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DIFFERENTIAL EQUATIONS SATISFIED BY MODULAR
FORMS AND K3 SURFACES

YIFAN YANG AND NORIKO YUI

Abstract. We study differential equations satisfied by modular forms
of two variables associated to Γ1 × Γ2, where Γi (i = 1, 2) are genus
zero subgroups of SL2(R) commensurable with SL2(Z), e.g., Γ0(N) or
Γ0(N)∗ for some N . In some examples, these differential equations
are realized as the Picard–Fuchs differential equations of families of K3
surfaces with large Picard numbers, e.g., 19, 18, 17, 16. Our method re-
discovers some of the Lian–Yau examples of “modular relations” involv-
ing power series solutions to the second and the third order differential
equations of Fuchsian type in [14], [15].

1. Introduction

Lian and Yau [14], [15] studied arithmetic properties of mirror maps of
pencils of certain K3 surfaces, and further considered mirror maps of certain
families of Calabi–Yau threefolds [16]. Lian and Yau observed in a num-
ber of explicit examples a mysterious relationship (now the so-called mirror
moonshine phenomenon) between mirror maps and the McKay–Thompson
series (Hauptmoduln of one variable associated to genus zero congruence
subgroups of SL2(R)) arising from the Monster. Inspired by the work of
Lian and Yau, Verrill–Yui [20] further computed more examples of mirror
maps of one-parameter families of lattice polarized K3 surfaces with Picard
number 19. The outcome of Verrill–Yui’s calculations suggested that the
mirror maps themselves are not always Hauptmoduln, but they are com-
mensurable with Hauptmoduln (referred as the modularity of mirror maps).
This fact was indeed established by Doran [6] for Mn-lattice polarized K3
surfaces of Picard number 19 with maximal unipotent monodromy (where
Mn = U ⊥ (−E8)2 ⊥ 〈−2n〉). More generally, Doran [7] considered the
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commensurability of “maximal” n-dimensional families of rank 20− n lattice
polarized families of K3 surfaces, and he showed that all such families of K3
surfaces are commensurable to autormorphic forms.

The mirror maps were calculated via the Picard–Fuchs differential equa-
tions of the K3 families in question. Therefore, the determination of the
Picard–Fuchs differential equations played the central role in their investiga-
tions.

In this paper, we will address an inverse problem of this kind. That is,
instead of starting with families of K3 surfaces or families of Calabi–Yau
threefolds, we start with modular forms and functions of more than one vari-
able associated to certain subgroups of SL2(R).

More specifically, the main focus our discussions in this paper are on mod-
ular forms and functions of two variables. Here is the precise definition.

Definition 1.1. Let H denote the upper half-plane {τ ∈ C : =τ > 0},
and let H∗ = H ∪ Q ∪ {∞}. Let Γ1 and Γ2 be two subgroups of SL2(R)
commensurable with SL2(Z). We call a function F : H∗ × H∗ 7−→ C of two
variables a modular form (of two variables) of weight (k1, k2) on Γ1×Γ2 with
character χ if F is meromorphic on H∗ ×H∗ such that

F (γ1τ1, γ2τ2) = χ(γ1, γ2)(c1τ1 + d1)k1(c2τ2 + d2)k2F (τ1, τ2)

for all

γ1 =
(
a1 b1
c1 d1

)
∈ Γ1, γ2 =

(
a2 b2
c2 d2

)
∈ Γ2.

If F is a modular form (of two variables) of weight (0, 0) with trivial character,
then we also call F a modular function (of two variables) on Γ1 × Γ2.

Notation. We let q1 = e2πiτ1 and q2 = e2πiτ2 . For a variable t we let Dt

denote the differential operator t ∂
∂t .

Remark 1.1. Stienstra and Zagier [19] have introduced the notion of bi-
modular forms (of two variables). Let Γ ⊂ SL2(R), and let τ1, τ2 ∈ H. Let
k1, k2 be integers. A two-variable meromorphic function F : H × H → C is

called a bi-modular form of weight (k1, k2) on Γ if for any γ =
(
a b
c d

)
∈ Γ it

satisfies the transformation formula

F (γτ1, γτ2) = (cτ1 + d)k1(cτ2 + d)k2F (τ1, τ2).

For instance,
F (τ1, τ2) = τ1 − τ2

is a bi-modular form for SL2(Z) of weight (−1,−1). Another typical example
is

F (τ1, τ2) = E2(τ1)−
1

τ1 − τ2
,
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which is a bi-modular form of weight (2, 0) for SL2(Z).
For the bi-modular forms of Stienstra–Zagier, the fundamental domain H×

H/Γ is not of finite volume. On the other hand, for our modular forms (of
two variables), the fundamental domain is H/Γ1 × H/Γ2, which is always of
finite volume.

We should emphasize that the two notions of two variable modular forms
(namely, our modular forms and the bi-modular forms of Stienstra and Zagier)
are indeed different. Also we mention that our modular forms are not a special
case of Hilbert modular forms.

The problems that we will consider here are formulated as follows : Given
a modular form F (of two variables), determine a differential equation it sat-
isfies, and construct a family of K3 surfaces (or degenerations of a family of
Calabi–Yau threefolds at some limit points) having the determined differential
equation as its Picard–Fuchs differential equation. This kind of problem may
be called a geometric realization problem.

In fact, a similar problem was already considered by Lian and Yau in their
papers [14], [15]. They discussed the so-called “modular relations” involving
power series solutions to second and third order differential equations of Fuch-
sian type (e.g., hypergeometric differential equations 2F1, 3F2) and modular
forms of weight 4 using mirror symmetry. More recently, van Enckevort and
van Straten [9] considered the following geometric realization problem: Start-
ing with a certain forth order differential equation whose monodromy represen-
tation can be calculated, find a one-parameter family of Calabi–Yau threefolds
(if it exists), whose associated Picard–Fuchs differential equation is the given
one. Also a recent article of Doran and Morgan [8] addressed the geometric
realization question in the context of an old question of Griffiths: When does
an integral variation of Hodge structure come from geometry? A rigorous an-
swer was presented for one-parameter families of Calabi–Yau threefolds with
h2,1 = 1 with generalized Picard–Fuch differential equations, relating mirror
symmetry and integral variations of Hodge structure.

In this paper, we will focus our discussion on modular forms (of two vari-
ables) of weight (1, 1). We will determine the differential equations satisfied
by modular forms (of two variables) of weight (1, 1) associated to Γ1 × Γ2,
where Γi are genus zero subgroups of SL2(R) of the form Γ0(N) and Γ0(N)∗.
Then the existence and the construction of particular modular forms of weight
(1, 1) are discussed, using solutions of some hypergeometric differential equa-
tions. Moreover, we determine the differential equations they satisfy. Further,
several examples of modular forms (of two variables) and their differential
equations are discussed aiming to realize these differential equations as the
Picard–Fuchs differential equations of some families of K3 surfaces (or de-
generations of families of Calabi–Yau threefolds) with large Picard numbers
19, 18, 17 and 16.
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It should be pointed out that our paper and our results have non-empty
intersections with the results of Lian and Yau [14], [15]. Indeed, our approach
rediscovers some of the examples of Lian and Yau.

Our contributions may be summarized as follows. From a geometric point
of view, we give examples of two-parameter families of K3 surfaces which
after the pull-back along a morphism from the (t1, t2)-space to the (x, y)-
space decompose as a direct product of two one-parameter families of elliptic
curves. From a function theoretic point of view, we give examples of non-
trivial substitutions transforming certain (two-variables) GKZ hypergeometric
functions into a product of two (one-variable) GKZ hypergeometric functions.
Finally, from a moduli point of view, we give examples of moduli spaces forK3
surfaces with extra structure and show that these moduli spaces are quotients
of H× H.

2. Differential equations satisfied by modular forms (of two
variables)

We will now determine differential equations satisfied by modular forms (of
two variables) of weight (1, 1) on Γ1 × Γ2.

Theorem 2.1. Let F (τ1, τ2) be a modular form (of two variables) of
weight (1, 1), and let x(τ1, τ2) and y(τ1, τ2) be non-constant modular functions
(of two variables) on Γ1 × Γ2, where Γi (i = 1, 2) are subgroups of SL2(R)
commensurable with SL2(Z). Then F , as a function of x and y, satisfies a
system of partial differential equations

D2
xF + a0DxDyF + a1DxF + a2DyF + a3F = 0,

D2
yF + b0DxDyF + b1DxF + b2DyF + b3F = 0,

(2.1)

where ai and bi are algebraic functions of x and y, and can be expressed
explicitly as follows. Suppose that, for each function t among F , x, and y, we
let

Gt,1 =
Dq1t

t
=

1
2πi

dt

t dτ1
, Gt,2 =

Dq2t

t
=

1
2πi

dt

t dτ2
.

Then we have

a0 =
2Gy,1Gy,2

Gx,1Gy,2 +Gy,1Gx,2
, b0 =

2Gx,1Gx,2

Gx,1Gy,2 +Gy,1Gx,2
,

a1 =
G2

y,2(Dq1Gx,1 − 2GF,1Gx,1)−G2
y,1(Dq2Gx,2 − 2GF,2Gx,2)

G2
x,1G

2
y,2 −G2

y,1G
2
x,2

,

b1 =
−G2

x,2(Dq1Gx,1 − 2GF,1Gx,1) +G2
x,1(Dq2Gx,2 − 2GF,2Gx,2)

G2
x,1G

2
y,2 −G2

y,1G
2
x,2

,

a2 =
G2

y,2(Dq1Gy,1 − 2GF,1Gy,1)−G2
y,1(Dq2Gy,2 − 2GF,2Gy,2)

G2
x,1G

2
y,2 −G2

y,1G
2
x,2

,
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b2 =
−G2

x,2(Dq1Gy,1 − 2GF,1Gy,1) +G2
x,1(Dq2Gy,2 − 2GF,2Gy,2)

G2
x,1G

2
y,2 −G2

y,1G
2
x,2

,

a3 = −
G2

y,2(Dq1GF,1 −G2
F,1)−G2

y,1(Dq2GF,2 −G2
F,2)

G2
x,1G

2
y,2 −G2

y,1G
2
x,2

,

and

b3 = −
−G2

x,2(Dq1GF,1 −G2
F,1) +G2

x,1(Dq2GF,2 −G2
F,2)

G2
x,1G

2
y,2 −G2

y,1G
2
x,2

.

In order to prove Theorem 2.1, we first need the following lemma, which is
an analogue of the classical Ramanujan differential equations

DqE2 =
E2

2 − E4

12
= −24

∑
n∈N

n2qn

(1− qn)2
,

DqE4 =
E2E4 − E6

3
= 240

∑
n∈N

n4qn

(1− qn)2
,

DqE6 =
E2E6 − E2

4

2
=
∑
n∈N

n6qn

(1− qn)2
,

where

(2.2) Ek = 1− 2k
Bk

∑
n∈N

nk−1qn

1− qn

are the Eisenstein series of weight k on SL2(Z), where Bk denotes the k-th
Bernoulli number, e.g., B2 = 1

6 , B4 = − 1
30 and B6 = 1

42 .

Lemma 2.2. We retain the notations of Theorem 2.1. Then
(a) Gx,1 and Gy,1 are modular forms (of two variables) of weight (2, 0),
(b) Gx,2 and Gy,2 are modular forms (of two variables) of weight (0, 2),
(c) Dq1Gx,1 − 2GF,1Gx,1, Dq1Gy,1 − 2GF,1Gy,1 and Dq1GF,1 − G2

F,1 are
modular forms (of two variables) of weight (4, 0), and

(d) Dq2Gx,2 − 2GF,2Gx,2, Dq2Gy,2 − 2GF,2Gy,2 and Dq2GF,2 − G2
F,2 are

modular forms (of two variables) of weight (0, 4).

Proof. We shall prove (a) and (c); the proofs of (b) and (d) are similar.
By assumption, x is a modular function (of two variables) on Γ1×Γ2. That

is, for all γ1 =
(
a1 b1
c1 d1

)
∈ Γ1 and all γ2 =

(
a2 b2
c2 d2

)
∈ Γ2, one has

x(γ1τ1, γ2τ2) = x(τ1, τ2)

Taking the logarithmic derivative of the above equation with respect to τ1,
we obtain

1
(c1τ1 + d1)2

ẋ

x
(γ1τ1, τ2) =

ẋ

x
(τ1, τ2),
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or

(2.3) Gx,1(γ1τ1, γ2τ2) = (c1τ1 + d1)2Gx,1(τ1, τ2),

where we let ẋ denote the derivative of the two-variable function x with respect
to the first variable. This shows that Gx,1 is a modular form of weight (2, 0)
on Γ1 × Γ2 with the trivial character. The proof for the case Gy,1 is similar.

Likewise, taking the logarithmic derivative of the equation

F (γ1τ1, γ2τ2) = χ(γ1, γ2)(c1τ1 + d1)(c2τ2 + d2)F (τ1, τ2)

with respect to τ1, we obtain

1
(c1τ1 + d1)2

Ḟ

F
(γ1τ1, γ2τ2) =

c1
(c1τ1 + d1)

+
Ḟ

F
(τ1, τ2),

or, equivalently

(2.4) GF,1(γ1τ1, γ2τ2) =
c1(c1τ1 + d1)

2πi
+ (c1τ1 + d1)2GF,1(τ1, τ2).

Now, differentiating (2.3) with respect to τ1 again, we obtain

Ġx,1

(c1τ1 + d1)2
(γ1τ1, γ2τ2) = 2c1(c1τ1 +d1)Gx,1(τ1, τ2)+(c1τ1 +d1)2Ġx,1(τ1, τ2),

where Ġx,1 denotes the derivative of Gx,1 with respect to the first variable, or

Dq1Gx,1(γ1τ1, γ2τ2) =
c1(c1τ1 + d1)3

πi
Gx,1(τ1, τ2)+(c1τ1+d1)4Dq1Gx,1(τ1, τ2).

On the other hand, we also have, by (2.3) and (2.4),

GF,1Gx,1(γ1τ1, γ2τ2)

=
c1(c1τ1 + d1)3

2πi
Gx,1(τ1, τ2) + (c1τ1 + d1)4GF,1Gx,1(τ1, τ2).

From these two equations we see that Dq1Gx,1−2GF,1Gx,1 is a modular form
(of two variables) of weight (4, 0) with the trivial character.

Finally, differentiating (2.4) with respect to τ1 and multiplying by (c1τ1 +
d1)2 we have

Dq1GF,1(γ1τ1, γ2τ2) =
c21(c1τ1 + d1)2

(2πi)2
+
c1(c1τ1 + d1)3

πi
GF,1(τ1, τ2)

+ (c1τ1 + d1)4Dq1GF,1(τ1, τ2).

Combining this with the square of (2.4) we see that Dq1GF,1 − G2
F,1 is a

modular form of weight (4, 0) on Γ1 × Γ2. This completes the proof of the
lemma. �
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Proof of Theorem 2.1. In light of Lemma 2.2, the functions ak, bk are all
modular functions on Γ1×Γ2, and thus can be expressed as algebraic functions
of x and y. Therefore, it suffices to verify (2.1) as formal identities. By the
chain rule we have(

Dq1F
Dq2F

)
=
(
x−1Dq1x y−1Dq1y
x−1Dq2x y−1Dq2y

)(
DxF
DyF

)
.

It follows that(
DxF
DyF

)
=

F

Gx,1Gy,2 −Gx,2Gy,1

(
Gy,2 −Gy,1

−Gx,2 Gx,1

)(
GF,1

GF,2

)
.

Writing
∆ = Gx,1Gy,2 −Gx,2Gy,1,

and

∆x = GF,1Gy,2 −GF,2Gy,1, ∆y = −Gx,2GF,1 +Gx,1GF,2,

we have

(2.5) DxF = F
∆x

∆
, DyF = F

∆y

∆
.

Applying the same procedure on DxF again, we obtain(
D2

xF
DyDxF

)
=

1
∆

(
Gy,2 −Gy,1

−Gx,2 Gx,1

)(
Dq1(F∆x/∆)
Dq2(F∆x/∆)

)
=
F

∆

(
Gy,2 −Gy,1

−Gx,2 Gx,1

){
∆x

∆

(
GF,1

GF,2

)
+
(
Dq1(∆x/∆)
Dq2(∆x/∆)

)}
.

That is,

(2.6) D2
xF = F

∆2
x

∆2
+
F

∆

(
Gy,2Dq1

∆x

∆
−Gy,1Dq2

∆x

∆

)
and

(2.7) DyDxF = F
∆x∆y

∆2
+
F

∆

(
−Gx,2Dq1

∆x

∆
+Gx,1Dq2

∆x

∆

)
.

We then substitute (2.5), (2.6), and (2.7) into (2.1) and find that (2.1) indeed
holds. (The details are tedious, but straightforward calculations. We omit
the details here.) �

3. Modular forms (of two variables) associated to solutions of
hypergeometric differential equations

Here we will construct modular forms (of two variables) of weight (1, 1)
using solutions of some hypergeometric differential equations. Our main result
of this section is the following theorem.
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Theorem 3.1. Let 0 < a < 1 be a positive real number. Let f(t) =
2F1(a, a; 1; t) be a solution of the hypergeometric differential equation

(3.1) t(1− t)f ′′ + [1− (1 + 2a)t]f ′ − a2f = 0.

Let
F (t1, t2) = f(t1)f(t2)(1− t1)a(1− t2)a,

x =
t1 + t2

(t1 − 1)(t2 − 1)
, y =

t1t2
(t1 + t2)2

.

Then F is a modular form of weight (1, 1) for Γ1 × Γ2, provided that t1 and
t2 are modular functions (of one variable) for Γ1 and Γ2, respectively. Fur-
thermore, F , as a function of x and y, is a solution of the partial differential
equations

(3.2) Dx(Dx − 2Dy)F + x(Dx + a)(Dx + 1− a)F = 0,

and

(3.3) D2
yF − y(2Dy −Dx + 1)(2Dy −Dx)F = 0,

where Dx = x ∂
∂x and Dy = y ∂

∂y .

Remark 3.1. Theorem 2.1 of Lian and Yau [15] is essentially the same as
our Theorem 3.1, though the formulation and proof are different.

The condition that t1, t2 are modular functions (of one variable) for Γ1

and Γ2 are used to draw the conclusion that F is a modular form (of two
variables) for Γ1 × Γ2. However, the modular property of t1, t2 is irrelevant
in deriving (3.2) and (3.3) from (3.1).

We will present our proof of Theorem 3.1 now. For this, we need one more
ingredient, namely, the Schwarzian derivatives.

Lemma 3.2. Let f(t) and f1(t) be two linearly independent solutions of a
differential equation

f ′′ + p1f
′ + p2f = 0.

Set τ := f1(t)/f(t). Then the associated Schwarzian differential equation

2Q
(
dt

dτ

)2

+ {t, τ} = 0,

where {t, τ} is the Schwarzian derivative

{t, τ} =
dt3/dτ3

dt/dτ
− 3

2

(
dt2/dτ2

dt/dτ

)2

,

satisfies

Q =
4p2 − 2p′1 − p2

1

4
.
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Proof. This is standard, and proof can be found, for instance, in Lian and
Yau [16]. �

Proof of Theorem 3.1. Let f1 be another solution of (3.1) linearly indepen-
dent of f , and set τ = f1/f . Then a classical identity asserts that

f2 = c exp
{
−
∫ t 1− (1 + 2a)u

u(1− u)
du

}
dt

dτ
=

cdt/dτ

t(1− t)2a
,

where c is a constant depending on the choice of f1. Thus, letting

q1 = e2πif1(t1)/f(t1) and q2 = e2πif1(t2)/f(t2),

the function F , with a suitable choice of f1, is in fact

F (t1, t2) =
(
Dq1t1 ·Dq2t2

t1t2

)1/2

.

We now apply the differential identities in (2.1), which hold for arbitrary F ,
x, and y. We have

Gx,1 :=
Dq1x

x
=

(1 + t2)Dq1t1
(t1 + t2)(1− t1)

, Gx,2 :=
Dq2x

x
=

(1 + t1)Dq2t2
(t1 + t2)(1− t2)

,

Gy,1 :=
Dq1y

y
=

(t2 − t1)Dq1t1
t1(t1 + t2)

, Gy,2 :=
Dq2y

y
=

(t1 − t2)Dq2t2
t2(t1 + t2)

,

GF,1 :=
Dq1F

F
=
t1D

2
q1
t1 − (Dq1t1)

2

2t1Dq1t1
, GF,2 :=

Dq2F

F
=
t2D

2
q2
t2 − (Dq2t2)

2

2t2Dq2t2
.

It follows that

a0 :=
2Gy,1Gy,2

Gx,1Gy,2 +Gy,1Gx,2
= −2(t1 − 1)(t2 − 1)

t1t2 + 1
= − 2

1 + x
,

b0 :=
2Gx,1Gx,2

Gx,1Gy,2 +Gy,1Gx,2
=

2t1t2(t1 + 1)(t2 + 1)
(t1 − t2)2(t1t2 + 1)

=
2y(1 + 2x)

(1 + x)(1− 4y)
,

a1 : =
G2

y,2(Dq1Gx,1 − 2GF,1Gx,1)−G2
y,1(Dq2Gx,2 − 2GF,2Gx,2)

G2
x,1G

2
y,2 −G2

y,1G
2
x,2

=
t1 + t2
t1t2 + 1

=
x

1 + x
,

b1 : =
−G2

x,2(Dq1Gx,1 − 2GF,1Gx,1) +G2
x,1(Dq2Gx,2 − 2GF,2Gx,2)

G2
x,1G

2
y,2 −G2

y,1G
2
x,2

=
t1t2(t1 + 1)(t2 + 1)
(t1 − t2)2(t1t2 + 1)

=
y(1 + 2x)

(1 + x)(1− 4y)
,

a2 :=
G2

y,2(Dq1Gy,1 − 2GF,1Gy,1)−G2
y,1(Dq2Gy,2 − 2GF,2Gy,2)

G2
x,1G

2
y,2 −G2

y,1G
2
x,2

= 0,
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b2 : =
−G2

x,2(Dq1Gy,1 − 2GF,1Gy,1) +G2
x,1(Dq2Gy,2 − 2GF,2Gy,2)

G2
x,1G

2
y,2 −G2

y,1G
2
x,2

= − 2t1t2
(t1 − t2)2

= − 2y
1− 4y

.

Moreover, we have

a3 : = −
G2

y,2(Dq1GF,1 −G2
F,1)−G2

y,1(Dq2GF,2 −G2
F,2)

G2
x,1G

2
y,2 −G2

y,1G
2
x,2

=
(t1 − 1)(t2 − 1)(t1 + t2)

{
t21ṫ

4
2(2ṫ1

...
t 1 − 3ẗ21)− t22ṫ

4
1(2ṫ2

...
t 2 − 3ẗ22)

}
4(t1 − t2)(t21t

2
2 − 1)ṫ41ṫ

4
2

,

where, for brevity, we let ṫj , ẗj ,
...
t j denote the derivatives Dqj

tj , D2
qj
tj , and

D3
qj
tj , respectively. To express a3 in terms of x and y, we note that, by

Lemma 3.2,

2ṫj
...
t j − 3ẗ2j = −ṫ4j

(
−4a2

tj(1− tj)
− 2

d

dtj

1− (1 + 2a)tj
tj(1− tj)

− (1− (1 + 2a)tj)2

t2j (1− tj)2

)

= − (tj − 1)2 + 4a(1− a)tj
t2j (tj − 1)2

ṫ4j .

It follows that

a3 = a(1− a)
t1 + t2
t1t2 + 1

=
a(1− a)x

1 + x
.

Likewise, we have

b3 : = −
−G2

x,2(Dq1GF,1 −G2
F,1) +G2

x,1(Dq2GF,2 −G2
F,2)

G2
x,1G

2
y,2 −G2

y,1G
2
x,2

= a(1− a)
t1t2(t1 + t2)

(t1 − t2)2(t1t2 + 1)
=

a(1− a)xy
(1 + x)(1− 4y)

.

Then, by (2.1), the function F , as a function of x and y, satisfies

(3.4) D2
xF −

2
1 + x

DxDyF +
x

1 + x
DxF +

a(1− a)x
1 + x

F = 0

and

D2
yF +

2y(1 + 2x)
(1 + x)(1− 4y)

DxDyF +
y(1 + 2x)

(1 + x)(1− 4y)
DxF

− 2y
1− 4y

DyF +
a(1− a)xy

(1 + x)(1− 4y)
F = 0.

(3.5)

Finally, we can deduce the claimed differential equations by taking (3.4) times
(1 + x) and (3.5) times (1− 4y) minus (3.4) times y, respectively. �
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4. Examples

Example 4.1. Let j be the elliptic modular j-function, and let E4(τ) =
1+240

∑
n∈N

n3qn

1−qn , q = e2πiτ , be the Eisenstein series of weight 4 on SL2(Z).
Set

x = 2
1/j(τ1) + 1/j(τ2)− 1728/(j(τ1)j(τ2))

1 +
√

(1− 1728/j(τ1))(1− 1728/j(τ2))
, y =

1
j(τ1)j(τ2)x2

,

and
F = (E4(τ1)E4(τ2))1/4.

Then F satisfies the system of partial differential equations:

(1− 432x)D2
xF − 2DxDyF − 432xDx − 60xF = 0,

(1− 4y)D2
yF + 4yDxDyF − yD2

xF − yDxF − 2yDyF = 0.

We should remark that the functions x and y are modular functions (of
two variables) for Γ1×Γ2, where Γ1 = Γ2 is a subgroup of SL2(Z) of index 2.
On the other hand, in the sense of Stienstra-Zagier, x and y are bi-modular
functions for the group SL2(Z) (cf. Remark 1.1).

We have noticed that this system of differential equations belongs to a
general class of partial differential equations which involve solutions of hyper-
geometric differential equations discussed in Theorem 3.1.

Here we will prove the assertion of Example 4.1 using Theorem 3.1.

Proof of Example 4.1. We first make a change of variable x 7→ −x̄/432.
For the sake of convenience, we shall denote the new variable x̄ by x again.
Thus, we are required to show that the functions

x = −864
1/j(τ1) + 1/j(τ2)− 1728/(j(τ1)j(τ2))

1 +
√

(1− 1728/j(τ1))(1− 1728/j(τ2))
, y =

4322

j(τ1)j(τ2)x2
,

and F = (E4(τ1)E4(τ2))1/4 satisfy

(1 + x)D2
xF − 2DxDyF + xDx +

5
36
xF = 0,

and
(1− 4y)D2

yF + 4yDxDyF − yD2
xF − yDxF − 2yDyF = 0.

For brevity, we let j1 denote j(τ1) and, similarly, j2 denote j(τ2). We now
observe that the function x can be alternatively expressed as

x = −864
1/j1 + 1/j2 − 1728/(j1j2)

1− (1− 1728/j1)(1− 1728/j2)

(
1−

√
(1− 1728/j1)(1− 1728/j2)

)
=

1
2

(√
(1− 1728/j1)(1− 1728/j2)− 1

)
.
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Setting

t1 =

√
1− 1728/j1 − 1√
1− 1728/j1 + 1

, t2 =

√
1− 1728/j2 − 1√
1− 1728/j2 + 1

,

we have
x =

t1 + t2
(t1 − 1)(t2 − 1)

.

Moreover, the functions jk, written in terms of tk, are jk = 432(tk − 1)2/tk
for k = 1, 2. It follows that

y =
4322

j1j2x2
=

t1t2
(t1 + t2)2

.

In view of Theorem 3.1, setting

t =

√
1− 1728/j(τ)− 1√
1− 1728/j(τ) + 1

it remains to show that the function f(t) = E4(τ)1/4(1− t)−1/6 is a solution
of the hypergeometric differential equation

t(1− t)f ′′ + (1 + 4t/3)f ′ − 1
36
f = 0,

or equivalently, that

E4(τ)1/4

(1− t)1/6
= 2F1(1/6, 1/6; 1; t).

This, however, follows from the classical identity

E4(τ)1/4 = 2F1

(
1
12
,

5
12

; 1;
1728
j(τ)

)
and Kummer’s transformation formula(

1 +
√

1− z

2

)2a

2F1

(
a, b; a+ b+

1
2
; z
)

= 2F1

(
2a, a− b+

1
2
; a+ b+

1
2
;
√

1− z − 1√
1− z + 1

)
.

This completes the proof of Example 4.1. �

Remark 4.1. The functions x and y in Example 4.1 (up to a constant
multiple) have also appeared in the paper of Lian and Yau [16], Corollary
1.2, as the mirror map of the family of K3 surfaces defined by degree 12
hypersurfaces in the weighted projective space P3[1, 1, 4, 6]. Further, this K3
family is derived from the square of a family of elliptic curves in the weighted
projective space P2[1, 2, 3]. (The geometry behind this phenomenon is the so-
called Shoida–Inose structure, which has been studied in detail by Long [17]
for one-parameter families of K3 surfaces, and their Picard–Fuchs differential
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equations.) Lian and Yau [16] proved that the mirror map of the K3 family
can be given in terms of the elliptic j-function, and indeed, by the functions x
and y (up to a constant multiple). We will discuss more examples of families
of K3 surfaces, their Picard–Fuchs differential equations and mirror maps in
the Section 6.

Along the same vein, we obtain more examples of modular forms of weight
(1, 1) and modular functions on Γ0(N)× Γ0(N) for N = 2, 3, 4.

Theorem 4.1. We retain the notations of Theorem 3.1. Then the solu-
tions of the differential equations (3.2) and (3.3) for the cases a = 1/2, 1/3,
1/4, 1/6 can be expressed in terms of modular forms and modular functions
on Γ0(N)× Γ0(N) for some N .

(a) For a = 1/2, they are given by

F (τ1, τ2) = θ4(τ1)2θ4(τ2)2, t = θ2(τ)4/θ3(τ)4,

which are modular on Γ0(4)× Γ0(4).
(b) For a = 1/3, they are

F (τ1, τ2) =
1
2
(3E2(3τ1)−E2(τ1))1/2(3E2(3τ2)−E2(τ2))1/2, t = −27

η(3τ)12

η(τ)12
,

which are modular on Γ0(3)× Γ0(3).
(c) For a = 1/4, they are

F (τ1, τ2) = (2E2(2τ1)−E2(τ1))1/2(2E2(2τ2)−E2(τ2))1/2, t = −64
η(2τ)24

η(τ)24
,

which are modular are Γ0(2)× Γ0(2).
(d) For a = 1/6, F and t are given as in Example 4.1.

Here
η(τ) = q1/24

∏
n∈N

(1− qn), q = e2πiτ

is the Dedekind eta-function, and

θ2(τ) = q1/4
∑
n∈Z

qn(n+1), θ3(τ) =
∑
n∈Z

qn2
, θ4(τ) =

∑
n∈Z

(−1)nqn2

are theta-series.

Lemma 4.2. Let Γ be a subgroup of SL2(R) commensurable with SL2(Z).
Let f(τ) be a modular form (of one variable) of weight 1, and t(τ) be a non-
constant modular function (of one variable) on Γ. Then, setting

Gt =
Dqt

t
=

1
2πi

tdt

dτ
, Gf =

Dqf

f
=

1
2πi

fdf

dτ
,
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we have

D2
t f +

DqGt − 2GfGt

G2
t

Dtf −
DqGf −G2

f

G2
t

f = 0.

Proof of Theorem 4.1. To prove part (a) we use the well-known identities

θ23 = 2F1

(
1
2
,
1
2
; 1;

θ42
θ43

)
(see [21] for a proof using Lemma 4.2) and

θ43 = θ42 + θ44.

Applying Theorem 3.1 and observing that

θ23

(
1− θ42

θ43

)1/2

= θ23
θ24
θ23

= θ24,

we thus obtain the claimed differential equation.
For part (b), we need to show that the function

f(τ) =
(3E2(3τ)− E2(τ))1/2

(1− t)1/3

satisfies

t(1− t)
d2

dt2
f + (1− 5t/3)

d

dt
f − 1

9
f = 0,

or, equivalently,

(4.1) (1− t)D2
t f −

2
3
tDtf −

1
9
tf = 0.

Let Gt and Gf be defined as in Lemma 4.2. For convenience we also let
g = (3E2(3τ)− E2(τ))/2. We have

Gt =
1
2
(3E2(3τ)− E2(τ)) = g

and

Gf =
Dqg

2g
− 1

3(1− t)
Dqt =

Dqg

2g
+

t

3(1− t)
g.

It follows that
DqGt − 2GfGt

G2
t

= g−2

(
Dqg − 2

(
Dqg

2g
+

t

3(1− t)
g

)
g

)
= − 2t

3(1− t)
.

Moreover, we can show that (DqGf − G2
f )/G2

t is equal to −t/(9(1 − t)) by
comparing enough Fourier coefficients. This establishes (4.1) and hence part
(b).

The proof of part (c) is similar, and we shall skip the details here. �
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5. More examples

We may also consider groups like Γ0(N)∗ × Γ0(N)∗, where Γ0(N)∗ de-
notes the group generated by Γ0(N) and the Atkin–Lehner involution wN =(

0 −1
N 0

)
for some N . (Note that Γ0(N)∗ is contained in the normalizer of

Γ0(N) in SL2(R).) Also the entire list of N giving rise to genus zero groups
Γ0(N)∗ is known (cf. [4]), and we will be interested in some of those genus zero
groups. We can determine differential equations satisfied by modular forms
(of two variables) of weight (1, 1) on Γ0(N)∗×Γ0(N)∗ for some N (giving rise
to genus zero subgroups Γ0(N)∗).

We first prove a generalization of Theorem 3.1.

Theorem 5.1. Let 0 < a, b < 1 be positive real numbers. Let f(t) =
2F1(a, b; 1; t) be a solution of the hypergeometric differential equation

(5.1) t(1− t)f ′′ + [1− (1 + a+ b)t]f ′ − abf = 0.

Set
F (t1, t2) = f(t1)f(t2)(1− t1)(a+b)/2(1− t2)(a+b)/2,

x = t1 + t2 − 2, y = (1− t1)(1− t2).
Then F , as a function of x and y, satisfies

(5.2)

D2
xF + 2DxDyF −

1
x+ y + 1

DxF +
x

x+ y + 1
DyF +

(2ab− a− b)x
2(x+ y + 1)

F = 0

and

D2
yF +

2y
x2
DxDyF +

y2

x2(x+ y + 1)
DxF +

y − x− x2

x(x+ y + 1)
DyF

− (a+ b)(a+ b− 2)(x2 + x) + (a− b)2xy − (4ab− 2a− 2b)y
4x(x+ y + 1)

F = 0.

(5.3)

Proof. The proof is very similar to that of Theorem 3.1. Let f1 be another
solution of the hypergeometric differential equation (5.1), and set τ := f1/f .
We find

f2 = c exp
{
−
∫ t 1− (1 + a+ b)u

u(1− u)
du

}
dt

dτ
=

cdt/dτ

t(1− t)a+b

for some constant c depending on the choice of f1. Thus, setting

q1 = e2πif1(t1)/f(t1) and q2 = e2πif1(t2)/f(t2),

we have

F (t1, t2) = c′
(
Dq1t1 ·Dq2t2

t1t2

)1/2
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for some constant c′. We now apply the differential identities (2.1). We have,
for j = 1, 2,

Gx,j :=
Dqjx

x
=

Dqj
tj

t1 + t2 − 2
, Gy,j :=

Dqj
y

y
= −

Dqj
tj

1− tj
,

and

GF,j :=
Dqj

F

F
=
tjD

2
qj
tj − (Dqj tj)

2

2tjDqj tj
.

It follows that the coefficients in (2.1) are

a0 = 2, b0 =
2(1− t1)(1− t2)
(t1 + t2 − 2)2

=
2y
x2
,

a1 = − 1
t1t2

= − 1
x+ y + 1

, b1 =
(1− t1)2(1− t2)2

t1t2(t1 + t2 − 2)2
=

y2

x2(x+ y + 1)
,

a2 =
t1 + t2 − 2

t1t2
=

x

x+ y + 1
,

b2 = − t
2
1 + t1t2 + t22 − 2t1 − 2t2 + 1

t1t2(t1 + t2 − 2)
=

y − x− x2

x(x+ y + 1)
.

Moreover, we have

a3 =
{
− (1− t1)2(2ṫ1

...
t 1 − 3ẗ21)

4(t1 − t2)ṫ41
+

(1− t2)2(2ṫ2
...
t 2 − 3ẗ22)

4(t1 − t2)ṫ42
− 2t1t2 − t1 − t2

4t21t
2
2

}
× (t1 + t2 − 2),

where we, as before, employ the notations ṫj , ẗj ,
...
t j for the derivatives Dqj

tj ,
D2

qj
tj , and D3

qj
tj , respectively. Now, by Lemma 3.2, we have

2ṫj
...
t j − 3ẗ2j = ṫ4j

(a− b)2t2j − (1− tj)2 + (4ab− 2a− 2b)tj
t2j (1− tj)2

.

It follows that

a3 =
(2ab− a− b)(t1 + t2 − 2)

2t1t2
=

(2ab− a− b)x
x+ y + 1

.

A similar calculation shows that

b3 = − (a+ b)(a+ b− 2)(x2 + x) + (a− b)2xy − (4ab− 2a− 2b)y
4x(x+ y + 1)

.

This proves the claimed result. �

Remark 5.1. It should be pointed out that the first displayed identity in
our proof of Theorem 5.1 is equivalent to the formula (4.26) in Proposition
4.4 of Lian and Yau [14].

We now obtain new examples of modular forms of weight (1, 1) on Γ0(N)∗×
Γ0(N)∗ for some N .
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Theorem 5.2. When the pairs of numbers (a, b) in Theorem 5.1 are given
by (1/12, 5/12), (1/12, 7/12), (1/8, 3/8), (1/8, 5/8), (1/6, 1/3), (1/6, 2/3),
(1/4, 1/4) and (1/4, 3/4), the solutions F (t1, t2) of the differential equations
(5.2) and (5.3) are modular forms of weight (1, 1) on Γ0(N)∗ × Γ0(N)∗ with
N = 1, 1, 2, 2, 3, 3, 4, 4, respectively.

Proof. We shall prove only the cases (a, b) = (1/6, 1/3) and (1/6, 2/3); the
other cases can be proved in the same manner.

Let

s(τ) = −27
η(3τ)12

η(τ)12
, E2(τ) = 1− 24

∞∑
n=1

nqn

1− qn
.

From the proof of part (b) of Theorem 4.1 we know that

f(τ) =
(3E2(3τ)− E2(τ))1/2

(1− s)1/3
,

as a function of s, is equal to
√

2 2F1(1/3, 1/3; 1; s). Now, applying the qua-
dratic transformation formula

2F1(α, β;α−β+1;x) = (1−x)−α
2F1

(
α

2
,
1 + α

2
− β;α− β + 1;− 4x

(1− x)2

)
for hypergeometric functions (see, for example, [1, Theorem 3.1.1]) with α =
β = 1/3, we obtain

(3E2(3τ)− E2(τ))1/2 =
√

2 2F1

(
1
6
,
1
3
; 1;− 4s

(1− s)2

)
.

Observing that the action of the Atkin-Lehner involution w3 sends s to 1/s,
we find that the function s/(1 − s)2 is modular on Γ0(3)∗. This proves that
F (t1, t2) is a modular form of weight (1, 1) for Γ0(3)∗ × Γ0(3)∗ in the case
(a, b) = (1/6, 1/3).

Furthermore, an application of another hypergeometric function identity

2F1(α, β; γ;x) = (1− x)−α
2F1

(
α, γ − β; γ;

x

x− 1

)
yields

(3E2(3τ)− E2(τ))1/2 =
√

2
(

1− s

1 + s

)1/3

2F1

(
1
6
,
2
3
; 1;

4s
(1 + s)2

)
.

This corresponds to the case (a, b) = (1/6, 2/3). Again, the function 4s/(1 +
s)2 is modular on Γ0(3)∗. This implies that F (t1, t2) is a modular form of
weight (1, 1) for Γ0(3)∗ × Γ0(3)∗ for the case (a, b) = (1/6, 2/3). �

Remark 5.2. For the remaining pairs (a, b) in Theorem 5.2, we simply
list the exact expressions of F (t1, t2) in terms of modular forms as the proofs
are similar.



684 YIFAN YANG AND NORIKO YUI

For (a, b) = (1/12, 5/12) and (1/12, 7/12), they are(
E6(τ1)E6(τ2)
E4(τ1)E4(τ2)

)1/2

,

(
E8(τ1)E8(τ2)
E6(τ1)E6(τ2)

)1/2

,

respectively, where Ek are the Eisenstein series in (2.2).
For (a, b) = (1/8, 3/8) and (1/8, 5/8), they are

2∏
j=1

(
1 + sj

1− sj
(2E2(2τj)− E2(τj))

)1/2

,

2∏
j=1

(
1− sj

1 + sj
(2E2(2τj)− E2(τj))

)1/2

,

respectively, where sj = −64η(τj)24/η(τj)24.
For (a, b) = (1/6, 1/3) and (1/6, 2/3), they are

2∏
j=1

(
1 + sj

1− sj
(3E2(3τj)− E2(τj))

)1/2

,

2∏
j=1

(
1− sj

1 + sj
(3E2(3τj)− E2(τj))

)1/2

,

respectively, where sj = −27η(3τj)12/η(τj).
For (a, b) = (1/4, 1/4) and (1/4, 3/4), they are

2∏
j=1

(2E2(2τj)− E2(τj))
1/2

,

2∏
j=1

(2E2(2τj)− E2(τj))
1/2 1− sj

1 + sj
,

respectively, where sj = θ2(τj)4/θ3(τj)4.

6. Picard–Fuchs differential equations of families of K3 surfaces:
Part I

One of the motivations of our investigation is to understand the mirror
maps of families of K3 surfaces with large Picard numbers, e.g., 19, 18, 17 or
16. Some examples of such families of K3 surfaces were discussed in Lian–
Yau [15], Hosono–Lian–Yau [11] and also in Verrill-Yui [20]. Some of the K3
families occurred when one considers degenerations of Calabi–Yau families.

Our goal here is to construct families of K3 surfaces whose Picard–Fuchs
differential equations are given by the differential equations satisfied by mod-
ular forms (of two variables) we constructed in the earlier sections. In this
section, we will look into the families of K3 surfaces that appeared in Lian
and Yau [14], [15].

Let S be a K3 surface. We recall some general theory about K3 surfaces
which are relevant to our discussion. We know that

H2(S,Z) ' (−E8)2 ⊥ U3,

where U is the hyperbolic plane
(

0 1
1 0

)
and E8 is the even unimodular

negative definite lattice of rank 8. The Picard group of S, Pic(S), is the group
of linear equivalence classes of Cartier divisors on S. Then Pic(S) injects into
H2(X,Z), and the image of Pic(S) is the algebraic cycles in H2(S,Z). As
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Pic(S) is torsion-free, it may be regarded as a lattice in H2(S,Z), called the
Picard lattice, and its rank is denoted by ρ(S).

According to Arnold–Dolgachev [5], two K3 surfaces form a mirror pair
(S, Ŝ) if

Pic(S)⊥H2(S,Z) = Pic(Ŝ) ⊥ U as lattices.

In terms of ranks, a mirror pair (S, Ŝ) is related by the identity:

22− ρ(S) = ρ(Ŝ) + 2 ⇔ ρ(S) + ρ(Ŝ) = 20.

Example 6.1. We will be interested in mirror pairs of K3 surfaces (S, Ŝ)
whose Picard lattices are of the form

Pic(S) = U and Pic(Ŝ) = U ⊥ (−E8)2.

We go back to our Example 4.1, and discuss the geometry behind that
example. Associated to this example, there is a family of K3 surfaces in the
weighted projective 3-space P3[1, 1, 4, 6] with weight (q1, q2, q3, q4) = (1, 1, 4, 6).
There is a mirror pair of K3 surfaces (S, Ŝ). Here we know (cf. Belcastro [3])
that

Pic(S) = U so that ρ(S) = 2,
and that S has a mirror partner Ŝ whose Picard lattice is given by

Pic(Ŝ) = U ⊥ (−E8)2 so that ρ(Ŝ) = 18.

The mirrorK3 family can be defined by a hypersurface in the orbifold ambient
space P3[1, 1, 4, 6]/G of degree 12. Here G is the discrete group of symmetry
and can be given explicitly by G = (Z/3Z) × (Z/2Z) = 〈g1〉 × 〈g2〉, where
g1, g2 are generators whose actions are given by

g1 : (Y1, Y2, Y3, Y4) 7→ (ζ3Y1, Y2, ζ
−1
3 Y3, Y4),

g2 : (Y1, Y2, Y3, Y4) 7→ (Y1,−Y2, Y3,−Y4).

(Here ζ3 = e2πi/3.) The G-invariant monomials are

Y 12
1 , Y 12

2 , Y 3
3 , Y

2
4 , Y

6
1 Y

6
2 , Y1Y2Y3Y4.

The matrix of exponents is the following 6× 5 matrix
12 0 0 0 1
0 12 0 0 1
0 0 3 0 1
0 0 0 2 1
6 6 0 0 1
1 1 1 1 1


whose rank is 2. Therefore we may conclude that the typical G-invariant poly-
nomial is in 2-parameters, and Ŝ can be defined by the following 2-parameter
family of hypersurfaces of degree 12

Y 12
1 + Y 12

2 + Y 3
3 + Y 2

4 + λY1Y2Y3Y4 + φY 6
1 Y

6
2 = 0
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in P3[1, 1, 4, 6]/G with parameters λ and φ.
How do we compute the Picard–Fuchs differential equation of this K3 fam-

ily?
Several physics articles are devoted to this question. For instance, Klemm–

Lerche–Mayr [12], Hosono–Klemm–Theisen–Yau [10], Lian and Yau [15] deter-
mined the Picard–Fuchs differential equation of the Calabi–Yau family using
the GKZ hypergeometric system. Also it was noticed (cf. [12], [15]) that the
Picard–Fuchs system of this family of K3 surfaces can be realized as the de-
generation of the Picard–Fuchs systems of the Calabi–Yau family. The family
of Calabi–Yau threefolds is a degree 24 hypersurface in P4[1, 1, 2, 8, 12] with
h1,1 = 3. The defining equation for this family is given by

Z24
1 + Z24

2 + Z12
3 + Z3

4 + Z2
5 − 12ψ0Z1Z2Z3Z4Z5

−6ψ1(Z1Z2Z3)6 − ψ2(Z1Z2)12 = 0.

Its Picard–Fuchs system is given by

L1 = Θx(Θx − 2Θz)− 12x(6Θx + 5)(6Θx + 1),
L2 = Θ2

y − y(2Θy −Θz + 1)(2Θy −Θz),
L3 = Θz(Θz − 2Θy)− z(2Θz −Θx + 1)(2Θz −Θx),

where

x = − 2ψ1

17282ψ6
0

, y =
1
ψ2

2

and z = − ψ2

4ψ2
1

are deformation coordinates.
Now the intersection of this Calabi–Yau hypersurface with the hyperplane

Z2 − t Z1 = 0 gives rise to a family of K3 surfaces

b0Y1Y2Y3Y4 + b1Y
12
1 + b2Y

12
2 + b3Y

3
3 + b4Y

2
4 + b5Y

6
1 Y

6
2 = 0

in P3[1, 1, 4, 6] of degree 12. Taking (b0, b1, b2, b3, b4, b5) = (λ, 1, 1, 1, 1, φ) we
obtain the 2-parameter family of K3 surfaces described above. The Picard–
Fuchs system of this K3 family is obtained by taking the limit y = 0 in the
Picard–Fuchs system for the Calabi–Yau family

L1 = Θx(Θx − 2Θz)− 12x(6Θx + 5)(6Θx + 1),
L3 = Θ2

z − z(2Θz −Θx + 1)(2Θz −Θx).

Further, if we intersect this K3 family with the hyperplane Y2 − s Y1 = 0, we
obtain a family of elliptic curves

c0W1W2W3 + c1W
6
1 + c2W

3
2 + c3W

2
3 = 0

in P2[1, 2, 3], whose Picard–Fuchs equation is given by

L = Θ2
x − 12x(6Θx + 5)(6Θx + 1).

Here we describe a relation of the Picard–Fuchs system of the above family
of K3 surfaces to the differential equation discussed in Example 4.1.
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Remark 6.1. We note that, in view of our proof of Example 4.1, the pro-
cess of setting z = 0 in the above Picard–Fuchs system {L1, L3} is equivalent
to setting t1 = 0 or t2 = 0 in x and y in Example 4.1. Our Theorem 3.1 then
implies that F (t) = (1− t)1/6

2F1(1/6, 1/6; 1; t) satisfies

(1 + x)D2
xF + xDxF +

5
36
xF = 0

with x = t/(1− t), or equivalently, (making a change of variable x 7→ −x)

x(1− x)F ′′ + (1− 2x)F ′ − 5
36
F = 0

with x = t/(t− 1). That is,

(1− t)1/6
2F1

(
1
6
,
1
6
; 1; t

)
= 2F1

(
1
6
,
5
6
; 1;

t

t− 1

)
.

This is the special case of the hypergeometric series identity

(1− t)a
2F1(a, b; c; t) = 2F1

(
a, c− b; c;

t

t− 1

)
.

We will discuss more examples of Picard–Fuchs systems of Calabi–Yau
threefolds and K3 surfaces, which have already been considered by several
people. For instance, the articles [10], [11], and [12] obtained the Picard–
Fuchs operators for Calabi–Yau hypersurfaces with h1,1 ≤ 3. The next two
examples consider Calabi–Yau hypersurfaces with h1,1 > 3, and the paper of
Lian and Yau [15] addressed the question of determining the Picard–Fuchs
system of the families of K3 surfaces P3[1, 1, 2, 2] of degree 6 and P3[1, 1, 2, 4]
of degree 8. Their results are that

(1) there is an elliptic fibration on these K3 surfaces, and the Picard–
Fuchs systems of the K3 families can be derived from the Picard–
Fuchs system of the elliptic pencils, and that

(2) the solutions of the Picard–Fuchs systems for the K3 families are
given by “squares” of those for the elliptic families.

The system of partial differential equations considered by Lian and Yau
[15] is

L1 = Θx(Θx − 2Θz)− λx(Θx + 1
2 + ν)(Θx + 1

2 − ν),
L2 = Θ2

z − z(2Θz −Θx + 1)(2Θz −Θx),

and an ordinary differential equations

L = Θ2
x − λx(Θx +

1
2

+ ν)(Θx +
1
2
− ν),

where Θx = x ∂
∂ x , etc., and λ, ν are complex numbers.

Also they noted that the K3 families correspond, respectively, to the fam-
ilies of Calabi–Yau threefolds P4[1, 1, 2, 4, 4] of degree 12 and P4[1, 1, 2, 4, 8] of
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degree 16. However, the Picard–Fuchs systems for the Calabi–Yau families
are not explicitly determined.

Example 6.2. We now consider a family of K3 surfaces P3[1, 1, 2, 4] of
degree 8. This K3 family is realized as the degeneration of the family of
Calabi–Yau hypersurfaces P4[1, 1, 2, 4, 8] of degree 16 and h1,1 = 4. The most
generic defining equation for this family is given by

a0Z1Z2Z3Z4Z5+a1Z
16
1 +a2Z

16
2 +a3Z

8
3+a4Z

4
4+a5Z

2
5+a6Z

2
3Z4Z5+a7Z

8
1Z

8
2 = 0.

Again the intersection with the hyperplane Z2− t Z1 = 0 gives rise to a family
of K3 surfaces P3[1, 1, 2, 4]:

Y 8
1 + Y 8

2 + Y 4
3 + Y 2

4 + λY1Y2Y3Y4 + φY 4
1 Y

4
2 = 0.

Let S denote this family of K3 surfaces. Then

Pic(S) = M(1,1),(1,1),0 with ρ(S) = 3.

The mirror family Ŝ exists and its Picard lattice is

Pic(Ŝ) = E8 ⊥ D7 ⊥ U with ρ(Ŝ) = 17.

The Picard lattices are determined by Belcastro [3]. The intersection of this
family of K3 surfaces with the hyperplane Y2−s Y2 = 0 gives rise to the pencil
of elliptic curves

c0W1W2W3 + c1W
4
1 + c2W

4
2 + c3W

2
3 = 0

in P2[1, 1, 2] of degree 4. This means that this family of K3 surfaces has the
elliptic fibration with section.

Now translate this “inductive” structure to the Picard–Fuchs systems. The
Picard–Fuchs system for the K3 family is given by

L1 = Θx(Θx − 2Θz)− 64x(Θx + 1
2 + 1

4 )(Θx + 1
2 −

1
4 ),

L2 = Θ2
z − z(2Θz −Θx + 1)(2Θz −Θx),

and the Picard–Fuchs differential equation of the elliptic family is given by

L = Θ2
x − 64x(Θx +

1
2

+
1
4
)(Θx +

1
2
− 1

4
).

The same remark as Remark 6.1 is valid for the Picard–Fuchs system
{L1, L3} which corresponds to Theorem 4.1 (b) with a = 1/3.

Example 6.3. We consider a family of K3 surfaces P3[1, 1, 2, 2] of degree
6. This K3 family is realized as the degeneration of the family of Calabi–Yau
hypersurfaces P4[1, 1, 2, 4, 4] of degree 12 and h1,1 = 5:

a0Z1Z2Z3Z4Z5 + a1Z
12
1 + a2Z

12
2 + a3Z

6
3 + a+ 4Z3

4 + a5Z
3
5 + a6Z

6
1Z

6
2 = 0.

The intersection of this Calabi–Yau hypersurface with the hyperplane Z2 −
t Z1 = 0 gives rise to the family of K3 hypersurfaces P3[1, 1, 2, 4]:

Y 6
1 + Y 6

2 + Y 3
3 + Y 3

4 + λY1Y2Y3Y4 + φY 3
1 Y

3
2 = 0.
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Let S denote this family of K3 surfaces. Then

Pic(S) = M(1,1,1),(1,1,1),0 with ρ(S) = 4.

There is a mirror family of K3 surfaces, Ŝ, with

Pic(Ŝ) = E8 ⊥ D4 ⊥ A2 ⊥ U with ρ(Ŝ) = 16.

The Picard lattices are determined by Belcastro [3].
The intersection of this K3 family with the hyperplane Y2 − s Y1 = 0 gives

rise to the family of elliptic curves

c0W1W2W3 + c1W
3
1 + c2W

3
2 + c3W

3
3 = 0

in P2[1, 1, 1] of degree 3.
The Picard–Fuchs system of this K3 family is

L1 = Θx(Θx − 2Θz)− 27x(Θx + 1
2 + 1

6 )(Θx + 1
2 −

1
6 ),

L2 = Θ2
z − z(2Θz −Θx + 1)(2Θz −Θx),

and the Picard–Fuchs differential equation for the elliptic family is given by

L = Θ2
x − 27x(Θx +

1
2

+
1
6
)(Θx +

1
2
− 1

6
).

We note that the same remark is valid for the Picard–Fuchs system {L1, L3}
corresponding to a = 1/4 in Theorem 4.1(c).

We will summarize the above discussions for the families of K3 surfaces in
the following form.

Proposition 6.1. The Picard–Fuchs systems of families of K3 surfaces
obtained by Lian and Yau [15] can be reconstructed starting from the modular
forms (of two variables) and then finding the differential equations satisfied by
them. In other words, the differential equations satisfied by the modular forms
(of two variables) are realized as the Picard–Fuchs differential equations of the
families of K3 surfaces, establishing, in a sense, the “modularity” of the K3
families.

7. Picard–Fuchs differential equations of families of K3 surfaces:
Part II

The purpose of this section is to study (one-parameter) families of K3 sur-
faces (some of which are realized as degenerations of some families of Calabi–
Yau threefolds), whose mirror maps are expressed in terms of Hauptmoduln
for genus zero subgroups of the form Γ0(N)∗, aiming to identify their Picard–
Fuchs systems with differential equations associated to some to modular forms
(of two variable) (e.g., in Theorem 5.1).



690 YIFAN YANG AND NORIKO YUI

Dolgachev [5] has discussed several examples of families of MN -polarized
K3 surfaces corresponding to Γ0(N)∗ for small values of N , e.g., N = 1, 2, 3.

Lian and Yau [14] have given examples of families of K3 surfaces and their
Picard–Fuchs differential equations of order 3. The modular groups are genus
zero subgroups of the form Γ0(N)∗, where N ranges from 1 to 30. Here we
try to analyze their examples and their method in relation to our results in
the Section 5.

Example 7.1. We start with the hypergeometric equation

t(1− t)f ′′ + [1− (1 + a+ b)t]f ′ − abf = 0

in Theorem 5.1. Take a = b = 1
4 and consider a one-parameter deformation

of this equation of the form

t(1− t)f ′′ + (1− 3
2
t)f ′ − 1

16
(1− 4ν2)f = 0

with a deformation parameter ν. This has a unique solution f0(t) near t = 0
with f0(0) = 1, and a solution f1(t) with f1(t) = f0(t) log t+O(t). The inverse
t(q) of the power series q = exp(f1(t)/f0(t)) = t+O(t2) defines an invertible
holomorphic function in a disc, and t(q) is the so-called mirror map. Put

x(q) =
1
λ
t(λq) for a given λ.

One of the main results of Lian and Yau [14] is that for any complex numbers
λ, ν with λ 6= 0, there is a power series identity

3F2(
1
2
,
1
2

+ ν,
1
2
− ν; 1, 1;λx(q))2 =

x′ 2

x2(1− λx)

in the common domain of definitions of both sides. As before, x′(q) = Dqx(q).
For instance, take (λ, ν) = (2633, 1

3 ), (28, 1
4 ), (2233, 1

6 ) and (26, 0). Then
these relations are given below. The mirror maps in these examples are ex-
pressed in terms of Hauptmoduln of genus zero modular groups of the form
Γ0(N)∗ (Γ0(1)∗ = Γ).
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Label Modular Relation Modular Group

I

(∑∞
n=0

(6n)!
(3n)!(n!)3

1
j(τ)n

)2

= E4(q) Γ

II

(∑∞
n=0

(4n)!
(n!)4 x2(τ)n

)2

= x′ 2
2

x2(1−256x) Γ0(2)∗

III

(∑∞
n=0

(2n)!(3n)!
(n!)5 x3(τ)n

)2

= x′ 2
3

x2
3(1−108x3)

Γ0(3)∗

IV

(∑∞
n=0

(2n)!3

(n!)6 x4(τ)n

)2

= x′ 2
4

x2
4(1−64x4)

Γ0(4)∗

Here j(τ), x2(τ), x3(τ) and x4(τ) are Hauptmoduln for the genus zero sub-
groups Γ, Γ0(2)∗, Γ0(3)∗ and Γ0(4)∗, respectively. Observe that in each mod-
ular relation, the right hand side is a modular form of weight 4 on the corre-
sponding genus zero subgroup.

We know that 3F2( 1
2 ,

1
2 + ν, 1

2 − ν; 1, 1;λx) is the unique solution with
leading term 1 +O(x) to the differential operator

L = Θ3
x − λx(Θx +

1
2
)(Θx +

1
2

+ ν)(Θx +
1
2
− ν).

In these examples, this differential operator is identified with the Picard–
Fuchs differential operator for a one-parameter family of K3 surfaces, which
are obtained by degenerating Calabi–Yau families. (Cf. Lian and Yau [14],
Klemm, Lercher and Myer [12].)

CY family K3 family PF Operator

I X(1, 1, 2, 2, 2)[8] X(1, 1, 1, 3)[6] Θ3 − 8x(6Θ + 5)(6Θ + 3)(6Θ + 1)

II X(1, 1, 2, 2, 6)[12] X(1, 1, 1, 1)[4] Θ3 − 4x(4Θ + 3)(4Θ + 2)(4Θ + 1)

III X(1, 1, 2, 2, 2, 2)[6, 4] X(1, 1, 1, 1, 1)[3, 2] Θ3 − 6x(2Θ + 1)(3Θ + 2)(3Θ + 1)

IV X(1, 1, 2, 2, 2, 2, 2)[4, 4, 4] X(1, 1, 1, 1, 1, 1)[2, 2, 2] Θ3 − 8x(2Θ + 1)3

The K3 families I and II have already been discussed in Lian–Yau [15] (see
also Verrill–Yui [20]) in relation to mirror maps. The Picard group of I (resp.
II) is given by

(−E8)2 ⊕ U⊕ < −4 > (resp. (−E8)2 ⊕ U⊕ < −2 >).
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The Calabi–Yau family III can be realized as a complete intersection of the
two hypersurfaces:

Y 6
1 + Y 6

2 + Y 3
3 + Y 3

4 + Y 3
5 + Y 3

6 = 0,

Y 4
1 + Y 4

2 + Y 2
3 + Y 2

4 + Y 2
5 + Y 2

6 = 0.

This Calabi–Yau family has h1,2 = 68 and h1,1 = 2. The K3 family is realized
as the fiber space by setting

Y1 = Z
1/2
1 , Y2 = λZ

1/2
1 , and Yi = Zi for i = 3, · · · , 6,

where λ ∈ P1 is a parameter. That is, we obtain a family of complete inter-
section K3 surfaces X(1, 1, 1, 1, 1)[3, 2]:

(1 + λ6)Z3
1 + Z3

3 + Z3
4 + Z3

5 + Z3
6 = 0,

(1 + λ4)Z2
1 + Z2

3 + Z2
4 + Z2

5 + Z2
6 = 0.

Question. What is the Picard group of this K3 family?

In the similar manner, the Calabi–Yau family IV can be realized as a
complete intersection of the three hypersurfaces:

Y 4
1 + Y 4

2 + Y 2
3 + Y 2

4 + Y 2
5 + Y 2

6 + Y 2
7 = 0,

Z4
1 + Z4

2 + Z2
3 + Z2

4 + Z2
5 + Z2

6 + Z2
7 = 0,

W 4
1 +W 4

2 +W 2
3 +W 2

4 +W 2
5 +W 2

6 +W 2
7 = 0.

The K3 family is realized as the fiber space by setting

Y1 = Y
′ 12
1 , Y2 = λY

′ 12
1 and Yi = Y ′i for i = 3, · · · , 7,

and similarly for Z1, Z2 and W1, W2, where λ ∈ P1 is a parameter.
This gives rise to the K3 family X(1, 1, 1, 1, 1, 1)[2, 2, 2]:

(1 + λ4)Y ′21 + Y ′23 + Y ′24 + Y ′25 + Y ′26 + Y ′7 = 0,

(1 + λ4)Z ′21 + Z ′23 + Z ′24 + Z ′25 + Z ′26 + Z ′27 = 0,

(1 + λ4)W ′2
1 +W ′2

3 +W ′2
4 +W ′2

5 +W ′2
6 +W ′2

7 = 0.

Question. What is the Picard group of this K3 family?

Here is the summary:
(1) One starts with a Hauptmodul x(= x(q)) for a genus zero subgroup

Γ0(N)∗;
(2) then one associates a modular form x′ 2

x r(x) of weight 4,
(3) and a power series solution ω0(x) of an order three differential oper-

ator;
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(4) this differential operator coincides with the Picard–Fuchs differential
operator of a one-parameter family of K3 surfaces in weighted pro-
jective spaces.

Lian and Yau [14] further considered generalizations of the above phenom-
enon, constructing many more examples. Given a genus zero subgroup of
the form Γ0(N)∗ and a Hauptmodul x(q), construct (by taking a Schwarzian
derivative) a modular form E of weight 4 of the form x′ 2

x r(x) and a differential
operator L whose monodromy has maximal unipotency at x = 0, such that
LE1/2 = 0. Further, identify L as the Picard–Fuchs differential operator of
a family of K3 surfaces. Let ω0(x) denotes the fundamental period of this
manifold. Then it should be subject to the modular relation

ω0(x)2 =
x′ 2

x r(x)
.

How do we associate modular forms of weight (1, 1) corresponding to the
groups Γ0(N)∗ × Γ0(N)∗ in this situation?

Taking the square root of both sides of the modular relation, we obtain
that ω0(x)1/2 is a modular form (of one variable) of weight 1 for the group
Γ0(N)∗. Then taking ω0(q1)ω0(q2), we see that this is a modular form for
Γ0(N)∗ × Γ0(N)∗ of weight (1, 1). Then this modular form (of two variables)
satisfies a differential equation, which may be identified with the Picard–Fuchs
differential equation of the K3 family considered above. We summarize the
above discussion in the following proposition.

Proposition 7.1. The examples I–IV above are related to our Theorem
5.2. Indeed, the connection is established by the identity

2F1

(
a, b; a+ b+

1
2
; z
)2

= 3F2

(
2a, a+ b, 2b; a+ b+

1
2
, 2a+ 2b; z

)
.

More explicitly, the examples I–IV correspond to the cases (1/12, 5/12),
(1/8, 3/8), (1/6, 1/3), and (1/4, 1/4), respectively.

Note that the generalized hypergeometric series 3F2(α1, α2, α3; 1, 1; z) sat-
isfies a differential equation of the form

[Θ3
z − λ z(Θz + α1)(Θz + α2)(Θz + α3)]f = 0

for some α1, α2, α3 ∈ Q and λ ∈ Q, 6= 0.
A natural question we may ask now is: Is it possible to construct families

of K3 surfaces corresponding to Theorem 5.2 from this observation?
When the order 3 differential equation of this form becomes the symmet-

ric square of an order 2 differential equation, and if the order 2 differential
equation is realized as the Picard–Fuchs differential equation of a family of
elliptic curves, we may be able to construct a family of K3 surfaces using the
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method of Long [17], especially when the Picard number of the K3 family in
question is 19 or 20. In fact, Rodriguez–Villegas [18] has discussed 4 families
of K3 surfaces which fall into this class.

However, at the moment, we do not know if there are readily available
methods for constructing K3 families starting from differential equations.

Remark 7.1. If we consider the order 4 generalized hypergeometric series,
there are 14 differential equations of the form

[Θ4
z − λ z(Θz + α1)(Θz + α2)(Θz + α3)(Θz + α4)]f = 0

for some αi ∈ Q and λ ∈ Q, 6= 0. These 14 differential operators can be found
in Almkvist–Zudilin [2]. As Doran and Morgan [8] explained, only 13 of the
14 such operators are known to be realizable as the Picard–Fuch differential
operator for a family of smooth Calabi–Yau threefolds with h2,1 = 1. For
the 13 cases, Klemm and Theisen [13] (see also Villegas [18]) found the corre-
sponding families of Calabi–Yau threefolds in weighted projective spaces. The
missing case is (α1, α2, α3, α4) = (1/12, 5/12, 7/12, 11/12). For more thorough
discussions on this topic, the reader should consult the article of Doran and
Morgan [8], where they classify integral monodromy representations.

8. Generalizations and open problems

Problem 1. We have determined differential equations satisfied by modu-
lar forms (of two variables) of weight (1, 1). The arguments can be generalized
to modular forms (of two variables) of any weight (k1, k2), using the result of
Yang [21]. However, differential equations satisfied by them are getting too
big to display.

Problem 2. A natural generalization is to consider modular forms of
three (or more than three) variables F (τ1, τ2, τ3) of weight (k1, k2, k3) on Γ1×
Γ2 × Γ3.

Examples of this kind should correspond to Picard–Fuchs differential equa-
tions of families of Calabi–Yau threefolds, or Picard–Fuchs differential equa-
tions of degenerate families of Calabi–Yau fourfolds.
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