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AMENABILITY AND THE BICROSSED PRODUCT
CONSTRUCTION

PIETER DESMEDT, JOHAN QUAEGEBEUR, AND STEFAAN VAES

Abstract. We study stability properties of amenable locally compact
quantum groups under the bicrossed product construction. We obtain

as our main result an equivalence between amenability of the bicrossed
product and amenability of the matched quantum groups used as build-
ing ingredients of the bicrossed product. Finally, we give examples of
non-amenable locally compact quantum groups obtained by a bicrossed
product construction.

1. Introduction

The theory of locally compact quantum groups has been introduced by
J. Kustermans and the third author [9][10], unifying compact quantum groups
and Kac algebras. As the example of the quantum SUq(2)-group, developed
by Woronowicz, shows, the antipode of a compact quantum group need not
be bounded and it need not respect the ∗-operation. For this reason, com-
pact quantum groups are not always Kac algebras. The crucial difference
between Kac algebras and locally compact quantum groups is the possible
unboundedness of the antipode.

Taking into account the importance of amenable locally compact groups
within the category of all locally compact groups, it is natural to consider
amenability of locally compact quantum groups. In fact, the main results on
amenability of Kac algebras have been developed by Enock and Schwartz [6],
and their proofs can be repeated in the more general framework of locally
compact quantum groups. However, there is still one open problem. Recall
that there are many different characterizations of amenability of locally com-
pact groups. A first characterization deals with the existence of an invariant
mean on a suitable algebra of functions on the group G (bounded continuous
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functions or L∞(G)). Another characterization says that the trivial repre-
sentation of G is weakly contained in the left regular representation. Other
characterizations are most of the time closely related to one of these two defi-
nitions. These two properties can be formulated for locally compact quantum
groups; in this way, one defines weakly amenable and strongly amenable locally
compact quantum groups. It is known that all strongly amenable quantum
groups are weakly amenable. The converse has been claimed by Enock and
Schwartz [6] on the level of Kac algebras. However, their proof contains a
gap as pointed out by Ruan [14]. In the latter paper, Ruan closed the gap
for discrete Kac algebras. Recently, E. Blanchard and the third author ex-
tended the result of Ruan to arbitrary discrete quantum groups. Even more
recently, Tomatsu [15] found an alternative proof of the same result. Also, for
locally compact groups the two notions of amenability coincide; see, e.g., [7].
However, in the general case this remains an open problem.

Having defined both notions of amenability for locally compact quantum
groups, one asks for examples. A systematic way of constructing examples of
locally compact quantum groups has been developed by Majid [11], Baaj and
Skandalis [2] and Vainerman and the third author [19]. In this paper, we pre-
cisely characterize when these locally compact quantum groups are amenable.
We also give two examples of non-amenable locally compact quantum groups
obtained by this so-called bicrossed product construction.

In [19], one also defines bicrossed products of quantum groups, and one
makes the link with short exact sequences of locally compact quantum groups,
called extensions. In this paper, we will characterize in this full generality
when the bicrossed product is amenable; in fact, our result is a quantum
version of the well known result that a locally compact group G with normal
closed subgroup H is amenable if and only if H and G/H are amenable.

2. Preliminaries

We refer to [9] and [10] for the theory of locally compact quantum groups
in the C∗-algebra, as well as in the von Neumann algebra language. For the
non-specialists, [18] is a good starting point. We recall from [10] the definition
of a von Neumann algebraic quantum group: (M,∆) is called a (von Neumann
algebraic) locally compact quantum group when

• M is a von Neumann algebra and ∆ : M → M ⊗ M is a normal
and unital ∗-homomorphism satisfying the coassociativity relation
(∆⊗ ι)∆ = (ι⊗∆)∆;
• there exist normal, semi-finite, faithful (n.s.f.) weights ϕ and ψ on M

such that
– ϕ is left invariant, i.e., ϕ

(
(ω⊗ι)∆(x)

)
= ϕ(x)ω(1) for all x ∈M+

ϕ

and ω ∈M+
∗ ,
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– ψ is right invariant, i.e., ψ
(
(ι ⊗ ω)∆(x)

)
= ψ(x)ω(1) for all x ∈

M+
ψ and ω ∈M+

∗ .

Here we use the notation M+
ϕ = {x ∈ M+ | ϕ(x) < +∞}, and define analo-

gously M+
ψ .

Fix a left invariant n.s.f. weight ϕ on (M,∆) and represent M on the GNS-
space of ϕ such that (H, ι,Λ) is a GNS-construction for ϕ. Then we can define
a unitary W on H ⊗H by

W ∗(Λ(a)⊗ Λ(b)) = (Λ⊗ Λ)(∆(b)(a⊗ 1)) for all a, b ∈ Nϕ .

Here Λ⊗Λ denotes the canonical GNS-map for the tensor product weight ϕ⊗ϕ.
One proves that W satisfies the pentagonal equation: W12W13W23 = W23W12.
We say that W is a multiplicative unitary. The comultiplication can be given
in terms of W by the formula ∆(x) = W ∗(1 ⊗ x)W for all x ∈ M . Also the
von Neumann algebra M can be written in terms of W as

M = {(ι⊗ ω)(W ) | ω ∈ B(H)∗}− σ-strong∗ .

Next, the locally compact quantum group (M,∆) has an antipode S, which is
the unique σ-strong∗ closed linear map from M to M satisfying (ι⊗ω)(W ) ∈
D(S) for all ω ∈ B(H)∗, S(ι ⊗ ω)(W ) = (ι ⊗ ω)(W ∗), and such that the
elements (ι⊗ω)(W ) form a σ-strong∗ core for S. The antipode S has a polar
decomposition S = Rτ−i/2, where R is an anti-automorphism of M and (τt)
is a strongly continuous one-parameter group of automorphisms of M . We
call R the unitary antipode and (τt) the scaling group of (M,∆). It is known
that σ(R⊗R)∆ = ∆R, where σ denotes the flip map on M ⊗M .

We turn the predual M∗ into a Banach algebra with product ω ∗ µ =
(ω ⊗ µ)∆, for all ω, µ ∈M∗.

We use the notation ∆op to denote the opposite comultiplication defined
by ∆op := σ∆.

The dual locally compact quantum group (M̂, ∆̂) is defined as follows. Its
von Neumann algebra M̂ is

M̂ = {(ω ⊗ ι)(W ) | ω ∈ B(H)∗}− σ-strong∗

and the comultiplication is given by ∆̂(x) = ΣW (x ⊗ 1)W ∗Σ for all x ∈ M̂ ,
where Σ denotes the flip map on the tensorproduct of Hilbert spaces. Set
Ŵ = ΣW ∗Σ.

Since (M̂, ∆̂) is again a locally compact quantum group, we can introduce
the antipode Ŝ, the unitary antipode R̂ and the scaling group (τ̂t) exactly as
we did it for (M,∆). Also, we can again construct the dual of (M̂, ∆̂), starting
from the left invariant weight ϕ̂ with GNS-construction (H, ι, Λ̂). From the
biduality theorem, we get that the bidual locally compact quantum group
(M̂̂ , ∆̂̂) is isomorphic to (M,∆).
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Define Mc to be the norm closure of the space

{(ι⊗ ω)(W ) | ω ∈ B(H)∗}
and ∆c to be the restriction of ∆ to Mc. It was proven in [10] that the
pair (Mc,∆c) is a reduced C∗-algebraic locally compact quantum group. We
know that there is a bijective correspondence between reduced C∗-algebraic
quantum groups and von Neumann algebraic quantum groups. So, the choice
for the von Neumann algebra language is not a restriction.

A ∗-homomorphism ε : Mc → C is called a co-unit of (Mc,∆c), if

(ε⊗ ι)∆ = (ι⊗ ε)∆ = ι .

Classical locally compact groups appear as M = L∞(G) with ∆(f)(p, q) =
f(pq). The invariant weights are defined by integrating with respect to the
left or the right Haar measure. The dual M̂ can be identified with the group
von Neumann algebra L(G).

Working with tensor products with more than two factors, we will some-
times use the leg-numbering notation. For example, if H,K and L are Hilbert
spaces and X ∈ B(H⊗L), we denote by X13 (respectively, X12, X23) the op-
erator (1⊗Σ∗)(X⊗1)(1⊗Σ) (respectively, X⊗1, 1⊗X) defined on H⊗K⊗L.
If now H = H1 ⊗H2 is itself a tensor product of two Hilbert spaces, then we
sometimes switch from the leg-numbering notation with respect to H⊗K⊗L
to the one with respect to the finer tensor product H1 ⊗H2 ⊗K ⊗ L, for ex-
ample, from X13 to X124. There is no confusion here, because the number of
legs changes. Weak and σ-weak convergence are denoted by w−→, respectively
σw−→.

3. Amenability

Let (M,∆) be a von Neumann algebraic locally compact quantum group.
A state m ∈M∗ is said to be a left invariant mean (LIM) on (M,∆) if

m((ω ⊗ ι)∆(x)) = m(x)ω(1),

for all ω ∈M∗ and x ∈M . It is said to be a right invariant mean (RIM) if

m((ι⊗ ω)∆(x)) = m(x)ω(1),

for all ω ∈M∗ and x ∈M . Finally, if m is both a LIM and a RIM, we call m
an invariant mean (IM).

Definition 1. We call (M,∆) weakly amenable if there exists a left in-
variant mean (LIM) on (M,∆). We say that (M,∆) is weakly coamenable if
(M̂, ∆̂) is weakly amenable.

Definition 2. We call (M,∆) strongly amenable if there exists a bounded
co-unit on (M̂c, ∆̂c). We say that (M,∆) is strongly coamenable if (M̂, ∆̂) is
strongly amenable.
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Classical locally compact groups appear as (L∞(G),∆G) in the theory of lo-
cally compact quantum groups. For these groups, weak and strong amenabil-
ity coincide and agree with the usual notion of amenability of the group G.
Other authors sometimes use a “dual” terminology. This difference originates
from the choice of the quantum group associated with a locally compact group,
L∞(G) or L(G). Here we adopt the point of view of Enock and Schwartz [6]
and Ruan [14] (i.e., we take L∞(G) as the associated quantum group). The
“dual” convention is used, amongst others, by Banica [3], Baaj and Skandalis
[2] and Ng [12]. They use coamenable where we use strongly amenable. When-
ever we cite a result of one of the papers mentioned with different terminology,
it will be already translated to our setting.

M. Enock and J.M. Schwartz [6] proved that, for Kac algebras, the following
statements are equivalent to the fact that a Kac algebra is strongly amenable:

(i) There exists a net (ξj)j of normalized vectors in H such that

(ι⊗ ωξj )(W ) w−→ 1.

(ii) There exists a bounded left (resp., right) approximate unit in M̂∗.
It was proven in [6] that strong amenability implies weak amenability. The
authors also claim that the opposite implication is true, but, as mentioned
by Ruan [14], there is a gap in their proof. It is an important open question
whether or not weak amenability implies strong amenability. Until now, this
is only known to be true for locally compact groups (see, for example, [7]),
for discrete Kac algebras [14], and recently, also for discrete quantum groups
[15].

Enock and Schwartz further showed that the following statements are
equivalent:

(i) There exists a LIM on (M,∆) (resp., RIM).
(ii) There exists a net (ωi)i of states in M∗ such that ω ∗ωi−ωi converges

weakly to 0 (resp., ωi ∗ ω − ωi), for all ω ∈M∗ with ω(1) = 1.
(iii) There exists a net (ωi)i of states inM∗ such that ‖ω∗ωi−ωi‖ converges

to 0 (resp., ‖ωi ∗ ω − ωi‖), for all ω ∈M∗ with ω(1) = 1.
All of these results are also true for locally compact quantum groups. Not

surprisingly, we can prove the following proposition.

Proposition 3. Let (M,∆) be a locally compact quantum group. There
exists a LIM on (M,∆) if and only if there exists an invariant mean on
(M,∆).

Proof. One implication is immediate.
Conversely, suppose there exists a LIM on (M,∆). From the result men-

tioned above, we know that there exists a net of states (ωi)i in M∗ such that
‖ω ∗ ωi − ωi‖ converges to 0 for all ω ∈M∗ with ω(1) = 1. It is obvious that
this is equivalent to the existence of a net of states (ω◦i )i in M∗ such that
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‖ω◦i ∗ ω − ω◦i ‖ converges to 0 for all ω ∈M∗ with ω(1) = 1; take ω◦i = ωi ◦R.
It is easy to prove that µk = (ωi ∗ ω◦j )(i,j) is a net of states such that

‖µk ∗ ω − µk‖ → 0 and ‖ω ∗ µk − µk‖ → 0

for all ω ∈ M∗ with ω(1) = 1. Let m be a weak-∗ limit point of (µk)k in the
unit ball of M∗. It is obvious that m will be an invariant mean. �

4. Bicrossed products

In this section, we collect some results and definitions from [19].

Definition 4. We call a pair (α,U) a cocycle action of a locally compact
quantum group (M,∆) on a von Neumann algebra N if

α : N →M ⊗N
is a normal, injective and unital ∗-homomorphism,

U ∈M ⊗M ⊗N
is a unitary, and if α and U satisfy

(ι⊗ α)α(x) = U (∆⊗ ι)α(x)U∗ for all x ∈ N,
(ι⊗ ι⊗ α)(U)(∆⊗ ι⊗ ι)(U) = (1⊗ U)(ι⊗∆⊗ ι)(U).

If U is trivial, i.e., U = 1, we call α an action.

Notation 5. If (α,U) is a cocycle action of (M,∆) on a von Neumann
algebra N , we introduce the notation

W̃ = (W ⊗ 1) U∗;
then, W̃ is a unitary in M ⊗ B(H)⊗N .

Given a cocycle action (α,U) of a locally compact quantum group (M,∆)
on a von Neumann algebra N , we construct the crossed product M α,UnN .
This is the von Neumann subalgebra of B(H)⊗N generated by

α(N) and {(ω ⊗ ι⊗ ι)((W ⊗ 1) U∗) | ω ∈M∗}.
When U is trivial, the crossed product is denoted by M αnN . There is a
unique action α̂ of (M̂, ∆̂op) on M α,UnN such that, for all x ∈ N ,

(1) α̂
(
α(x)

)
= 1⊗ α(x) and (ι⊗ α̂)

(
(W ⊗ 1) U∗

)
= W12W13U∗134.

We call this action α̂ the dual action. It was proven in [19] that the fixed
point algebra is

(M α,UnN)α̂ = {x ∈M α,UnN | α̂(x) = 1⊗ x} = α(N).

Definition 6. A pair (M1,∆1), (M2,∆2) is said to be a matched pair
of locally compact quantum groups if there exists a triple (τ,U ,V) (called a
cocycle matching) satisfying the following conditions:
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• U ∈M1 ⊗M1 ⊗M2 and V ∈M1 ⊗M2 ⊗M2 are both unitaries;
• τ : M1 ⊗M2 →M1 ⊗M2 is a faithful ∗-homomorphism;
• defining α(y) = τ(1⊗ y) and β(x) = τ(x⊗ 1) we have:

– (α,U) is a cocycle action of (M1,∆1) on M2,
– (σβ,V321) is a cocycle action of (M2,∆2) on M1,
– (α,U) and (β,V) are matched in the following sense:

τ13(α⊗ ι)∆2(y) = V132(ι⊗∆2)α(y)V∗132,

τ23σ23(β ⊗ ι)∆1(x) = U(∆1 ⊗ ι)β(x) U∗,
(∆1 ⊗ ι⊗ ι)(V)(ι⊗ ι⊗∆2

op)(U∗) =

(U∗ ⊗ 1)(ι⊗ τσ ⊗ ι)
(
(β ⊗ ι⊗ ι)(U∗)(ι⊗ ι⊗ α)(V)

)
(1⊗ V).

Given a cocycle matching (τ,U ,V) of (M1,∆1) and (M2,∆2), one is able to
construct the cocycle bicrossed product (M,∆). By definition M =
M1 α,UnM2 and ∆(x) = W ∗(1⊗ x)W with W = ΣŴ ∗Σ and

Ŵ = (β ⊗ ι⊗ ι)
(
(W1 ⊗ 1) U∗

)
(ι⊗ ι⊗ α)

(
V(1⊗ Ŵ2)

)
∈M1 ⊗ B(H2)⊗ B(H1)⊗M2,

with W1 and W2 the multiplicative unitaries of (M1,∆1) and (M2,∆2), re-
spectively. It was proven in [19] that (M,∆) is a locally compact quantum
group and that W is its multiplicative unitary.

In Section 5, (M1,∆1) and (M2,∆2) will always be two locally compact
quantum groups matched by (τ,U ,V) and their cocycle bicrossed product
locally compact quantum group will be denoted by (M,∆). All the objects
associated with a quantum group (e.g., W , ∆,. . . ) will be denoted with an
index, when they refer to (M1,∆1) and (M2,∆2), respectively, and without
an index when they refer to (M,∆). So we have that W1 (resp., W2) is the
multiplicative unitary of (M1,∆1) (resp., (M2,∆2) ) and

W̃1 = (W1 ⊗ 1) U∗.

From Propositions 2.4 and 2.5 of [19] we know how the comultiplication ∆
works on the generators α(x) and (ω ⊗ ι⊗ ι)(W̃1) of (M,∆):

∆(α(x)) = (α⊗ α)∆2(x)

(ι⊗∆op)(W̃1) = (W̃1 ⊗ 1⊗ 1)((ι⊗ α)β ⊗ ι⊗ ι)(W̃1)(ι⊗ α⊗ α)(V)(2)

Define M̂ as the von Neumann subalgebra of M1⊗B(H2) generated by β(M1)
and {(ι⊗ ι⊗ ω)(V(1⊗ Ŵ2)) | ω ∈M2∗}. We define ∆̂(z) = Ŵ ∗(1⊗ z)Ŵ , for
all z ∈ M̂ . In [19, Sec. 3.3.2] it was shown that (M̂, ∆̂) is the dual locally
compact quantum group of (M,∆). So, if we interchange the roles of α and
β, M1 and M2, respectively, then we find, as the cocycle bicrossed product,
the dual of the original cocycle bicrossed product.
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Definition 7. A cocycle action (α,U) of (M,∆) on a von Neumann al-
gebra N is said to be stabilizable with a unitary X ∈M ⊗N if

(1⊗X)(ι⊗ α)(X) = (∆⊗ ι)(X)U∗ .

Proposition 8. Let (α,U) be a cocycle action of (M,∆) on N which is
stabilizable with a unitary X ∈M ⊗N . Then the formulas

β : N →M ⊗N : β(x) = Xα(x)X∗ and Φ : z 7→ X∗zX

define, respectively, an action of (M,∆) on N and a ∗-isomorphism from
M βnN onto M α,UnN satisfying

α̂ ◦ Φ = (ι⊗ Φ) ◦ β̂ .

The next proposition shows that many cocycle actions are stabilizable.

Proposition 9. Let (α,U) be a cocycle action of (M,∆) on N . Then
(α⊗ ι,U ⊗ 1) is a cocycle action of (M,∆) on N ⊗B(H) which is stabilizable.

5. Amenability and the bicrossed product construction

In this section, we investigate the relation between weak, respectively
strong, amenability of the cocycle bicrossed product quantum group (M,∆),
and of its building ingredients (M1,∆1) and (M2,∆2).

We start with a technical remark about slicing with non-normal functionals.
Let N and L be von Neumann algebras, n ∈ N∗ and X ∈ N ⊗ L.

If n ∈ N∗, then it is obvious that (n ⊗ ι)(X) ∈ L. This remains true
for n ∈ N∗, even if n is not normal. Indeed, consider the map L∗ → C :
ω 7→ n((ι ⊗ ω)(X)). It is obvious that this is a bounded linear functional
and since L = (L∗)∗, we know that there exists a unique Y ∈ L such that
ω(Y ) = n((ι⊗ ω)(X) for all ω ∈ L∗. Set Y = (n⊗ ι)(X).

Suppose that Φ : L → K is a normal ∗-homomorphism of von Neumann
algebras. Since for all ω ∈ K∗

ω(Φ(n⊗ ι)(X)) = n((ι⊗ ω ◦ Φ)(X))

= n((ι⊗ ω)(ι⊗ Φ)(X))

= ω((n⊗ ι)(ι⊗ Φ)(X)),

we may conclude that for all Φ

Φ((n⊗ ι)(X)) = (n⊗ ι)(ι⊗ Φ)(X).

This will be used several times in the sequel, where n will be an invariant
mean and Φ = α,∆, . . ..

Definition 10. If α is an action of (M,∆) on a von Neumann algebra
N , we define an α-invariant mean to be a state m ∈ N∗ such that

m((ω ⊗ ι)α(x)) = m(x)ω(1)
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for all ω ∈M∗ and x ∈ N .

Proposition 11. Let (α,U) be a cocycle action of (M,∆) on a von Neu-
mann algebra N , M α,UnN the cocycle crossed product and α̂ the dual action.
Then (M̂, ∆̂) is weakly amenable if and only if there exists a α̂-invariant mean
on M α,UnN .

Proof. Suppose that m̂ is an invariant mean on (M̂, ∆̂). Then we argue
that there exists an α̂-invariant mean on M α,UnN . This can be done by
generalizing a result in [6] from the Kac algebra level to the general set-
ting. However, the proof in [6] is based on a non-constructive argument. We
construct explicitly an α̂-invariant mean on M α,UnN . The dual weight con-
struction is the source of inspiration. Define T : M α,UnN → M α,UnN by
T (z) := (m̂ ⊗ ι)α̂(z). We prove that T (z) ∈ α(N) for all z ∈ M α,UnN .
Since α(N) is the fixed point algebra of α̂, it is sufficient to show that
α̂(T (z)) = 1⊗ T (z).

Observe that, since α̂ is an action, α̂(T (z)) = (m̂⊗ ι⊗ ι)(∆̂op⊗ ι)α̂(z). So
we have to prove that, for all ω ∈ (M̂ ⊗M α,UnN)∗,

ω((m̂⊗ ι⊗ ι)(∆̂op⊗ ι)α̂(z)) = ω(1⊗ (m̂⊗ ι)α̂(z)).

But it is sufficient to check this for normal functionals of the form µ⊗ ν with
µ ∈ M̂∗ and ν ∈ (M α,UnN)∗. Using the fact that m̂ is an invariant mean on
(M̂, ∆̂) and hence an invariant mean on (M̂, ∆̂op), we get

(µ⊗ ν)((m̂⊗ ι⊗ ι)(∆̂op⊗ ι)α̂(z)) = m̂((ι⊗ µ⊗ ν)(∆̂op⊗ ι)α̂(z))

= µ(1)m̂((ι⊗ ν)(α̂(z)))

= (µ⊗ ν)(1⊗ (m̂⊗ ι)α̂(z)).

So we may conclude that T (z) ∈ α(N) for all z ∈M α,UnN .
Choose a state η ∈ N∗. Define m(z) = η(α−1(T (z))). We will prove that

m is α̂-invariant. For all ω ∈ M̂∗ and z ∈M α,UnN , we get that

m((ω ⊗ ι)α̂(z)) = η(α−1((m̂⊗ ι)α̂((ω ⊗ ι)α̂(z))))

= η(α−1((m̂⊗ ι)(ω ⊗ ι⊗ ι)((ι⊗ α̂)α̂(z))))

= η(α−1((m̂⊗ ι)(ω ⊗ ι⊗ ι)((∆̂op⊗ ι)α̂(z))))

= η(α−1((m̂⊗ ι)α̂(z)))ω(1) = m(z)ω(1).

Conversely, suppose that m is a α̂-invariant mean on M α,UnN . We have
to prove that (M̂, ∆̂) is weakly amenable. We consider three cases:

Case 1: U is trivial.
We know that M αnN is generated by α(N) and M̂ ⊗ C. Define m̂(x̂) :=
m(x̂⊗ 1) for all x̂ ∈ M̂ . Using the formula α̂(x̂⊗ 1) = ∆̂op(x̂)⊗ 1, we get that
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for all ω ∈ M̂∗
m̂((ω ⊗ ι)∆̂op(x̂)) = m((ω ⊗ ι⊗ ι)(∆̂op(x̂)⊗ 1))

= m((ω ⊗ ι⊗ ι)α̂(x̂⊗ 1))

= m(x̂⊗ 1)ω(1) = m̂(x̂)ω(1).

So we may conclude that m̂ is a left invariant mean on (M̂, ∆̂op).

Case 2: (α,U) is stabilizable.
We know from Proposition 8 that, in this case, there exists an action β of
(M,∆) on N and a ∗-isomorphism

Φ : M βnN →M α,UnN,

such that α̂ ◦ Φ = (ι⊗ Φ) ◦ β̂.
Define m̃ := m ◦ Φ. Then it is easy to prove that m̃ is β̂-invariant. Using

the first case, we may conclude that the restriction of m̃ to M̂ will be a LIM
on (M̂, ∆̂op).

General case: Arbitrary (α,U).
In general, (α ⊗ ι,U ⊗ 1) will be a cocycle action of (M,∆) on N ⊗ B(H),
and we know from Proposition 9 that it will be stabilizable. It is not too
difficult to show that its corresponding cocycle crossed product factorizes as
(M α,UnN)⊗ B(H), as well as the dual action, which is given by α̂⊗ ι.

Choose a normalized vector ξ ∈ H. Then we have for all z ∈ (M α,UnN)⊗
B(H) that

(ι⊗m⊗ ωξ)((α̂⊗ ι)(z)) = (ι⊗m)α̂((ι⊗ ωξ)(z))
= m((ι⊗ ωξ)(z))1
= (m⊗ ωξ)(z)1.

We find that m ⊗ ωξ is (α̂ ⊗ ι)-invariant and from the second case, we may
conclude that (M̂, ∆̂) is weakly amenable. �

With this theorem in mind, we are going to prove our main results, gen-
eralizing a result of Ng [13]. Ng showed in [13] that the bicrossed product
with trivial cocycles of two locally compact groups G1 and G2 is strongly
amenable if G2 is amenable. Notice that for any group G1, (L∞(G1),∆1) is
always strongly coamenable.

To prove our main theorem, we need a lemma. We can get this result from
Propositions 3.1 and 3.4 of [19], but we have chosen to give a straightforward
proof.

Lemma 12. Let (τ,U ,V) be a cocycle matching of (M1,∆1) and (M2,∆2),
and let (M,∆) be the cocycle bicrossed product. Then

(3) (ι⊗∆op)α̂(z) = (α̂⊗ ι)∆op(z) for all z ∈M.
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Proof. It suffices to check (3) on the generators. Choose x ∈M2. Observe
that

(ι⊗∆op)α̂
(
α(x)

)
= (ι⊗∆op)

(
1⊗ α(x)

)
= 1⊗∆op

(
α(x)

)
= 1⊗ (α⊗ α)∆2

op(x)

= (α̂⊗ ι)
(
(α⊗ α)∆2

op(x)
)

= (α̂⊗ ι)∆op
(
α(x)

)
.

Next, we will prove that (ι⊗ ι⊗∆op)(ι⊗ α̂)(W̃1) = (ι⊗ α̂⊗ ι)
(
(ι⊗∆op)(W̃1)

)
.

Using equation (1) we get

(ι⊗ ι⊗∆op)(ι⊗ α̂)(W̃1) = (ι⊗ ι⊗∆op)
(
(W1)12(W̃1)134

)
.

Finally, observe that, as operators on H1 ⊗H1 ⊗H1 ⊗H2 ⊗H1 ⊗H2,

(ι⊗ α̂⊗ ι)
(
(ι⊗∆op)(W̃1)

)
= (ι⊗ α̂⊗ ι)

(
(W̃1 ⊗ 1⊗ 1)

(
(ι⊗ α)β ⊗ ι⊗ ι

)
(W̃1)(ι⊗ α⊗ α)(V)

)
= (W1)12(W̃1)134((ι⊗ α)β ⊗ ι⊗ ι)(W̃1)13456(ι⊗ α⊗ α)(V)13456

= (W1)12(ι⊗∆op)(W̃1)13456

= (W1)12(ι⊗ ι⊗∆op)
(
(W̃1)134

)
= (ι⊗ ι⊗∆op)

(
(W1)12(W̃1)134

)
,

where we used equation (2) in the first line. �

Theorem 13. Let (τ,U ,V) be a cocycle matching of (M1,∆1) and
(M2,∆2) and let (M,∆) be the cocycle bicrossed product. Then (M,∆) is
weakly amenable if and only if (M̂1, ∆̂1) and (M2,∆2) are weakly amenable.

Proof. The proof is divided into three parts.

(1) If (M,∆) is weakly amenable, then (M̂1, ∆̂1) is weakly amenable.
Let m be an invariant mean on (M,∆). From Proposition 11, we know that
it is sufficient to show that m is α̂-invariant. If we apply ι ⊗ ι ⊗ m on the
result in Lemma 12, we get that, for all z ∈M ,

(ι⊗m)α̂(z)⊗ 1 = m(z)1⊗ 1.

From this we conclude that (ι ⊗ m)α̂(z) = m(z)1 and therefore that m is
α̂-invariant.

(2) If (M,∆) is weakly amenable, then (M2,∆2) is weakly amenable.
Suppose that m is a LIM on (M,∆). Define m2 ∈ M∗2 by m2(x) = m(α(x)).
Since (α⊗ α)∆2 = ∆ ◦ α and M2∗ = {ω ◦ α | ω ∈M∗}, it is obvious that m2

will be a LIM on (M2,∆2).
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(3) If (M̂1, ∆̂1) and (M2,∆2) are weakly amenable, then (M,∆) is weakly
amenable.
Suppose that m̂1 and m2 are left invariant means on (M̂1, ∆̂1) and (M2,∆2),
respectively. Consider the dual action α̂ : M → M̂1 ⊗M . Define T (z) :=
(m̂1 ⊗ ι)α̂(z) for all z ∈ M . From the proof of Proposition 11, we know that
T (z) ∈ α(M2).

Define m := m2 ◦ α−1 ◦ T . We prove that m is a left invariant mean on
M. Choose any z ∈ M . Applying m̂1 ⊗ ι ⊗ ι on both sides of the result of
Lemma 12 we get

∆op(T (z)) = (T ⊗ ι)∆op(z).
So, we have for all µ ∈M∗

(ι⊗ µ)∆op(T (z)) = T ((ι⊗ µ)∆op(z)).

Take y ∈M2 such that T (z) = α(y). Since

(ι⊗ µ)∆op(α(y)) = (ι⊗ µ)(α⊗ α)∆2
op(y) = α((ι⊗ µ ◦ α)∆2

op(y)),

we get

(4) T ((ι⊗ µ)∆op(z)) = α((ι⊗ µ ◦ α)∆2
op(y)).

Applying m2 ◦ α−1 on both sides of equation (4), we get

m((ι⊗ µ)∆op(z)) = m2((ι⊗ µ ◦ α)∆2
op(y)).

Now we use the left invariance of m2 and obtain for all µ ∈M∗
m((ι⊗ µ)∆op(z)) = m2((ι⊗ µ ◦ α)∆2

op(y))

= µ(α(1))m2(y)

= µ(1)m2(α−1(T (z)))

= µ(1)m(z).

Therefore, m is a left invariant mean on (M,∆). �

A natural question is whether or not the strong version of Theorem 13, i.e.,
Theorem 13 with weak amenability replaced by strong amenability, is true.
We can only give a partial answer. First of all, it is not too difficult to see
that (M̂1, ∆̂1) is strongly amenable if (M,∆) is. Just suppose that the net
(µ̂k)k is an approximate unit of M̂∗. Define µ1k := µ̂k ◦ β. Then (µ1k)k is an
approximate unit of M1∗. Hence we arrive at the following proposition.

Proposition 14. Let (τ,U ,V) be a cocycle matching of (M1,∆1) and
(M2,∆2) and let (M,∆) be the cocycle bicrossed product. If (M,∆) is strongly
amenable, then (M̂1, ∆̂1) is strongly amenable.

Next, we prove the strong version of Theorem 13 in the case where the
cocycles are trivial: U = V = 1. We do not know whether or not the same
result holds with non-trivial cocycles.
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Theorem 15. Let (M,∆) be the bicrossed product of (M1,∆1) and
(M2,∆2) with trivial cocycles. Then (M,∆) is strongly amenable if and only
if (M̂1, ∆̂1) and (M2,∆2) are strongly amenable.

Proof. We will first prove that if (M̂1, ∆̂1) and (M2,∆2) are strongly ame-
nable, then (M,∆) is strongly amenable. Suppose that (ωi)i is a bounded
two-sided approximate unit for M1∗. It is sufficient to show that

(5) ((ωi ⊗ ι)β ⊗ ι)(W1) σw−→ 1.

Indeed, by definition, Ŵ = ((β⊗ ι)(W1)⊗1)(1⊗(ι⊗α)(Ŵ2)) ∈M1⊗B(H2)⊗
B(H1)⊗M2 and so

(ωi ⊗ ι⊗ ι⊗ ι)(Ŵ ) = (((ωi ⊗ ι)β ⊗ ι)(W1)⊗ 1)((ι⊗ α)(Ŵ2)).

Using equation (5) we get that

(ωi ⊗ ι⊗ ι⊗ ι)(Ŵ ) σw−→ (ι⊗ α)(Ŵ2).

Because (M2,∆2) is strongly amenable, we can take a net (ξj)j of normalized
vectors in H2 such that (µξj ⊗ ι)(Ŵ2) σw−→ 1.

Choose µ ∈M∗. Observe that for all i, j

|µ((µξj ⊗ ι⊗ ι)(ωi ⊗ ι⊗ ι⊗ ι)(Ŵ ))| ≤ ‖(ι⊗ ι⊗ µ)(Ŵ )‖.
Taking first the limit over i and then the limit over j, we get

|µ(1)| ≤ ‖(ι⊗ ι⊗ µ)(Ŵ )‖.

Define ε̂((ι⊗ µ)(Ŵ )) = µ(1). Thus, ε̂ is a bounded co-unit for (M̂c, ∆̂c).
It remains to prove (5). The definition of matched pairs implies that

τ23σ23(β ⊗ ι)∆1(x) = (∆1 ⊗ ι)β(x).

Applying ωi ⊗ ι⊗ ι on both sides we get

(6) τσ(((ωi ⊗ ι)β ⊗ ι)∆1(x)) = (ωi ⊗ ι⊗ ι)((∆1 ⊗ ι)β(x)).

For all ω ∈M1∗ and ν ∈M2∗ we have that

(ω ⊗ ν)(ωi ⊗ ι⊗ ι)((∆1 ⊗ ι)β(x)) = (ωi ∗ ω ⊗ ν)β(x)→ (ω ⊗ ν)(β(x)).

By linearity and the fact that (ωi⊗ ι⊗ ι)((∆1⊗ ι)β(x)) is uniformly bounded
in i, we get that

(ωi ⊗ ι⊗ ι)((∆1 ⊗ ι)β(x)) σw−→ β(x).

Using equation (6) and the normality of τσ we find that

τσ(((ωi ⊗ ι)β ⊗ ι)∆1(x)) σw−→ β(x) = τσ(1⊗ x).

Now, τσ is an injective and normal ∗-homomorphism, and therefore it will be
homeomorphic onto its image for the σ-weak topology (see [5, p. 60]). From
this, we get

(7) ((ωi ⊗ ι)β ⊗ ι)∆1(x) σw−→ 1⊗ x.
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Applying β ⊗ ι⊗ ι on (∆1 ⊗ ι)(W1) = W1,13W1,23 we get

((β ⊗ ι)∆1 ⊗ ι)(W1) = ((β ⊗ ι)(W1))124W1,34

and
(((ωi ⊗ ι)β ⊗ ι)∆1 ⊗ ι)(W1) = (((ωi ⊗ ι)β ⊗ ι)(W1))13W1,23.

Using equation (7), we may conclude that

(((ωi ⊗ ι)β ⊗ ι)(W1))13W1,23
σw−→ 1⊗W1 = W1,23.

As W1 is invertible, this implies that

(8) ((ωi ⊗ ι)β ⊗ ι)(W1) σw−→ 1.

This concludes the first part of the proof.

By taking trivial cocycles in Proposition 14, it is immediately clear that
(M̂1, ∆̂1) is strongly amenable if (M,∆) is strongly amenable.

It remains to show that if (M,∆) is strongly amenable, then (M2,∆2) is
strongly amenable. Using the biduality theorem, it is sufficient to prove that
if (M̂, ∆̂) is strongly amenable, then (M1,∆1) is strongly amenable. Suppose
that (ωi)i is a bounded two-sided approximate unit for M∗. We know that
now

M = (α(M2) ∪ {(ω ⊗ ι)(W1)⊗ 1 | ω ∈M1∗})′′ .
Using equation (2), we get

(ι⊗∆op)(W1 ⊗ 1) = (W1 ⊗ 1⊗ 1⊗ 1)((ι⊗ α)β ⊗ ι⊗ ι)(W1 ⊗ 1),

so

(9) (ι⊗ ι⊗ ωi)(ι⊗∆op)(W1 ⊗ 1) = (W1 ⊗ 1)(ι⊗ α)β((ι⊗ ωi)(W1 ⊗ 1)).

Using the fact that (ωi)i is an approximate unit of M∗, we have

(ι⊗ ι⊗ ωi)(ι⊗∆op)(W1 ⊗ 1) σw−→W1 ⊗ 1

and thus, by equation (9),

(ι⊗ α)β((ι⊗ ωi)(W1 ⊗ 1)) σw−→ 1.

But (ι⊗ α)β is a normal and injective ∗-homomorphism and therefore

(10) (ι⊗ ωi)(W1 ⊗ 1) σw−→ 1.

Define µi ∈ M̂1∗ such that µi(z) = ωi(z⊗ 1) for all z ∈ M̂1, so (ι⊗µi)(W1) =
(ι⊗ ωi)(W1 ⊗ 1). Using equation (10) we get that

(ι⊗ µi)(W1) σw−→ 1.

This concludes the proof. �
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6. Examples

In order to construct these examples, we rely on the extension procedure
of locally compact quantum groups as developed in [2], [11], [19]. All the bi-
crossed product locally compact quantum groups in [19] are weakly amenable.
This is easily seen, since the groups from which one starts in the examples
are both amenable. We give two examples of non-amenable locally compact
quantum groups, obtained by a bicrossed product construction. From The-
orem 13 we know that if we take, as one of the ingredients, a non-amenable
group, the bicrossed product locally compact quantum group will either be
non-amenable or non-coamenable. In the first case, we take SL2(R) as the
non-amenable group, and in the second case (a double cover of) SU(1, 1). It
is known that these groups are not amenable, since they are non-compact,
almost connected, semi-simple Lie groups; see [7].

We briefly review what is needed from the extension procedure.
Let G, G1 and G2 be locally compact groups with fixed left invariant Haar

measures. Let i : G1 → G be a homomorphism and j : G2 → G an antihomo-
morphism such that both have a closed image and are homeomorphisms onto
these images. Suppose moreover that the mapping

θ : G1 ×G2 → Ω ⊂ G : (g, s) 7→ i(g)j(s)

is a homeomorphism of G1 × G2 onto an open subset Ω of G having a com-
plement of measure zero. Then we call G1 and G2 a matched pair of lo-
cally compact groups. From this data, one constructs a cocycle matching
of (L∞(G1),∆1) and (L∞(G2),∆2) with trivial cocycles as follows. Let
ρ : G1 × G2 → Ω−1 be the homeomorphism given by ρ(g, s) = j(s)i(g).
Let O = θ−1(Ω ∩ Ω−1) and for (g, s) ∈ O define βs(g) ∈ G1 and αg(s) ∈ G2

by
ρ−1(θ(g, s)) = (βs(g), αg(s)).

Finally, one can define a ∗-isomorphism

τ : L∞(G1)⊗ L∞(G2)→ L∞(G1)⊗ L∞(G2)

by τ(f)(g, s) = f(βs(g), αg(s). Then (τ, 1, 1) gives a cocycle matching of
(L∞(G1),∆1) and (L∞(G2),∆2) with trivial cocycles.

Example 1.

G =


a b x
c d y
0 0 1

 ∣∣∣∣∣
(
a b
c d

)
∈ SL2R, x, y ∈ R


So, G is a Lie-subgroup of SL3(R).

G1 = R
2,+ ,

G2 = SL2(R).
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Further, take embeddings i and j defined by

i((x, y)) =

 1 0 −x
−x 1 −y + 1

2x
2

0 0 1

 , j

((
a b
c d

))
=

 d −b 0
−c a 0
0 0 1

 .

Suppose that

A =
(
a b
c d

)
∈ SL2(R) .

Then the mutual actions are given by

α(x,y)(A) =
(

a+ bx b
c+ dx− (a+ bx)(ax+ b(y + 1

2x
2)) d− b(ax+ b(y + 1

2x
2))

)
and

βA((x, y)) =

(
ax+ by +

b

2
x2, cx+ d

(
y +

1
2
x2

)
− 1

2

(
ax+ b

(
y +

1
2
x2

))2
)
.

We take trivial cocycles and construct the bicrossed locally compact quantum
group (M,∆). Denote by δ, δ1 and δ2 the modular functions of the groups
G, G1 and G2, respectively. It is not difficult to show that δ1 and δ2 are
trivial and δ(A, (x, y)) = det A = 1. Therefore, the bicrossed product is a
Kac algebra. One might think that there is a hope to leave the Kac algebra
“world” by working with the general linear groups (GL) instead of the special
linear groups (SL). Unfortunately, the determinant will be α-invariant. So,
we will also find that the bicrossed product is a Kac algebra.

Now, one can construct the infinitesimal Hopf algebra of the bicrossed
product quantum group in the sense of [19]. It is an algebraic version of the
same quantum group.

In this example the infinitesimal Hopf algebra has generators X, Y , A, B,
C and D satisfying AD −BC = 1 and the following relations:

[A,B] = 0, [A,C] = 0, [A,D] = 0,

[B,C] = 0, [B,D] = 0, [C,D] = 0,

[A,X] = B, [A, Y ] = 0,

[B,X] = 0, [B, Y ] = 0,

[C,X] = D −A2, [C, Y ] = −AB,
[D,X] = −AB, [D,Y ] = −B2,
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∆(A) = A⊗A+B ⊗ C,
∆(B) = B ⊗D +A⊗B,
∆(C) = C ⊗A+D ⊗ C,
∆(D) = D ⊗D + C ⊗B,
∆(X) = 1⊗X +X ⊗A+ Y ⊗ C,
∆(Y ) = 1⊗ Y +X ⊗B + Y ⊗D.

Example 2. Now, we will construct a non-amenable locally compact
quantum group that is not a Kac algebra.

G1 = {(x, z) | x ∈ R, x 6= 0, z ∈ C} with (x, z)(y, u) = (xy, z + xu),

G2 =
{(

a c̄
c ā

) ∣∣∣ a, c ∈ C, |a|2 − |c|2 = ±1
}
,

G = { (2× 2)-matrices over C with determinant ±1} .

Define Sq(x) = Sgn(x)
√
|x| for all x ∈ R. Take embeddings i and j defined

by

i : (x, z) 7→ 1
Sq(x)

(
x −z
0 1

)
, j :

(
a c̄
c ā

)
7→
(
a c̄
c ā

)−1

.

The mutual actions are given by

α(x,z)(a, c) =
D

Sq(|cz + āx|2 − |c|2)
(c̄z̄ + ax, c),

β(a,c)(x, z) =
D

|x|
(|cz + āx|2 − |c|2, (az + c̄x)(c̄z̄ + ax)− ac̄)

with

D = D(x, z, a, c) =
x

|x|
(|a|2 − |c|2).

Taking U = V = 1, we can construct the bicrossed product locally compact
quantum group (M,∆). Since δ and δ2 are trivial and δ1(x, z) = 1/x2, we
conclude, using Propositions 2.17 and 4.16 of [19], that (M,∆) is not a Kac
algebra, is non-compact and non-discrete. As far as we know, there was, until
now, no example of a non-discrete non-amenable quantum group that is not
a group.

Now, the infinitesimal Hopf ∗-algebra is generated as a ∗-algebra by normal
elements A, C and Y , an anti-selfadjoint element X and a selfadjoint element
U satisfying the following commutation relations:
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[A,C] = [A,C∗] = 0, A∗A− C∗C = U, U2 = 1,

[X,Y ] = Y,

[A,X] = −UACC∗, [C,X] = −UAA∗C,
[A, Y ] = 2C∗ − UAA∗C∗, [C, Y ] = −UA∗C∗C,

[A, Y ∗] = UA2C, [C, Y ∗] = UAC2.

Furthermore, the comultiplication is given by

∆(A) = A⊗A+ C∗ ⊗ C,
∆(C) = C ⊗A+A∗ ⊗ C,
∆(X) = X ⊗ U(A∗A+ C∗C) + Y ⊗ UA∗C − Y ∗ ⊗ UAC∗ + 1⊗X,
∆(Y ) = 1⊗ Y +X ⊗ 2UA∗C∗ + Y ⊗ U(A∗)2 − Y ∗ ⊗ U(C∗)2.
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