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SHARP Lp ESTIMATES FOR SOME OSCILLATORY
INTEGRAL OPERATORS IN R

1

CHAN WOO YANG

Abstract. We give sharp endpoint estimates for the decay rates of Lp

operator norms of oscillatory integral operators with some real homo-
geneous polynomial phases.

1. Introduction

In this paper we consider oscillatory integral operators Tλ in R defined by

Tλf(x) =
∫
eiλS(x,y)f(y)χ(x, y)dy,

where x, y ∈ R, S is a real homogeneous polynomial of the form

S(x, y) =
n∑
i=0

aix
n−iyi(1.1)

with a1 6= 0 and an−1 6= 0, and χ is a smooth cut-off function supported in
a small neighborhood of the origin. These operators are related to averaging
operators R in the plane defined by

Rf(x, t) =
∫
f(y, t+ S(x, y))χ(x, t, y)dy.
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Phong and Stein [PS] obtained Lp regularity and Lp − Lq estimates for R,
but not endpoint estimates, when S is a homogeneous polynomial. Strong
endpoint results of Lp regularity for R are not known. It is known that
such estimates break down in translation invariant cases [Ch]. However there
have been strong endpoint results for Lp − Lq estimates of R and decay rate
estimates of the Lp operator norm of Tλ. Some endpoint Lp − Lq estimates
have been obtained in [B], [BOS]. When S is smooth and Tλ has two-sided
Whitney fold, Greenleaf and Seeger [GS] obtained endpoint estimates for the
decay rate of the Lp operator norm of Tλ. In this paper, we shall give endpoint
estimates for decay rate of the Lp operator norm of Tλ when S is of the form
(1.1). More precisely, we shall prove:

Theorem 1.1. If S is of the form (1.1) and n ≥ 2, then Tλ is bounded
on Ln(R) and Ln/(n−1)(R) with operator norm O(|λ|−1/n) as λ→∞.

Remark 1.2. (1) If n = 1, then S(x, y) = a0x + a1y and one cannot
expect any decay for ‖Tλ‖L1→L1 . Actually in this case Tλf can be written as

Tλf(x) = eia0λx

∫
eia1λyf(y)χ(x, y)dy.

If we set f(y) = e−ia1λχ[0,ε] with ε small, then it is easy to see that ‖Tλ‖L1→L1

= O(1). If n = 2, the L2 estimate in [PS] implies Theorem 1.1. Therefore we
are interested in the case n ≥ 3.

(2) Without loss of generality we may assume that an = 0 in (1.1). If we
set

S̃(x, y) =
n−1∑
i=0

aix
n−iyi,

T̃λg(x) =
∫
eiλS̃(x,y)g(y)χ(x, y)dy,

and f̃(y) = f(y)eiλany
n

, then it is immediate from the definition that Tλf =
T̃λf̃ . By using the fact ‖f‖p = ‖f̃‖p, we can easily see that ‖Tλ‖Lp→Lp =
‖T̃λ‖Lp→Lp . Therefore we assume that an = 0 in (1.1) throughout this paper.

(3) This result is sharp because the region in the figure gives the optimal
relation between 1/p and α, where α is the maximal decay rate of the Lp

operator norm of Tλ. See Remark 2.6 below.

To prove Theorem 1.1 we shall consider oscillatory integral operators with
factors, 1/|S′′xy|−1/(n−2) and |S′′xy|1/2, and use complex interpolation. For the
first operator we shall obtain H1 − L1 boundedness without any decay rate
and for the second operator we use the L2 → L2 bounds of Phong and Stein
[PS]. To get an H1 − L1 bound we develop the method of Pan [P], but since
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1/|S′′xy(x, y)|−1/(n−2) is not a singular kernel, we use the standard H1 space
rather than a modified one.

Definition 1.3. (1) Let I be a bounded interval with center xI . An atom
is a function a satisfying

supp(a) ⊂ I,(1.2)

|a(x)| ≤ 1
|I|
,(1.3) ∫

I

a(y)dy = 0.(1.4)

(2) The space H1 is the subspace of L1 of functions f which can be written
as f =

∑
j αjaj , where the aj ’s are atoms and αj ∈ C with

∑
j |αj | <∞ and

the norm ‖ · ‖H1 is defined by

‖f‖H1 = inf
∑
j

|αj |,

where the infimum is taken over all decompositions f =
∑
j αjaj .

Acknowledgments. I would like to express my deep gratitude to Andreas
Seeger for bringing this subject to my attention with continuous and patient
support and also thank the referee for valuable suggestions to improve the
exposition of this paper.

2. Proof of Theorem 1.1

When S′′xy(x, y) = C(y − bx)n−2, the argument of Greenleaf and Seeger in
[GS] can be directly applied. Therefore it suffices to deal with the comple-
mentary case. In what follows we assume that n ≥ 4 and that S′′xy(x, y) = 0
has at least two distinct real roots or one complex root. Now we consider an
analytic family of operators Tλ,α defined by

Tλ,αf(x) =
∫
R

eiλS(x,y)|S′′xy(x, y)|αχ(x, y)f(y)dy.(2.1)

When <α = 1/2, we know that Tλ,α is bounded on L2(R) with a norm
O((1+ |=α|)λ−1/2) as λ→∞ [PS]. Therefore, by using complex interpolation
and the duality argument, the H1 − L1 boundedness of Tλ,α with <α =
−1/(n−1) implies Theorem 1.1. The remaining part of this section is devoted
to proving the following lemma.

Lemma 2.1. If S is a homogeneous polynomial of the form (1.1) and S
is not of the form S(x, y) = a(y − bx)n, then Tλ,α is bounded from H1(R) to
L1(R) with operator norm, O((1 + |=α|)), when <α = −1/(n− 2).
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Proof. Throughout the proof, we shall assume α = −1/(n− 2). When α is
a complex number with <α = −1/(n−2), the factor (1 + |=α|) will arise only
when we apply the mean value theorem in (2.6) and (2.7) below. We shall
need the following lemmas.

Lemma 2.2. If S is as in Lemma 2.1, then Tλ,α is bounded on Lp(R) for
1 < p <∞.

Proof. By homogeneity, |S′′xy(x, y)| = |x|n−2|S′′xy(1, y/x)|. Thus by using a
change of variables and Minkowski’s inequality, we obtain

‖Tλ,αf‖Lp ≤

[∫ ∣∣∣∣∣
∫

f(y)
|S′′xy(x, y)|1/(n−2)

dy

∣∣∣∣∣
p

dx

]1/p

≤

[∫ ∣∣∣∣∣
∫

f(xy)
|S′′xy(1, y)|1/(n−2)

dy

∣∣∣∣∣
p

dx

]1/p

≤ ‖f‖Lp
∫

y−1/p

|S′′xy(1, y)|1/(n−2)
dy ≤ C‖f‖Lp . �

Lemma 2.3. Let φ(x) be a real valued polynomial of degree k and ψ be a
smooth cut-off function. Then∣∣∣∣∫ eiφ(x)ψ(x)dx

∣∣∣∣ ≤ C|bk|−1/k(‖ψ‖L∞ + ‖∇ψ‖L1),

where bk is the coefficient of xk in φ.

See Stein [St] for the proof of Lemma 2.3.

Lemma 2.4. Suppose φ(x) is same as in Lemma 2.3 and ε < 1/k. Then

∫
|x|≤1

|φ(x)|−εdx ≤ Aε

 k∑
j=0

|bj |

−ε ,
where bj is the coefficient of xj in φ.

See Ricci and Stein [RS] for the proof of Lemma 2.4.

Proof of Lemma 2.1 continued. By the atomic decomposition, it suffices to
prove that for any atom a as in (1.2), (1.3), and (1.4)∫

R

|Tλ,αa(x)|dx ≤ C,(2.2)
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where C is a constant which is independent of a. We choose an atom a
supported in I = [−δ + xI , δ + xI ] and define TP as

TP f(x) =
∫
eiP (x,y)K(x, y)f(y)dy,

where P is any homogeneous polynomial of degree n and

K(x, y) = |S′′xy(x, y)|−1/(n−2)χ(x, y).

It suffices to prove that ∫
|TPa(x)|dx ≤ C,(2.3)

where C is a constant independent of a and the coefficients of P . We note
that for this proof P is unrelated to S, but in our application of (2.3) λS = P .
For the sake of convenience we assume that xI > 0. We set

P (x, y) =
l∑

j=0

bjx
n−jyj ,(2.4)

where bl 6= 0 and factorize S′′xy as

S′′xy(x, y) =
s∏
j=1

(x− βjy)mj
r∏
i=1

Qj(x, y),(2.5)

where the βj ’s are real with |β1| < · · · < |βs| and the Qj ’s are irreducible
quadratic polynomials. We may assume that βs > 0 and βs = max1≤i≤s |βi|.
To prove (2.3) we use the induction on l ≤ n− 1 (see Remark 1.2 above), the
degree of y in P . First we show:

Lemma 2.5. If P (x, y) = b0x
n, that is, l = 0, then (2.3) is true.

Proof. If l = 0 in (2.4), we can pull out eib0x
n

to see that TP f(x) =
eib0x

n

T 0f(x). We consider two cases: xI ≤ 2δ and xI ≥ 2δ.

Case I. xI ≤ 2δ.
We define M = 4 max{βs, 1} and split the integral on the left-hand side of

(2.2) as follows:∫
R

|T 0a(x)|dx =
∫
|x|≤Mδ

|T 0a(x)|dx+
∫
|x|≥Mδ

|T 0a(x)|dx

= I1 + I2.

Using Lemma 2.2 and Hölder’s inequality we have

I1 =
∫
|x|≤Mδ

|T 0a(x)|dx ≤ (2Mδ)1/2‖T 0a‖L2 ≤M1/2.
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To treat I2, we observe that since −δ + xI ≤ y ≤ δ + xI and xI ≤ 2δ,
−δ ≤ y ≤ 3δ and that if |x| > Mδ, then

|K(x, y)−K(x, 0)| ≤ C |y|
|x|2

.(2.6)

We then have

I2 =
∫
|x|≥Mδ

∣∣∣∣∫ K(x, y)a(y)dy
∣∣∣∣ dx

=
∫
|x|≥Mδ

∣∣∣∣∫ (K(x, y)−K(x, 0))a(y)dy
∣∣∣∣ dx

≤ C
∫
|x|≥Mδ

1
|x|2

∫
|y−xI |≤δ

|y||a(y)|dydx ≤ C.

Case II. xI ≥ 2δ.
We again split up the integral in (2.2):∫

R

|T 0a(x)|dx =
∫
|x|≤MxI

|T 0a(x)|dx

+
∫
|x|≥MxI

|T 0a(x)|dx = I3 + I4.

To show that I3 is bounded, it suffices to prove that the integral of K in x
over the interval [−MxI ,MxI ] is bounded by a constant which is independent
of xI and δ. Since xI ≥ 2δ and xI − δ ≤ y ≤ xI + δ, xI/2 ≤ y ≤ 3xI/2.
Therefore ∫ MxI

−MxI

K(x, y)dx ≤ C
∫ MxI

−MxI

|S′′xy(x/y, 1)|−1/(n−2)

y
dx

≤ C
∫ 2M

−2M

|S′′xy(x, 1)|−1/(n−2)dx ≤ C.

If |x| ≥MxI , then

|K(x, y)−K(x, xI)| ≤
C|y − xI |
|x|2

.(2.7)

For I4 we get

I4 =
∫
|x|≥MxI

∣∣∣∣∫ K(x, y)a(y)dy
∣∣∣∣ dx

=
∫
|x|≥MxI

∣∣∣∣∫ (K(x, y)−K(x, xI))a(y)dy
∣∣∣∣ dx

≤ C
∫
|x|≥MxI

1
|x|2

∫
|y−xI |≤δ

|y − xI ||a(y)|dydx ≤ C.

This completes the proof of Lemma 2.5. �
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We turn to the proof of Lemma 2.1. We assume that (2.2) is true if the
degree of P in y is less than l and treat the case where the degree is l. As in
the proof of Lemma 2.5 we consider two cases: xI ≤ 2δ, xI ≥ 2δ.

Case I. xI ≤ 2δ.
We split the integral on the left-hand side of (2.2) as follows:∫

R

|TPa(x)|dx =
∫
|x|≤Mδ

|TPa(x)|dx+
∫
|x|≥Mδ

|TPa(x)|dx

= I5 + I6.

The treatment of I5 is same to that of I1. We split I6 as

I6 =
∫
Mδ≤|x|≤r

|TPa(x)|dx+
∫
|x|>max{Mδ,r}

|TPa(x)|dx = I7 + I8.

To obtain estimates for I7 and I8 we observe that

K(x, y) ≤ C

|x|
(2.8)

and that (2.6) holds. Now, letting Q(x, y) :=
∑l−1
j=0 bjx

n−jyj , we obtain

I7 ≤
∫
Mδ≤|x|<r

∣∣∣∣∫ (eiP (x,y) − eiQ(x,y))K(x, y)a(y)dy
∣∣∣∣ dx

+
∫
Mδ≤|x|<r

∣∣∣∣∫ eiQ(x,y)K(x, y)a(y)dy
∣∣∣∣ dx

≤ C + C

∫
|x|<r

|bl‖x|n−l−1dx ≤ C + C|bl|rn−l

by the induction hypothesis. If we set r = |bl|−1/(n−l), then I7 is bounded by
a constant. We split I8 as

I8 ≤
∫
|x|>max{Mδ,r}

∫
|K(x, y)−K(x, 0)‖a(y)|dydx

+
∫
|x|>max{Mδ,r}

|K(x, 0)|
∣∣∣∣∫ eiλP (x,y)a(y)dy

∣∣∣∣ dx = I9 + I10.

We use (2.6) to obtain

I9 ≤
∫
|x|>Mδ

1
|x|2

∫ xI+δ

xI−δ
|y‖a(y)|dydx ≤ C.

Now it remains to prove that I10 is bounded by a constant independent of a
and the coefficients of P . Let

Rj = {x ∈ R : 2j ≤ |x| < 2j+1},
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for j ≥ 0, and let χj be the characteristic function of Rj and ϕ be a smooth
cut-off function such that ϕ(x) = 1 for |x| ≤ 1 and ϕ(x) = 0 for |x| ≥ 2. We
define TPj by

TPj f(x) = χj(x)
∫
eiP (x,y)f(y)dy.

The kernel Lj of TPj T
P
j
∗ is of the form

Lj(x, z) = χj(x)χj(z)
∫
ei(P (x,y)−P (z,y))|ϕ(y)|2dy.

We write

P (x, y)− P (z, y) = bl(xn−l − zn−l)yl +Q1(x, y, z),

where Q is a polynomial in which the degree of y is less than l. Lemma 2.3
and Lemma 2.4 imply

sup
z

∫
|2jLj(2jx, 2jz)|dx ≤ C2j sup

z

(
|bl|2(n−l)j +

∣∣∣blz2(n−l)j
∣∣∣)−1/(Nl)

≤ C2j |bl|−1/(Nl)2−j(n−l)/(Nl)

This estimate together with a similar estimate for supx
∫
|2jLj(2jx, 2jz)|dz

yields

‖TPj ‖L2→L2 ≤ C2j/2|bl|−1/(2Nl)2−j(n−l)/(2Nl).

Now for I10 we obtain

I10 ≤ C
∫
|x|>max{Mδ,r}

1
|x|

∣∣∣∣∫ eiP (x,y)a(y)dy
∣∣∣∣ dx

≤ C
∑
j≥j0

∫
2j≤|x|≤2j+1

1
|x|
|TPj (a)(x)|dx

≤ C
∑
j≥j0

(∫
2j≤|x|≤2j+1

1
|x|2

dx

)1/2

‖Tj(a)‖L2

≤ C
∑
j≥j0

2−j/22j/2|bl|−1/(2Nl)2−j(n−l)/(2Nl) ≤ C

because 2j0+1 ≥ |bl|−1/(n−l).

Case II. xI ≥ 2δ.
In this case we use xI to split the integral in (2.2) as∫

R

|TPa(x)|dx =
∫
|x|≤MxI

|TPa(x)|dx

+
∫
|x|≥MxI

|TPa(x)|dx = I11 + I12.
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The treatment of I11 is same as that of I3. Thus it remains to show that I12

is bounded by a constant independent of a. To do this, we observe that since
xI/2 ≤ y ≤ 3xI/2 and |x| ≥MxI ,

|K(x, xI)| ≤
C

|x|
,(2.9)

and (2.7) holds. Now it is easy to check that the procedure used in dealing
with I6 can be applied to get the desired results. �

Remark 2.6. (1) Now we shall give examples which show that Theorem
1.1 cannot be improved. Suppose that Tλ is bounded on Lp with operator
norm O(λ−α). We define f1

λ and g1
λ by

f1
λ(y) =

{
e−iλS(0,y) if c1λ

−1/n ≤ y ≤ c2λ−1/n,
0 otherwise,

and

g1
λ(x) =

{
e−iλS(x,0) if c1λ

−1/n ≤ x ≤ c2λ−1/n,
0 otherwise.

In the above definitions of f1
λ and g1

λ, the values e−iλS(0,y) and e−iλS(x,0) can
be replaced with 1 because we assume that S(x, 0) and S(0, y) are monomials
of degree n. We use these values to stress that pure x and y powers in S(x, y)
do not affect the decay of the operator norm of Tλ. If x and y are in the
supports of g1

λ and f1
λ, respectively, then

|S(x, y)− S(x, 0)− S(0, y)| =

∣∣∣∣∣
n−1∑
i=1

aix
n−iyi

∣∣∣∣∣ ≤
n−1∑
i=1

|ai|cn2λ−1.

If we choose c2 > c1 > 0 small enough to have

λ|S(x, y)− S(x, 0)− S(0, y)| ≤ π

4
(2.10)

in the support of f1
λ and g1

λ, then we obtain

∣∣∣∣∫ (Tλf1
λ)(x)g1

λ(x)dx
∣∣∣∣ =

∣∣∣∣∣∣∣
∫ ∫

c1λ−1/n≤x,y≤c2λ−1/n

eiλ(S(x,y)−S(x,0)−S(0,y))dxdy

∣∣∣∣∣∣∣
≥ Cλ−2/n.

Since ‖f‖Lp ≈ λ−1/np and ‖g‖Lp′ ≈ λ−1/np′ , where p′ is the Hölder conjugate
of p, we have

‖Tλ‖Lp→Lp ≥ O(λ−1/n),
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and this implies that α ≤ 1/n. Next, we define f2
λ and g2

λ by

f2
λ(y) =

{
e−iλS(0,y) if λ−1 ≤ y ≤ 2λ−1,
0 otherwise,

and

g2
λ(x) =

{
e−iλS(x,0) if c1 ≤ x ≤ c2,
0 otherwise.

If x and y are in the supports of g2
λ and f2

λ, respectively, then

|S(x, y)− S(x, 0)− S(0, y)| =

∣∣∣∣∣
n−1∑
i=1

aix
n−iyi

∣∣∣∣∣ ≤
n−1∑
i=1

|ai|cn−i2 λ−i.

If we take c2 > c1 > 0 sufficiently small so that (2.10) holds in the supports
of f2

λ and g2
λ, then we obtain the relation α ≤ 1 − 1/p. By exchanging the

roles of f2
λ and g2

λ, we also have α ≤ 1/p. Therefore (1/p, α) must be in the
region A defined by

A = {(a, b) ∈ [0, 1]× R | b ≤ 1/n, b ≤ a, and b ≤ 1− a},
which is the same region as in the figure. Therefore Theorem 1.1 is a sharp
result.

(2) The complex interpolation of Theorem 1.1 with [PS] yields sharp Lp

estimates for damped oscillatory integral operators T γλ defined by

T γλ f(x) =
∫
eiλS(x,y)|S′′xy(x, y)|γχ(x, y)f(y)dy,

where 0 ≤ γ ≤ 1/2. It would be interesting to understand mapping properties
of oscillatory integral operators with weights |g|γ which are not related to S′′xy.
Some work in this direction has been done by M. Pramanik [Pr].
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