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WEIGHTED L2 ESTIMATES FOR MAXIMAL OPERATORS
ASSOCIATED TO DISPERSIVE EQUATIONS

YONGGEUN CHO AND YONGSUN SHIM

Abstract. Let Tf(x, t) = e2πitφ(D)f(x) be the solution of the general

dispersive equation with phase φ and initial data f in the Sobolev space
Hs. We prove a weighted L2 estimate for the global maximal operator

T ∗∗ defined by taking the supremum over the time variable t ∈ R so
that ‖T ∗∗f‖L2(w dx) ≤ C‖f‖Hs . The exponent s depends on the phase

function φ, whose gradient may vanish or have singularities.

1. Introduction

The general dispersive equation with initial data f in the Schwartz class
S(Rn) (n ≥ 2) is

iut(x) = −2πφ(D)u(x), u(x, 0) = f(x) on R
n × R,

where D = 1
2πi∇ and φ is a measurable phase function. The formal so-

lution of this equation is u(x, t) =
∫
e2πi(x·ξ+tφ(ξ))f̂(ξ) dξ, where f̂(ξ) =∫

e−2πix·ξf(x) dx. Let us define an operator T by Tf(x, t) = u(x, t). The
corresponding maximal operators are

T ∗Nf(x) := sup
−N≤t≤N

|Tf(x, t)|, T ∗∗f(x) := sup
t∈R
|Tf(x, t)|.

The purpose of this paper is to study the mapping properties of T ∗∗ from
the inhomogeneous Sobolev space Hs to L2(wdx) for some nonnegative inte-
grable function w, i.e., study bounds of the form

‖T ∗∗f‖L2(wdx) ≤ C‖f‖Hs ,(1.1)
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where the constant C is independent of f . Here, the Sobolev space Hs is
defined by the norm

‖f‖Hs ≡ ‖f‖L2 +

∑
j∈Z

22sj‖∆jf‖2L2

1/2

∼
(∫

(1 + |ξ|)2s|f̂(ξ)|2 dξ
)1/2

,

where ∆̂jf(ξ) = ϕj(ξ)f̂(ξ) for some Littlewood-Paley function ϕj (see [1]).
The homogeneity and regularity of the phase φ play a crucial role in ob-

taining a small value for the exponent s. If det( ∂2φ
∂ξi∂ξj

) 6= 0, then it is
expected that one can take s = 1/4 for some functions w. In fact, if f
is a function of a single variable, or a radial function multiplied by spher-
ical harmonics, then s can attain the critical value 1/4 with the weight
|x|−1/2 (see Theorem 1.1 in [4]). For other results related to T ∗N and T ∗∗,
see [2], [3], [5], [6], [9]–[13], and [4], [7], [14], [15]. In particular, P. Sjölin
[11] showed that the maximal operator T ∗∗ defined with φ = |ξ|a (a > 1)
does not satisfy the global L2 boundedness. Thus, in order to obtain a
global L2 estimate, we have to employ an appropriate weight w. L. Vega
[15] studied global estimates with phase φ(ξ) = |ξ|a (a > 1) and weight
w(x) = (1 + |x|)−b1 (b1 > 1). Later, H. P. Heinig and S. Wang [7] used homo-
geneous phase functions whose gradients may have zeros and weights of the
form w(x) = |x|−b1(1 + |x|)−b2 (1 < b1 < n, b1 + b2 > n). They obtained the
estimate (1.1) for s > b1/2.

In this paper, we consider a wider class of phase functions, whose gradient
may not exist, or may have zeros and singularities. To be specific, we assume
that their zeros and singularities on the unit sphere are of regular type. We
define regular zeros as in [7]:

Definition 1.1. Let ψ be a continuous function on Sn−1 such that ψ(ξ′0) =
0 for some point ξ′0 ∈ Sn−1. If ∠(ξ′, ξ′0) is the angle between ξ′0 and ξ′, then
ξ′0 is called a regular zero of order α∗, provided for all α < α∗,

lim
ξ′→ξ′0

|ψ(ξ′)|
(∠(ξ′, ξ′0))α

= 0.

Similarly, we define regular singularities:

Definition 1.2. Let ψ be a continuous function except for a finite subset
S of unit sphere. If ξ′0 ∈ S, then ξ′0 is called a regular type singularity of order
β∗, if for all β > β∗,

lim
ξ′→ξ′0

(∠(ξ′, ξ′0))β |ψ(ξ′)| = 0.

When α∗ = 0 (resp. β∗ = 0), we mean that ψ has no zero (resp. singularity).

Now let us assume:
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(A1) φ has finitely many regular singularities ξ′1, . . . , ξ
′
l ∈ Sn−1, and each

ξ′i is of order β∗i ≥ 0. (Note that by homogeneity φ and ∇φ have the
same singularities of the same order.)

(A2) φ is continuous on the complement of S = {ξ′1, . . . , ξ′l} and differen-
tiable except for a finite subset F on Sn−1, which has the property
that for all ξ′ ∈ F there exist positive constants c1 and c2 such that

inf
∠(η′,ξ′)≤c1

|∇φ(η′)| ≥ c2.

(A3) ∇φ has a finite regular zero set Z = {η′1, . . . , η′m} ⊂ Sn−1 \ (S ∪ F ),
and each η′j is of order α∗j ≥ 0.

(A4) φ is differentiable and ∇φ(ξ) 6= 0 on a subset E of Rn.
(A5) For any (ξ1, . . . , ξk−1, ξk+1, . . . , ξn) ∈ Rn−1 and any r ∈ R, the equa-

tion

φ(ξ1, . . . , ξk−1, x, ξk+1, . . . , ξn) = r (0 ≤ k ≤ n− 1)

has at most N0 solutions.
The assumptions (A4)–(A5) were first proposed by C. E. Kenig, G. Ponce and
L. Vega [8].

Let us consider a weight w satisfying{
w(x) = O( 1

|x| ) as x→ 0,
w(x) = O( 1

|x|n(log |x|)δ ) as x→∞.(1.2)

for some δ > 1.
Now we are ready to state our main result.

Theorem 1.3. Suppose φ is homogeneous of degree a ∈ R and satisfies
(A1)–(A3), and (A4)–(A5) with E the complement of any fixed neighborhood
of L which is the union of straight lines of direction ξ′ ∈ S ∪ F ∪ Z from the
origin. Let λ0 = max(α∗1, . . . , α

∗
l ), λs = (β∗1 , . . . , β

∗
m). If λ0 = λs = 0, then a

is assumed to be a positive number. Let w be a nonnegative function satisfying
(1.2) and locally bounded on Rn \{0}. Then for any f ∈ S(Rn) the inequality
(1.1) holds for

(1) s >
1
2

+
(λ0 + λs)n
4(n− 1)

, if a ≤ (λ0 − λs)n
2(n− 1)

,

(2) s >
1
2
− a

2
+

λ0n

2(n− 1)
, if

(λ0 − λs)n
2(n− 1)

< a,

and fails for s < 1/2.

If a ≥ λ0n/(n− 1) and a 6= 0, then we recover the results of H. Heinig and
S. Wang [7], and L. Vega [15]. However, we could not obtain sharp necessary
conditions for the maximal inequalities in the presence of singularities and
zeros. Our future concern is to find such conditions.
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Examples. If

φ =
(ξ1 + ξ2)m1 + (ξ2 + ξ3)m1 + · · ·+ (ξn−1 + ξn)m1

(ξ1 − ξ2)m2 + (ξ2 − ξ3)m2 + · · ·+ (ξn−1 − ξn)m2
,

where m1 and m2 are positive integers, then φ has singularities at (± 1√
n
,

. . . ,± 1√
n

) of order m2 and ∇φ has zeros at (± 1√
n
,∓ 1√

n
, . . . ,∓(−1)n 1√

n
) of

order m1 − 1. If φ = |ξ1|a1 |ξ2|a2 . . . |ξn|an (0 < ai ≤ 1), then φ is continuous.
But ∇φ does not exist at ±ei, where ei is a unit normal vector whose i-th
component is 1, and ∇φ has no zero. If φ = |ξ1|a|ξ2|b (0 < a < 1, b > 1), then
φ is continuous and ∇φ has zeros at (±1, 0) of order b − 1, but ∇φ does not
exist at (0,±1). If φ = ξm1

1 ξm2
2 (ξ1− ξ2)m3 , where m1,m2,m3 are nonnegative

integers, then ∇φ has zeros at (±1, 0), (0,±1), (± 1√
2
,± 1√

2
) of order m1 − 1,

m2 − 1, and m3 − 1, respectively.

If not specified, we use C to denote a positive constant that may not be
the same at each occurrence, and use A . B and A ∼ B to denote |A| ≤ CB
and C−1B ≤ |A| ≤ CB, respectively.

2. Preliminary lemmas

In this section, we study local L2 estimates for a maximal operator with a
fixed phase function whose gradient is non-vanishing. For any open subset E
of Rn let us define an operator T ∗∗E by

T ∗∗E f(x) = sup
t∈R

∣∣∣∣∫
E

e2πi(x·ξ+tφ(ξ))f̂(ξ) dξ
∣∣∣∣ .

Throughout this section, we assume that φ satisfies the assumptions (A4)–
(A5) and that ∇φ 6= 0 in E. Let us define subsets Di (i = 1, . . . , n) by

Di =
{
ξ ∈ E : |∂iφ(ξ)| ≥ 1

2n
|∇φ(ξ)|

}
.

Since ∇φ 6= 0, by the implicit function theorem we can find subsets Ei, k of
Di and C1 functions Ψi, k such that

(i) Ψi, k is a diffeomorphism with

Ψi, k(ξ1, . . . , ξi, . . . , ξn) = (ξ1, . . . , φ(ξ), . . . , ξn) = ω,

(ii) |det(DΨi, k)(ξ)| =
∣∣∣ ∂φ∂ξi (ξ)∣∣∣ ≥ 1

2n |∇φ(ξ)| > 0 for all ξ ∈ Ei, k,
(iii) |E \

⋃
i, k Ei, k| = 0 and the Ei, k’s are mutually disjoint,

(iv)
∑
k χΨi,k(Ei,k) ≤ N0.
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Denoting by Bj the dyadic ball E ∩B(0, 2j) for j ∈ Z, let us set

M0,j := sup
ξ∈Bj+1\Bj

|∇φ(ξ)|,

M1,j := sup
ξ∈Bj+1\Bj

1
|∇φ(ξ)|

,

M2,j := sup
ξ∈Bj+1\Bj

|φ(ξ)|
|∇φ(ξ)|

.

If Bj+1 = ∅, then let us set M0,j = M1,j = 0. We have the following result:

Lemma 2.1. If R > 0 and f ∈ S(Rn), then the inequality

‖T ∗∗E f‖L2(B(0,R)) . R
1/2
∑
j∈Z

M
1/4
0,j M

1/4
1,j M

1/2
2,j ‖∆jf‖L2(2.1)

holds for some Littlewood-Paley function ϕj with ∆̂jf = ϕj f̂ .

Proof. We first prove the lemma when |φ| ≥ λ > 0. It is enough to show
that for any large N

‖T ∗E,Nf‖L2(B(0,R)) ≤ CR1/2
∑
j∈Z

M
1/4
0,j M

1/4
1,j M

1/2
2,j ‖∆jf‖L2 ,(2.2)

where T ∗E,Nf(x) := sup|t|<N |TEf(x, t)|, and the constant C does not depend
on N and λ.

Let us choose smooth functions ψ,ϕ with compact support in Rn such that

ψ(x) =
{

1 if |x| < 1,
0, if |x| > 2,

ϕ(x) =
{

1 if 1/2 < |x| < 1,
0 if |x| < 1/4, or |x| > 2,∑

j∈Z

ϕ(
·

2j
) ≡

∑
j∈Z

ϕj(·) = 1 on Rn \ {0}.

Also choose a one dimensional smooth function η such that η(t) = 1 if |t| < 1,
and η(t) = 0 if |t| > 2. For each j ∈ Z we define an operator Aj by

Ajf(x, t) = ψ(
x

R
)η(t)

∫
E

e2πi(x·ξ+Ntφ(ξ))f̂(ξ)ϕj(ξ)dξ.(2.3)

For the interval I = [−1, 1] let us first observe that

T ∗E,Nf(x) ≤
∑
j

sup
I
|Ajf(x, t)|.(2.4)

We then estimate the maximal function of Ajf using the following simple
lemma:
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Lemma 2.2. For any F (t) ∈ C1(J), J = [a, b], we have

sup
J
|F (t)| ≤ 1

|J |

∫
J

|F (t)|dt+
∫
J

|F ′(t)|dt.

Let us divide I into subintervals Il with |Il| ∼ δ, 0 < δ < 1. Applying
Lemma 2.2 to these subintervals Il and using Schwartz’s inequality, we get for
each x ∈ B(0, R)

sup
I
|Ajf(x, t)|2 ≤

∑
l

sup
Il

|Ajf(x, t)|2

≤ 2
∑
l

(
1
δ

∫
Il

|Ajf(x, t)|2dt+ δ

∫
Il

| d
dt
Ajf(x, t)|2dt

)
= 2

(
1
δ

∫
|Ajf(x, t)|2dt+ δ

∫
| d
dt
Ajf(x, t)|2dt

)
and hence∫

B(0,R)

sup
I
|Ajf(x, t)|2dx

.
1
δ

∫∫
|Ajf(x, t)|2dxdt+ δ

∫∫
| d
dt
Ajf(x, t)|2dxdt

=
∫∫

∆̂jf(ξ)∆̂jf(ξ′)
(

1
δ
K1
j (ξ, ξ′) + δK2

j (ξ, ξ′)
)
dξdξ′,

where

K1
j (ξ, ξ′) = χjχ

′
j

∫∫
e2πi[x·(ξ−ξ′)+Nt(φ(ξ)−φ(ξ′))]ψ2(

x

R
)η2(t)dxdt,(2.5)

K2
j (ξ, ξ′) = −4π2N2φ(ξ)φ(ξ′)K1

j (ξ, ξ′) + K̃1
j (ξ, ξ′),(2.6)

K̃1
j = χjχ

′
j

∫∫
e2πi[x·(ξ−ξ′)+Nt(φ(ξ)−φ(ξ′))]ψ2(

x

R
)(η2)′(t)dxdt,(2.7)

and χj = χBj+1\Bj (ξ), χ
′
j = χBj+1\Bj (ξ

′).
Now we estimate the above kernels. By the Fourier transform decay of

smooth functions, we have, for any positive µ and ν,

|K1
j (ξ, ξ′)| . Rnχjχ′j(1 +R|ξ − ξ′|)−µ(1 +N |φ(ξ)− φ(ξ′)|)−ν .

Fixing ξ′ ∈ Bj+1 \Bj , we divide the region of integration into two parts, the
conic neighborhood D of ξ′ with angle 1 and its complement. Now, let us
write∫

|K1
j (ξ, ξ′)|dξ . Rn

(∫
(Bj+1\Bj)∩Dc

+
∫

(Bj+1\Bj)∩D

)

. Rn
∑
i,k

(∫
(Bj+1\Bj)∩Dc∩Ei,k

+
∫

(Bj+1\Bj)∩D∩Ei,k

)
.
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Let Ii,kj (µ1, ν1) + IIi,kj (µ2, ν2) denote the summand in parentheses in this in-
equality. Then, in the complement of D, noting that |ξ − ξ′| & 2j , we have

Rµ12µ1jIi,kj .
∫

(Bj+1\Bj)∩Ei,k
(1 +N |φ(ξ)− φ(ξ′)|)−ν1dξ

=
∫

Ψi,k((Bj+1\Bj)∩Ei,k)

(1 +N |ωi − φ(ξ′)|)−ν1 |∂iφ(Ψ−1
i,k (ω))|−1dω

.M1,j

∫
Ψi,k((Bj+1\Bj)∩Ei,k)

(1 +N |ωi − φ(ξ′)|)−ν1dω .

For large ν1 it follows by direct integration that∑
k

Ii,kj . R
−µ12−µ1jM1,j 2(n−1)j N−1.(2.8)

For the second part, we get

IIi,kj .
∫

(Bj+1\Bj)∩D∩Ei,k
(1 +R|ξ − ξ′|)−µ2(1 +N |φ(ξ)− φ(ξ′)|)−ν2dξ

.
∫

(Bj+1\Bj)∩D∩Ei,k

∏
1≤l≤n

(1 +R|ξl − ξ′l|)−µ2/n(1 +N |φ(ξ)− φ(ξ′)|)−ν2dξ

.
∫

Ψi,k((Bj+1\Bj)∩Ei,k)

∏
l 6=i

(1 +R|ωl − ξ′l|)−µ2/n(1 +N |ωi − φ(ξ′)|)−ν1
dω

|∇φ(ξ)|
.

Thus for large µ2 and ν2 we have
∑
k II

i,k
j . R−(n−1)N−1M1,j . If we choose

µ1 = n− 1 in (2.8), then

sup
ξ′∈Rn

∫
|K1

j (ξ, ξ′)|dξ . RN−1M1,j .

By symmetry, we also have

sup
ξ∈Rn

∫
|K1

j (ξ, ξ′)|dξ′ . RN−1M1,j .

We estimate
∫
|K2

j |dξ similarly. If N > 1/λ, then by (2.6),

sup
ξ′

∫
|K2

j (ξ, ξ′)|dξ . RNM0,jM
2
2,j +RN−1M1,j . RNM0,jM

2
2,j .

Using Schur’s lemma and the identity f =
∑
k ∆kf , we obtain∫

sup
I
|Ajf(x, t)|2dx .

(
1
δ
RN−1M1,j + δRNM0,jM

2
2,j

)
‖∆jf‖2L2 .(2.9)

If we choose δ = N−1 (M1,j/M0,j)
1/2

M−1
2,j , then

δ ≤ sup
Bj+1\Bj

1
N |φ(ξ)|

≤ 1
Nλ

< 1.
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This implies that there exists a constant C, independent of j and λ, such that∫
sup
I
|Ajf(x, t)|2dx ≤ CRM1/2

0,j M
1/2
1,j M2,j‖∆jf‖2L2 .(2.10)

This and (2.4) yield (2.2) and thus the result for the case when |φ| ≥ λ.
For the general case, we observe that

T ∗∗E f(x) ≤ T ∗∗+ f(x) + T ∗∗− f(x),

where

T ∗∗+ f(x) = sup
t∈R

∣∣∣∣∣
∫
E∩{φ≥0}

e2πi(x·ξ+t(φ(ξ)+λ))f̂(ξ)dξ

∣∣∣∣∣ ,
T ∗∗− f(x) = sup

t∈R

∣∣∣∣∣
∫
E∩{φ<0}

e2πi(x·ξ+t(φ(ξ)−λ))f̂(ξ)dξ

∣∣∣∣∣
for any positive constant λ. Applying the previous estimate to the phase
functions φ± λ and ∆jf , we get

‖T ∗∗+ ∆jf‖L2(B(0,R)) + ‖T ∗∗− ∆jf‖L2(B(0,R))

≤ CR1/2
∑

j−2≤k≤j+2

M
1/4
0,k M

1/4
1,k

(
sup

Bk+1\Bk

|φ(ξ)|+ λ

|∇φ(ξ)|

)1/2

‖∆k∆jf‖L2 ,

where the constant C does not depend on λ. Letting λ → 0 and summing
over j, we obtain the desired result. �

Now we introduce a local version of Lemma 2.5 in [7]:

Lemma 2.3. If R > 0 and s0 > 1/2, then

‖T ∗∗E f‖L2(B(0,R)) . R
1/2

(∫
E

(1 + |φ(ξ)|)2s0

|∇φ(ξ)|
|f̂(ξ)|2 dξ

)1/2

.

Proof. Lemma 2.3 follows easily from Lemma 2.5 in [7] using the weight
wR = ψ(x1

R )×· · ·×ψ(xnR ) for some function ψ ∈ C∞0 (R), supported in [−3, 3]
and satisfying ψ = 1 on [−2, 2], instead of the weight w(x) = |x|−b1(1+|x|)−b2
used in [7]. �

3. Proof of the main result

For simplicity, let us assume that φ has one singularity η′1, and that ∇φ
does not exist at one point ξ′2 and has one zero at ξ′3 on the unit sphere. Let
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us define a subset C such that

C =
⋃
j≥1,
i=1,2,3

Cij of R
n,

Cij =
{
ξ : |ξ| ∼ 2j , ∠(ξ′, ξ′i) .

1
j2/(n−1)

2−nj/(n−1), ξ = |ξ|ξ′
}
.

Then we have
|C| ∼

∑
j≥1,
i=1,2,3

|Cij | .
∑
j≥1

1
j2
. 1.

Next, we split the function Tf into two parts:

Tf(x, t) =
∫
B0∪C

+
∫
Bc0∩Cc

= TB0∪C(x, t)f + TBc0∩Ccf(x, t).

Since, by Hölder inequality,

T ∗∗B0∪C(x, t)f . (|B0|+ |C|)1/2‖f‖L2 . ‖f‖L2 ,

and since w is integrable, we have

‖T ∗∗B0∪C(x, t)f‖L2(wdx) . ‖f‖L2 .(3.1)

Applying Lemmas 2.1 and 2.3 with E = B0 ∩ Cc, we can estimate the
second integral and obtain

‖T ∗∗Bc0∩Ccf‖|L2(B(0,R))(3.2)

.

 R1/2
∑
j≥1M

1/4
0,j M

1/4
1,j M

1/2
2,j ‖∆jf‖L2 ,

R1/2
(∫

Bc0∩Cc
(1+|φ(ξ)|)2so

|∇φ(ξ)| |f̂(ξ)|2 dξ
)1/2

.

From the homogeneity of φ and the regularity at ξ′i, we deduce that M2,j . 2j ,

|∇φ(ξ)| . |ξ|a−1(∠(ξ′, ξ′i))
−λs . j

2λs
(n−1) 2(a−1+λs

n
n−1 )j ,

|∇φ(ξ)| & |ξ|a−1(∠(ξ′, ξ′i))
λ0 &

1

j
2λ0

(n−2)

2(a−1−λ0
n
n−1 )j

on (Bj+1 \Bj) ∩ Cc. This implies that

M
1/4
0,j M

1/4
1,j M

1/2
2,j ≤ C(ε)2( 1

2 +
(λ0+λs)n

4(n−1) +ε)j(3.3)

for some small ε depending on λ0, λs such that ε = 0 if λ0 = λs = 0, where
C(ε) satisfies C(0) <∞, limε→0 C(ε) =∞. Similarly, on (Bj+1 \Bj)∩Cc we
have

(1 + |φ(ξ)|)2s0

|∇φ(ξ)|
≤
(

1
|∇φ(ξ)|

+
|φ(ξ)|
|∇φ(ξ)|

)
(1 + |φ(ξ)|)2s0−1(3.4)

≤ C(ε)(2(1−a+
λ0n
n−1 +ε)j + 2j)(1 + 2(a+ λsn

n−1 +ε)j)2s0−1.
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If s is a number satisfying the conditions of the theorem, then from (3.3) and
(3.4) it follows that

‖T ∗∗Bc0∩Ccf‖L2(B(0,R)) . R
1/2‖f‖Hs .(3.5)

Now we are ready to prove the theorem. Employing a suitable nonnegative
dyadic function ψ̃, let us write

‖T ∗∗Bc0∩Ccf‖
2
L2(w dx) ∼

∑
k∈Z

∫
(T ∗∗Bc0∩Ccf)2ψ̃(

x

2k
)w(x) dx.

Then it follows from (3.5) that for large fixed K∑
k≥K

∫
(T ∗∗Bc0∩Ccf)2ψ̃(

x

2k
)w(x) dx .

∑
k≥K

2−nkk−δ
∫
|x|∼2k

(T ∗∗Bc0∩Ccf)2ψ̃(
x

2k
) dx

.
∑
k≥K

2−(n−1)kk−δ‖f‖2Hs . ‖f‖2Hs ,

where s is as in Theorem 1.3. Since w(x) ≤ C for all x ∈ BK \ B−K , from
(3.5) we also get ∑

−K≤k≤K

∫
(T ∗∗Bc0∩Ccf)2ψ̃(

x

2k
)w(x) dx . ‖f‖2Hs .

If k ≤ −K, then we proceed as follows. Observing that∑
k≤−K

∫
(T ∗∗Bc0∩Ccf)2ψ̃(

x

2k
)w(x)dx .

∑
k≤−K

2−k
∫

(T ∗∗Bc0∩Ccf)2ψ̃(
x

2k
) dx ≡ Γ,

we estimate Γ. We write

Γ1/2 .
∑
j≥1

∑
k≤−K,

2−k/2
(∫
|T ∗∗Bc0∩Cc(∆jf)|2ψ̃(

x

2k
)dx
)1/2

≡
∑
j≥1

Γ1/2
j .(3.6)

For each j ≥ 1, we divide Γ1/2
j into two parts,

Γ1/2
j =

∑
−j≤k≤−K

(·) +
∑
k≤−j

(·).

For the first sum, we get from (3.5)∑
−j≤k≤−K

(·) .
∑

−j≤k≤−K

2−k/22k/22sj/2‖∆jf‖L2 . 2(s+ε)j/2‖∆jf‖L2 .

Since T ∗∗(∆jf)(x) . 2nj/2‖∆jf‖L2 , we obtain for the second sum∑
k≤−j

(·) .
∑
k≤−j

2−k/22(nk/2)+(nj/2)‖∆jf‖L2 . 2j/2‖∆jf‖L2 .

Substituting these estimates into (3.6), we obtain the desired result.
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For the proof of the remaining part, suppose that (1.1) holds for some
s, and let us choose a Schwartz function f such that f̂ ≥ 0, supp(f̂) ⊂
B(0, 1)c and

∫
f̂(ξ)dξ = C > 0. With this function f , we have Tf(0, 0) =∫

f̂(ξ)dξ = C. Hence, for sufficiently small r > 0, |Tf(x, 0)| ≥ C/2 for all
x ∈ B(0, 2r) \ B(0, r). If we use the notation fN (x) := f(Nx), then by the
dilation invariance of T ∗∗, we have for all large N

N2s−n & ‖fN‖2Hs & ‖T ∗∗fN‖2L2(w dx) &
∫

(T ∗∗f(Nx))2w(x) dx

& N−n
∫

(T ∗∗f(x))2w(
x

N
) dx & N1−n‖T ∗∗f‖2L2({|x|∼r}) & N

1−n.

This implies that (1.1) fails for s < 1/2 and thus completes the proof of the
theorem. �
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