]1/q2

≤ Crα

(4.1)

+ C

{∫ η

1

ϕ(t)−p′/pt−1dt

}1/p′
{∫

{y∈B(x0,2r):1<f(y)<η}
Φp(f(y)) dy

}1/p

+ Crαq
1−1/q1
2

{
−
∫
{y∈B(x0,2r):f(y)≥η}

f(y)q1 dy

}1/q1

for 0 < r < 1 and η > 2, whenever 1 ≤ q1 < q2 < ∞ and 1/q1 − α/n ≤
(1−θ)/q2, where fr = fχB(x0,2r) with χE denoting the characteristic function
of E. If we take η = r−α(1+ε) with ε > 0, then

ϕ(rαf(y)) ≤ ϕ(f(y)ε/(1+ε)) ≤ Cϕ(f(y)) when f(y) ≥ η.

Let 1 < q1 < p = n/α, 1/q∗1 = 1/q1 − α/n > 0 and set q0 = (1 − θ)q∗1 . Then
it follows from (2.4) that

rαq1−n

∫
{y∈B(x0,2r):f(y)≥η}

f(y)q1 dy ≤ C

∫
B(x0,2r)

Φp(f(y)) dy,

so that[
−
∫

B(x0,r)

{Rαfr(x)}q
dx

]1/q

≤ Crα

+ C

{∫ 1

r

ϕ(t−1)−p′/pt−1dt

}1/p′
{∫

B(x0,2r)

Φp(f(y)) dy

}1/p

+ Cq
1−1/p
0

{∫
B(x0,2r)

Φp(f(y)) dy

}1/q1

for all q such that 1 ≤ q ≤ q0.
Therefore we obtain the following result with the aid of Lemma 2.8.

Lemma 4.4. Suppose αp = n. If f is a nonnegative measurable function
on Rn satisfying (2.1), then

lim
r→0

−
∫

B(x0,r)

{Rαfr(x)}q
dx = 0

holds for x0 ∈ Rn \ Ff and 1 ≤ q <∞, where fr = fχB(x0,2r).

We are now ready to treat the case when ϕ is nonincreasing.
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Theorem 4.5. Let ϕ be a positive nonincreasing function on [0,∞) of log-
type. Let β > 0 and ψ be a positive monotone function on [0,∞) of log-type
which satisfies one of the following conditions:

(i) ψ is nondecreasing and

(4.2) lim sup
q→∞

q−1/β+1/p′Ψ((log q)−1){ϕ(eq)}−1/p <∞

with Ψ given by (3.3);
(ii) ψ is nonincreasing, lim

r→∞
ψ(r) = 0 and

(4.3) lim sup
q→∞

q−1/β+1/p′ψ(q){ϕ(eq)}−1/p <∞.

If αp = n and f is a nonnegative measurable function on Rn satisfying (1.1)
and (2.1), then

lim
r→0

−
∫

B(x0,r)

{exp(A(|Rαf(x)−Rαf(x0)|ψ(|Rαf(x)−Rαf(x0)|))β)−1} dx = 0

holds for Cα,Φp
-q.e. x0 ∈ Rn and all A > 0.

Proof. For a nonnegative measurable function f on Rn satisfying (1.1) and
(2.1), consider the set Ef as above. As in the proof of Theorem 3.2, it suffices
to show that

(4.4) lim
r→0

sup
q≥1

1
q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

= 0

for x0 ∈ Rn\(Ef∪Ff ), where fr = fχB(x0,2r). Here we note that, by Lemmas
2.7 and 2.8, Cα,Φp(Ef ∪ Ff ) = 0. We see from (2.4) with ϕ(t) = ψ(t)−1 that
for δ > 0,

tψ(t) ≤ Ct1+δ whenever t ≥ 1.
Hence Lemma 4.4 implies that

(4.5) lim
r→0

1
q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

= 0

for each q ≥ 1 and all x0 ∈ Rn \ Ff .
First we consider the case when ψ is nondecreasing. If p < q < ∞ and

0 < δ < 1, then, as in the proof of Theorem 3.2, we have by (3.3)[
−
∫
{x∈B(x0,r):Rαfr(x)>1}

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ Ψ(δ)

[
−
∫

B(x0,r)

{Rαfr(x)}q(1+δ)
dx

]1/q

.
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If 0 < δ0 < p − 1, q1 = p − 1/q > 1 and q2 = q(1 + δ) with 0 < δ < δ0, then
we have by (4.1)[
−
∫

B(x0,r)

{Rαfr(x)}q2 dx

]1/q2

≤ Crα

+ C

{∫ η

1

ϕ(t)−1/(p−1)t−1dt

}1/p′
{∫

{y∈B(x0,2r):1<f(y)<η}
Φp(f(y)) dy

}1/p

+ Crαq
1/q′1
2

{
−
∫
{y∈B(x0,2r):f(y)≥η}

f(y)q1 dy

}1/q1

when η > 1. For η = r−α(1+ε) with ε > 0, set

F (r;x0) = rα +
{∫ 1

r

ϕ(t−1)−1/(p−1)t−1dt

}1/p′
{∫

B(x0,2r)

Φp(f(y)) dy

}1/p

.

Then Lemma 2.8 implies that F (r;x0) tends to zero as r → 0 for x0 ∈ Rn\Ff .
Hence we assume that F (r;x0) < 1 for small r > 0. Note that, by Lemmas
4.1 and 4.2,

(4.6) tq1 ≤ C{ϕ(eq)}−1tpϕ(t) = C{ϕ(eq)}−1Φp(t) for t > 1

and

(4.7) {ϕ(eq)}−1/q1 ≤ C{ϕ(eq)}−1/p.

Collecting these facts, we obtain[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ ψ(1) + Ψ(δ)

[
−
∫
{x∈B(x0,r):Rαfr(x)>1}

{Rαfr(x)}q(1+δ)
dx

]1/q

≤ C + Ψ(δ)

C + Cq1/p′

{
r−α/q

∫
{y∈B(x0,2r):f(y)≥η}

f(y)q1 dy

}1/q1
1+δ

≤ C + Ψ(δ)

[
C + Cq1/p′{ϕ(eq)}−1/q1

×

{∫
{y∈B(x0,2r):f(y)≥η}

f(y)pϕ(rαf(y)) dy

}1/q1
]1+δ

≤ C + CΨ(δ)

+ C
[
Ψ(δ)q1/p′{ϕ(eq)}−1/p

]1+δ
{∫

B(x0,2r)

Φp(f(y)) dy

}(1+δ)/q1
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since ϕ(rαf(y)) ≤ ϕ(f(y)ε/(1+ε)) ≤ Cϕ(f(y)) when f(y) ≥ η = r−α(1+ε).
Consequently, if we take δ = (log q)−1, then it follows from (4.2) that

sup
q≥q0

1
q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ C(q−1/β
0 + q

−1/p′

0 ) + C

{∫
B(x0,2r)

Φp(f(y)) dy

}1/p

for q ≥ q0 > 1 and 0 < r < 1 when q0 is sufficiently large. This together with
(4.5) readily yields (4.4).

Next we consider the case when ψ is nonincreasing. If η > 1, then we have
by (2.4) with ϕ = ψ, (4.3), (4.6) and (4.7)[

−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ Cηψ(η) + ψ(η)

[
−
∫
{x∈B(x0,r):Rαfr(x)≥η}

{Rαfr(x)}q
dx

]1/q

≤ Cηψ(η) + Cψ(η)

[
1 + q1/p′{ϕ(eq)}−1/p

×

{∫
{y∈B(x0,2r):f(y)≥r−α(1+ε)}

Φp(f(y)) dy

}1/q1
]

≤ Cηψ(η) + Cψ(η)q1/p′{ϕ(eq)}−1/p

{∫
B(x0,2r)

Φp(f(y)) dy

}1/p

for q > p and q1 = p − 1/q. Now we take η = q1/β and obtain by (2.2) on ψ
and (4.3)

1
q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ Cψ(q1/β) + C

{∫
B(x0,2r)

Φp(f(y)) dy

}1/p

,

which together with (4.5) gives (4.4).
Thus Theorem 4.5 is obtained by Lemma 2.3. �

Corollary 4.6. Let f be a nonnegative measurable function on Rn sat-
isfying (1.1) and (2.1) when a < 0 or when a = 0 and b < 0. If αp = n,
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β = p/(p− 1− a) and γ = b/(p− 1− a), then

lim
r→0

−
∫

B(x0,r)

{
exp(A|Rαf(x)−Rαf(x0)|β

×(log(e+ |Rαf(x)−Rαf(x0)|))γ)− 1} dx = 0

holds for Cα,Φp-quasi every x0 ∈ Rn and all A > 0.

This follows from Theorem 4.5, as in the proof of Corollary 3 in [14].

Proof of Theorem A. Theorem A follows from Corollaries 3.3 and 4.6. �

5. Vanishing double exponential integrability

In this section, we discuss the vanishing double exponential integrability as
an application of our previous considerations. Before doing so, we quote the
following result.

Lemma 5.1 ([14, Lemma 7]). If a > e, then
∞∑

m=0

1
m!
am(logm)m 5 aCa

with some positive constant C.

Our aim in this section is to establish the following result.

Theorem 5.2. Let αp = n. Let ϕ be a positive nondecreasing function
on [0,∞) satisfying (2.2). For β > 0, let ψ be a positive monotone function
on [0,∞) of log-type which satisfies one of the following conditions:

(i) ψ is nondecreasing and
(5.1)

lim sup
q→∞

(log q)−1/βΨ((log log q)−1)

(∫ eq

1

ϕ(t)−1/(p−1)t−1dt

)1−1/p

<∞;

(ii) ψ is nonincreasing, lim
r→∞

ψ(r) = 0 and

(5.2) lim sup
q→∞

(log q)−1/βψ(log q)

(∫ eq

1

ϕ(t)−1/(p−1)t−1dt

)1−1/p

<∞.

If f is a nonnegative measurable function on Rn satisfying (1.1) and (2.1),
then

lim
r→0

−
∫

B(x0,r)

{exp(A exp(B(|Rαf(x)−Rαf(x0)|(5.3)

×ψ(|Rαf(x)−Rαf(x0)|))β))− eA
}
dx = 0

holds for Cα,Φp-q.e. x0 ∈ Rn and all A,B > 0.
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Proof. Let f be a nonnegative measurable function on Rn satisfying (1.1)
and (2.1). For x0 ∈ Rn \ Ef , we write

Rαf(x)−Rαf(x0) = U1(x) + U2(x)

as in the proof of Theorem 3.2. Then we know that

(5.4) lim
x→x0

U2(x) = 0

and

(5.5) U1(x) ≤
∫

B(x0,2r)

|x− y|α−nf(y) dy ≡ Rαfr(x)

for x ∈ B(x0, r). For simplicity, set

V (x) = |Rαf(x)−Rαf(x0)|ψ(|Rαf(x)−Rαf(x0)|),
V1(x) = U1(x)ψ(U1(x)),

V2(x) = |U2(x)|ψ(|U2(x)|).

Then we see that V (x) ≤ c{V1(x) +V2(x)}. If A′ > A and B′ = B(2c)β , then
we take r > 0 small enough so that

A exp(B′V2(x)β) < A′

whenever x ∈ B(x0, r). Note that

exp(A exp(BV (x)β))− eA

≤ exp(A exp(B′V1(x)β +B′V2(x)β))− eA

≤ (expA′){exp(A′(exp(B′V1(x)β)− 1)− 1}

+ exp(A exp(B′V2(x)β))− eA

for x ∈ B(x0, r). Consequently, in view of Lemma 2.3 and (5.4), it suffices to
show that

lim
r→0

sup
q≥1

1
q

[
−
∫

B(x0,r)

{
exp(B(Rαfr(x)ψ(Rαfr(x)))β)− 1

}q
dx

]1/q

= 0

for every B > 0. For this purpose, since (t − 1)q ≤ tq − 1 for t ≥ 1, we only
need to prove

(5.6) lim
r→0

sup
q≥1

1
q

[
−
∫

B(x0,r)

{
exp(Bq(Rαfr(x)ψ(Rαfr(x)))β)− 1

}
dx

]1/q

= 0.

Theorem 3.2 implies that

(5.7) lim
r→0

1
q

[
−
∫

B(x0,r)

{
exp(Bq(Rαfr(x)ψ(Rαfr(x)))β)− 1

}
dx

]1/q

= 0
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for each fixed q ≥ 1. By the power series expansion of ex, we have

−
∫

B(x0,r)

{exp(Bq(Rαfr(x)ψ(Rαfr(x)))β)− 1} dx(5.8)

=
∞∑

m=1

1
m!

(Bq)m −
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}βm dx.

First we consider the case when ψ is nondecreasing. If p < q < ∞ and
0 < δ < 1, then we have by (3.3)

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ ψ(1)

[
−
∫
{x∈B(x0,r):Rαfr(x)≤1}

{Rαfr(x)}q
dx

]1/q

+ Ψ(δ)

[
−
∫
{x∈B(x0,r):Rαfr(x)>1}

{Rαfr(x)}q(1+δ)
dx

]1/q

.

Lemma 3.1 gives

[
−
∫

B(x0,r)

{Rαfr(x)}q
dx

]1/q

≤ Crα

+ C

{∫ η

1

ϕ(t)−1/(p−1)t−1dt

}1/p′
{∫

{y∈B(x0,2r):1<f(y)≤η}
Φp(f(y)) dy

}1/p

+ Cq1/p′{ϕ(η)}−1/p

{∫
{y∈B(x0,2r):f(y)>η}

Φp(f(y)) dy

}1/p

.

For η = eq we have by (2.5)

[
−
∫

B(x0,r)

{Rαfr(x)}q
dx

]1/q

≤ Crα + C

{∫ eq

1

ϕ(t)−1/(p−1)t−1dt

}1/p′ {∫
B(x0,2r)

Φp(f(y)) dy

}1/p
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and[
−
∫

B(x0,r)

{Rαfr(x)}q(1+δ)
dx

]1/{q(1+δ)}

≤ Crα

+ C

{∫ eq

1

ϕ(t)−1/(p−1)t−1dt

}1/p′{∫
{y∈B(x0,2r):1<f(y)≤eq}

Φp(f(y)) dy

}1/p

+ C(q(1 + δ))1/p′{ϕ(eq)}−1/p

{∫
{y∈B(x0,2r):f(y)>eq}

Φp(f(y)) dy

}1/p

≤ Crα + C

{∫ eq

1

ϕ(t)−1/(p−1)t−1dt

}1/p′ {∫
B(x0,2r)

Φp(f(y)) dy

}1/p

.

If we now take δ = (log log q)−1 for large q, then

(5.9)

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ C(log q)1/βG(r)

for small r > 0, by use of (5.1) and the fact that (log q)(log log q)−1
is bounded

for large q, where

G(r) = rα +

{∫
B(x0,2r)

Φp(f(y)) dy

}1/p

≤ 1.

We replace q by βm in inequality (5.9) to obtain[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}βm
dx

]1/(βm)

≤ CG(r)(log(e+m))1/β .

We see from Lemma 5.1 that

−
∫

B(x0,r)

{exp(Bq(Rαfr(x)ψ(Rαfr(x)))β)− 1} dx

≤
∞∑

m=1

1
m!

(Bq)m{CG(r)β log(e+m)}m

=
∞∑

m=1

1
m!

(BCG(r)βq)m(log(e+m))m

≤ C + {BCG(r)βq}BCG(r)βq.
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Hence, if the value of r is so small that BCG(r)β < 1/2, then

1
q

[
−
∫

B(x0,r)

{
exp(Bq(Rαfr(x)ψ(Rαfr(x)))β)− 1

}
dx

]1/q

≤ Cq−1 + CqBCG(r)β−1,

which together with (5.7) proves (5.6), as required.
Next we consider the case when ψ is nonincreasing. In this case we see

from Corollary 2.6 that

(5.10) lim
r→0

1
q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

= 0

for each fixed q ≥ 1. We have by (2.4) with ϕ = ψ[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ Cηψ(η) + ψ(η)

[
−
∫

B(x0,r)

{Rαfr(x)}q
dx

]1/q

for η > 1. If eq > η > 1, then we have by Lemma 3.1 and (2.5)[
−
∫

B(x0,r)

{Rαfr(x)}q
dx

]1/q

≤ Cηrα

+ C

{∫ eq

1

ϕ(t)−p′/pt−1dt

}1/p′ {∫
{y∈B(x0,2r):f(y)≥η}

Φp(f(y)) dy

}1/p

,

so that[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ Cηψ(η)(1 + rα)

+ Cψ(η)

{∫ eq

1

ϕ(t)−p′/pt−1dt

}1/p′ {∫
B(x0,2r)

Φp(f(y)) dy

}1/p

.

Now we take η = (log q)1/β to obtain by (2.2) on ψ and (5.2)[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q
dx

]1/q

≤ C(log q)1/β

ψ(log q) +

{∫
B(x0,2r)

Φp(f(y)) dy

}1/p
 .
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Now we obtain (5.6) as in the first part of the proof.
Thus the required assertion follows from Lemma 2.3. �

Corollary 5.3. Let f be a nonnegative measurable function on Rn sat-
isfying (1.1) and∫

Rn

f(y)p[log(e+ f(y))]p−1[log(e+ log(e+ f(y)))]b

× [log(e+ log(e+ (log(e+ f(y)))))]c dy <∞

for some numbers b and c. If αp = n, b < p − 1, β = p/(p − 1 − b) and
γ = c/(p− 1− b), then

lim
r→0

−
∫

B(x0,r)

{
exp(A exp(B|Rαf(x)−Rαf(x0)|β(5.11)

×(log(e+ |Rαf(x)−Rα(x0)|))γ))− eA
}
dx = 0

holds for Cα,Φp
-quasi every x0 ∈ Rn and all A,B > 0.

In fact, let ϕ(t) = (log t)p−1(log log t)b(log log log t)c when t ≥ t0 > e and
ϕ(t) = ϕ(t0) when t < t0. If t0 is sufficiently large, then ϕ is nondecreasing. In
this case, it suffices to consider ψ(t) = {log(e+t)}c/p and hence Ψ(δ) = Cδ−c/p

when c > 0.

Proof of Theorem B. Theorem B is nothing but Corollary 5.3 when c = 0.
�
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