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CUBIC FOURFOLDS AND SPACES OF RATIONAL CURVES

A.J. DE JONG AND JASON STARR

Abstract. For a general nonsingular cubic fourfold X ⊂ P5 and e ≥ 5

an odd integer, we show that the space Me parametrizing rational curves

of degree e on X is non-uniruled. For e ≥ 6 an even integer, we prove
that the generic fiber dimension of the maximally rationally connected

fibration of Me is at most one, i.e., passing through a very general point
of Me there is at most one rational curve. For e < 5 the spaces Me are

fairly well understood and we review what is known.

1. Introduction

Let k be an algebraically closed field of characteristic 0. Let X be a non-
singular cubic hypersurface in P5

k. For each integer e ≥ 1 denote by Me the
variety parametrizing smooth, geometrically connected curves in X of degree
e and arithmetic genus 0, i.e., Me is the scheme of rational curves of degree
e in X. The scheme Me is an irreducible variety of dimension 3e + 1. This
is nontrivial and is discussed in Section 2. In this paper we consider the
birational geometry of Me, specifically the following questions:

(1) What is the Kodaira dimension of Me?
(2) In case the Kodaira dimension is negative, what is the dimension of

the general fiber of the maximally rationally connected fibration of
Me (cf. [16])?

These questions were originally raised by Joe Harris with regard to the well-
known problem of rationality/irrationality of cubic fourfolds (we do not solve
this problem). It is a pleasure to acknowledge useful conversations with Joe
Harris.

In Section 2 we discuss different compactifications of Me and how they are
related. Let Me be a desingularization of a compactification of Me. Question
2 can be rephrased: For a very general point p ∈ Me, what is the maximal
dimension of a closed, rationally connected subvariety Z ⊂Me containing p?
Equivalently, denoting by Me → Q the MRC fibration (in the sense of [16,
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416 A.J. DE JONG AND JASON STARR

Def. IV.5.3]), what is the difference dim(Me)− dim(Q)? If this is 0, then for
a very general point p ∈ Me there is no non-constant morphism P

1 → Me

whose image contains p, i.e., Me is not uniruled. We note that the invariant
dimZ is a birational invariant of Me (so it is independent of the choice of
desingularized compactification).

Discussions with Joe Harris have led to the list of maximal dimensions for
small values of e:

e 1 2 3 4
dimMe 4 7 10 13
dimZ 0 3 2 3

We pause to explain this table. The case of lines is well known, namely M1 is
a 4-dimensional hyperKähler manifold [3, Prop. 1]. In the case of conics, the
set of all conics residual to a fixed line is a 3 dimensional rationally connected
variety Z. In the case of cubic rational curves, note that a general cubic curve
lies on a unique cubic surface and moves in a 2-dimensional linear system on
it. So Z has dimension at least 2. A general quartic rational curve lies on
a unique cubic threefold, and moves in a 3-dimensional rationally connected
family on it (cf. [10, Theorem 8.2]), so Z has dimension at least 3. This
gives a lower bound for the numbers in the bottom row of the diagram, which
is easily seen to be the actual dimension of Z when e = 1 or 2. For e = 3
and e = 4, we have not verified these numbers give the actual dimensions,
but we would be surprised if they turn out to be larger. Ana-Maria Castravet
conjectured that for e = 4, the actual dimension of Z is 3 and the target of the
MRC fibration of M4 is birational to the relative intermediate Jacobian of the
family of hyperplane sections of X—in other words, the relative intermediate
Jacobian of the family of hyperplane sections of X is not uniruled.

Theorem 1.1. Let X ⊂ P5 be a very general cubic fourfold. For every
odd degree e ≥ 5, the variety Me is not uniruled. For every even degree e ≥ 6
the variety Me has dim(Z) ≤ 1.

Actually our method gives something a little better than Theorem 1.1.
Theorem 1.2. Let X ⊂ P

5 be a smooth cubic hypersurface, and let
Me be a nonsingular projective model of Me. There is a canonical section
ωe ∈ H0(Me,Ω2

Me
) with the following property:

(a) If e is odd, e ≥ 5, if X is general, and if p is a general point of Me,
then ωe induces a nondegenerate pairing on Tp(Me).

(b) If e is even, e ≥ 6, if X is general, and if p ∈Me a general point, then
the linear map Tp(Me)→ T∨p (Me) induced by ωe has a 1-dimensional
kernel.

Corollary 1.3. If e is odd, e ≥ 5, and if X is general, then the Kodaira
dimension κ(Me) is ≥ 0.
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The corollary follows as the form ω
(3e+1)/2
e is a nonzero section of the

canonical line bundle.
In Section 2 we recall three different moduli spaces and how they are re-

lated. In Section 4 we give a general method to produce ωe on the Kontsevich
moduli stackMe of stable maps for any e ≥ 1. This is different than produc-
ing the form ωe on Me. In a preliminary section, Section 3, we prove that
every p-form on any tame, finite type Deligne-Mumford stack over a field k
(not necessarily algebraically closed, nor of characteristic 0) gives rise to a
p-form on every desingularization of the coarse moduli space; cf. Lemma 3.6.
Thus producing the 2-form on Me is stronger than producing the 2-form on
Me. In Section 5 we describe how to compute the associated alternating pair-
ing on Zariski tangent spaces of Me. In Section 6 we show that this pairing
is nondegenerate for a general point of M5. The case e = 5 is particularly
simple: almost no explicit calculation is necessary. In Section 7 we prove that
ωe is generically non-degenerate for every odd degree e ≥ 5, and the kernel
of the pairing is generically 1-dimensional for every even degree e ≥ 6. In
Section 8 we sketch a proof that M6 is not uniruled and pose some questions
about the spaces Me.

Finally, Theorem 1.2 implies Theorem 1.1 thanks to the following lemma.

Lemma 1.4. Let M be a smooth, projective scheme, let ω be a 2-form on
M , and suppose that at a general point p ∈Me the rank of the 2-form ω is r.
Then dim(Z) ≤ dim(M) − r, i.e., the codimension of the maximal rationally
connected subvariety Z passing through a very general point of M is at least r.

Proof. Denote d = dim(Z). If d = 0, there is nothing to prove. Suppose
that d is positive. Then, by [16, Theorem IV.5.8], for a very general point
p ∈M there is a morphism g : P1 →M whose image contains p and such that
g∗TM contains a locally free subsheaf E ⊂ g∗TM with E an ample locally free
sheaf of rank d and whose cokernel is a trivial locally free sheaf of rank n− d
(this is in the proof of [16, Theorem IV.5.8], not in the statement). Consider
the sheaf map induced by ω, i.e., g∗TM → g∗ΩM . Since g∗TM is semipositive,
the sheaf g∗ΩM is seminegative. There is no nonzero map from an ample
locally free sheaf to a seminegative locally free sheaf. So E is contained in the
kernel of the sheaf map. Therefore d ≤ dim(M)− r. �

2. Discussion of moduli spaces

In this section we discuss three related functors, each of which gives a com-
pactification of the space of smooth rational curves. The spaces representing
these functors are birational. Since we are studying birational properties of
these spaces the distinction between them is not crucial to the rest of the
paper. We find it useful to pause, compare these three spaces, and point out
what is and is not known about them.
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Let k be a field, not necessarily algebraically closed, nor of characteristic 0.
Let X ⊂ PN be a quasi-projective scheme over k. Denote by Me the scheme
parametrizing families of smooth, proper, geometrically connected curves C ⊂
X of arithmetic genus 0 and degree e. Even before compactifying Me, there
are several versions of Me and we concentrate on two of these: Mh

e and M c
e .

The scheme Mh
e is the open subscheme of the Hilbert scheme Hilbet+1(X)

(cf. [9]) parametrizing smooth curves. And M c
e is the open subvariety of

the Chow variety Chow1,e(X) (cf. [16, Def. I.3.20]) parametrizing cycles of
smooth curves. There is not universal acceptance of the definition of the Chow
variety (e.g., there is also the definition in [2]), but Kollár’s definition is best
suited to our needs. In particular, there is the fundamental class morphism,
also called the Hilbert-Chow morphism, from Mh

e to M c
e .

Lemma 2.1 ([16, Thm. 6.3]). There exists a fundamental class morphism
FC :

(
Mh
e

)sn →M c
e , where

(
Mh
e

)sn is the semi-normalization of Mh
e (cf. [16,

Def. I.7.2.1]). The morphism FC is an isomorphism. Therefore there is a
morphism (FC)−1 : M c

e →Mh
e that is equivalent to the semi-normalization of

Mh
e . In particular, it is bijective on points.

Proof. This follows from [16, Thm. 6.3] and the semi-normal analogue of
Zariski’s Main Theorem. �

It does happen that Mh
e is not semi-normal so that M c

e and Mh
e are not

isomorphic, e.g., whenever Mh
e is not reduced. A simple example of this is

given by any pair (X,L) where L ⊂ P3 is a line and X ⊂ P3 is a smooth
hypersurface of degree d ≥ 4 containing L. In this case there is a unique
connected component of Mh

1 whose reduced scheme consists just of the point
[L] ∈Mh

1 , but Mh
1 is non-reduced.

For the special case that X ⊂ Pn is a smooth cubic hypersurface—the case
of interest in this paper—we expect that Mh

e is always semi-normal.

Question 2.2. IfX ⊂ Pn is a smooth cubic hypersurface, and if char(k) =
0, is Mh

e semi-normal? Is Mh
e normal?

There are some partial answers. For n arbitrary and e = 1, Mh
1 is smooth

by [5, Thm. 7.8]. For n = 3 and e arbitrary, Mh
e is an open subset of

a projective space and so it is smooth. For n = 4 and e = 2, 3, Mh
e is

smooth by [11, Lemma 3.2, Lemma 4.6]. For n = 4 and e arbitrary, Mh
e is

an irreducible, reduced, local complete intersection scheme by [12]. So, by
Serre’s criterion, to prove that Mh

e is normal it suffices to prove that Mh
e is

nonsingular in codimension one. We do not know whether this is true.
Let X ⊂ PN be a projective scheme over a field k. Denote by M

h

e the clo-
sure ofMh

e in Hilbet+1(X) and denote byM
c

e the closure ofM c
e in Chow1,e(X).

These are the first two compactifications of Me which we consider.



CUBIC FOURFOLDS 419

Many results about the Hilbert scheme and the Chow variety are known.
For instance, by [16, Thm. I.6.3], the morphism FC extends to a morphism
FC : (M

h

e )sn →M
c

e. Both M
c

e and M
h

e have certain drawbacks. For example
the morphism (FC)−1 does not extend to a regular morphism M

c

e → M
h

e

(this fails even in the case X = P
N ). Moreover, the closed subsets M

h

e ⊂
Hilbet+1(X) and M

c

e ⊂ Chow1,e(X) are typically not open (i.e., they are
typically not a union of connected components of the full Hilbert scheme,
resp. Chow variety). Because of this, it is difficult to carry out an infinitesimal
analysis of M

h

e and M
c

e as in [16, Section I.2].
If char(k) = 0, there is a third compactification of Me that is very useful:

the Kontsevich moduli space of stable maps (this compactification also exists
in positive characteristic, but it is not as well-behaved). A prestable map
from an r-pointed curve of genus g to X of degree e defined over a field L/k
is a triple (C, (p1, . . . , pr), f) where C is a geometrically connected, reduced,
at-worst-nodal curve of arithmetic genus g defined over L, where p1, . . . , pr
is an ordered set of distinct L-rational points in the nonsingular locus of C,
and where f : C → X is a morphism of k-schemes such that the degree of
f∗O(1) is e. The triple is called a stable map if there are no infinitesimal
automorphisms of the triple. There is a notion of families of stable maps and
morphisms between stable maps. There is a Deligne-Mumford stack that is
proper over k, Mg,n(X, e), parametrizing flat families of stable maps from
r-pointed curves to X of genus g and degree e. The coarse moduli space
Mg,n(X, e) of the stack Mg,n(X, e) is a projective k-scheme. The Deligne-
Mumford stack and its coarse moduli space are described in detail in [4] and
[7].

In the special case that X ⊂ P5 is a smooth cubic hypersurface, we denote
by Me the Kontsevich moduli space of stable maps to X of genus 0 with no
marked points and degree e.

Lemma 2.3. The scheme Mh
e is isomorphic to an open substack of Me.

Proof. This follows from the definitions of Me and Mh
e . �

There is an analogue of the morphism FC, i.e., a 1-morphism FC :
(
Me

)sn
→ M

c

e. One drawback of Me as compared to M
h

e and M
c

e is that it is a
stack rather than a scheme, which makes some arguments more technical.
On the other hand, the deformation and obstruction theory of Me and the
“boundary” are understood quite well. These are the key components in the
proof of the following proposition.

Proposition 2.4 ([13, Prop. 7.4]). Let n ≥ 5 be an integer and let
X ⊂ Pn a cubic hypersurface. If X is general, the stack Me is irreducible
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and reduced of the expected dimension (n − 2)e + (n − 4) and has only local
complete intersection singularities.

Proof. Every case except n = 5 follows from [13, Prop. 7.4]. Thus suppose
that n = 5.

By [13, Cor. 7.3], to prove the proposition it suffices to check that for e = 1
and e = 2, the following three conditions hold:

(i) the evaluation morphism ev : M0,0(X, e) → X is surjective and has
constant fiber dimension,

(ii) a general fiber of ev is irreducible, and
(iii) there exists a free stable map of degree e, i.e., a stable map [C, f ] such

that f∗TX is generated by global sections.

Case I, e = 1: First consider (iii). For every smooth cubic hypersurface
X ⊂ P5, and for every point p ∈ X, there exists a line L ⊂ X containing p.
By [6, Prop. 4.14], for every smooth variety X and for a very general point
p ∈ X, every rational curve in X containing p is free. So for a very general
point p in X, and for any line L containing p, (iii) holds.

By [16, Cor. II.3.5.4.2], for a very general point p ∈ X, the evaluation
morphism ev :M0,1(X, 1)→ X is smooth over p. The fiber F is canonically
a complete intersection of hypersurfaces in Pn−1 of dimension n − 4. When-
ever n ≥ 5, this complete intersection is connected. Since F is smooth and
connected, it is irreducible. Thus (ii) holds.

Finally, if X is a general hypersurface, then by [11, Thm. 2.1], (i) holds.
Case II, e = 2: Let p ∈ X be a general point and let L ⊂ X be any line

containing p. Then L is free. Thus any degree 2 cover of L by a rational curve
is a stable map that is free. Thus (iii) holds.

There is an a priori lower bound on the dimension of every irreducible
component of every fiber of evf : M0,1(X, 2) → X, namely the difference of
the expected dimension ofM0,1(X, 2) and dim(X), which is 4. Condition (i) is
the condition that every fiber of evf has dimension exactly 4. Condition (ii) is
the condition that at least one fiber is irreducible and reduced of dimension 4.

Suppose that X contains no linear P2—this holds for a general cubic hy-
persurface in P5. Then every stable map f : C → X of degree 2 that is not a
double cover of a line is an embedded plane conic. The span of the conic C,
say Λ ⊂ Pn, intersects X in a plane cubic curve C ′ ⊂ Λ. Of course C ⊂ C ′,
and the residual curve is a line L ⊂ X.

Conversely, for a general pair of a line L ⊂ X and a linear P2 Λ containing
L, the residual to L in Λ ∩ X is a plane conic. Thus the set of embedded
plane conics in X passing through a general point p is isomorphic to an open
subset of the space of lines M1. This space is smooth of dimension 4. So
to finish the proof of (i) and (ii), it suffices to show that this set is Zariski
dense in ev−1(p) for every p ∈ X. In other words, for every p ∈ X, the subset
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of ev−1(p) consisting of double covers of lines is not dense in any irreducible
component of ev−1(p).

Since X is general, the morphism ev : M0,1(X, 1) → X is flat. Thus
the variety parametrizing lines in X containing p has dimension 1. Thus
the variety parametrizing double covers of lines containing p has dimension 3
(there is a 2-dimensional family of double covers of a given line by rational
curves). Combined with the lower bound of 4, it follows that the variety
parametrizing double covers of lines containing p is not dense in any irreducible
component of ev−1(p). Therefore (i) and (ii) hold. �

Remark 2.5. (1) The proposition is false for n = 3 and n = 4. For n = 3,
Me is disconnected (the Picard number of X is not 1). For n = 4 and e ≥ 2,
there is an irreducible component Ye ⊂ Me parametrizing degree e covers of
lines in X. The open subset Me − Ye is irreducible, reduced of the expected
dimension and has only local complete intersections (cf. [12]).

(2) Even though the proof above works only for a general hypersurface X,
we suspect the proposition holds for every smooth cubic hypersurface X ⊂ Pn.

(3) In fact the argument above proves much more than the proposition,
namely that for every stable genus 0 A-graph τ and every flag f of τ , a
certain condition B(X, τ, f) holds (cf. [13, Cor. 7.3]). In particular, M(X, τ)
is irreducible.

Corollary 2.6. For X ⊂ P5 a general cubic hypersurface, the schemes
M c
e and Mh

e are irreducible and reduced of dimension 3e+ 1. They are bira-
tional to each other and to Me.

3. Trace maps and descent for p-forms

Let X be a quasi-projective variety over a field k with char(k) = 0. If X
is smooth and projective and if k = C, Hodge theory gives linear maps from
Hp+1,q+1(X) to Hp,q(M̃e), where M̃e is a desingularization of M0,0(X, e).
The map pulls back forms to the universal curve over M0,0(X, e), and then
uses “integration along fibers”. In the proof of the main theorem, we need a
version of this that holds when X is neither smooth nor projective. In the
next two sections we prove the following version (the proof is algebraic, not
Hodge-theoretic): Let X be a quasi-projective variety. Let g, r, p and q be
nonnegative integers. There are linear maps,

Hq+1
(
X,Ωp+1

)
→ Hq

(
Mg,r(X, e),Ωp

)
.

When q = 0 this map gives p-forms on the Kontsevich moduli stack. This,
in turn, gives p-forms on a desingularization of the coarse moduli space of
the stack. This follows by a more general result, Proposition 3.6, which is
the main result of this section: Let k be a field (not necessarily algebraically
closed, nor of characteristic 0), and let M be a finite type Deligne-Mumford
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stack over k. IfM is tame and if the coarse moduli space M is smooth, then
every p-form on M is the pullback of a unique p-form on M (up to torsion).

The proof uses trace maps for proper morphisms, f : Y → Z, where Z is
normal and f is étale on a dense open subset of Y ,

Trpf : f∗(Ω
p
Y )→ (ΩpZ)∨∨.

3.1. If f is finite étale. Let f : Y → Z be a morphism of schemes
and let F be a coherent sheaf on Z. There is a morphism of OZ-modules,
f∗OY ⊗OZF → f∗f

∗F . If f is finite and f∗OY is a locally freeOZ-module, this
morphism is an isomorphism. Also, there is a trace map Trf : f∗OY → OZ
defined in the usual way. Therefore, there is a trace map Trf : f∗f∗F → F .

Let f : Y → Z be a finite étale k-morphism of finite type k-schemes.
For each integer p ≥ 0, the pullback map (df)† : f∗ΩpZ/k → ΩpY/k is an
isomorphism. Combined with the trace map from the last paragraph, we get
a map satisfying the following properties.

Lemma 3.1. Let f : Y → Z be a finite étale k-morphism of finite type
k-schemes. Denote by n the degree of f . For each integer p ≥ 0 there ex-
ists a unique morphism of OZ-modules, Trpf : f∗Ω

p
Y/k → ΩpZ/k satisfying the

following properties.
(i) For p = 0, Tr0

f : f∗OY → OZ is the usual trace map.
(ii) For every open subset U ⊂ Z, for every pair of integers, p, p′ ≥

0, for every section σ ∈ H0(U,ΩpZ/k), and for every section τ ∈
H0(f−1(U),Ωp

′

Y/k),

Trp+p
′

f f∗(f∗σ ∧ τ) = σ ∧ Trp
′

f (f∗τ).

Moreover, the following properties hold.
(iii) For every integer p and every section τ ∈ H0(Y,ΩpY/k),

Trp+1
f (f∗dτ) = d(Trpf (f∗τ)).

(iv) Let Z ′ be a finite type k-scheme and let g : Z ′ → Z be a morphism
of k-schemes. Denote by Y ′ the fiber product Z ′×Z Y , and denote by
f ′ : Y ′ → Z ′ and g′ : Y ′ → Y the projection morphisms. For each
integer p ≥ 0, there is a commutative diagram of OZ′-modules.

g∗f∗Ω
p
Y/k

g∗Trpf−−−−→ g∗ΩpZ/k
(dg)†−−−−→ ΩpZ′/k

∼=
y y=

(f ′)∗(g′)∗Ω
p
Y/k

(f ′)∗(dg
′)†−−−−−−−→ (f ′)∗Ω

p
Y ′/k

Trp
f′−−−−→ ΩpZ′/k

(v) Let h : X → Y be a finite étale morphism. Then for each integer
p ≥ 0, Trpf◦h = Trpf ◦ f∗Trph.
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3.2. If f is proper and generically étale. Let f : Y → Z be a proper
k-morphism of finite type k-schemes. Suppose that Z is connected and geo-
metrically normal, and suppose that there is a dense open subset of Y on which
f is étale. Denote by Zsmooth ⊂ Z the maximal open subscheme that is smooth
over k. Then there exists an open subset U ⊂ Zsmooth, dense in Z, such that
V = f−1(U) is dense in Y and such that f |V : V → U is finite étale. By
Lemma 3.1, for each p ≥ 0, there is a trace map Trpf |V : (f |V )∗Ω

p
V/k → ΩpU/k.

Definition 3.2. A trace map is a morphism ofOZ-modules, Trpf : f∗Ω
p
Y →

(ΩpZ)∨∨, whose restriction to U equals Trpf |V .

It is straightforward to check that, if a trace map exists, it is unique and
it is independent of the choice of U .

Proposition 3.3. Let Z be a finite type k-scheme that is connected and
geometrically normal. Let f : Y → Z be a proper morphism that is étale on
a dense open subset of Y . For each integer p ≥ 0, there exists a trace map
Trpf : f∗Ω

p
Y/k → (ΩpZ/k)∨∨.

Proof. Denote by i : U → Z the open immersion. The morphism Trf |V de-
termines a morphism of OZ-modules, i∗Trpf |V : f∗Ω

p
Y/k → i∗i

∗ΩpZ/k. Because
U ⊂ Zsmooth, i∗ΩpZ/k = i∗(ΩpZ/k)∨∨. Therefore there is a injective morphism
of OZ-modules, (ΩpZ/k)∨∨ → i∗i

∗ΩpZ/k. The proposition exactly says that the
image of i∗Trpf |V is contained in (ΩpZ/k)∨∨. By hypothesis, Z is normal. And
(ΩpZ/k)∨∨ is reflexive. Therefore, (ΩpZ/k)∨∨ is the intersection (in i∗i∗Ω

p
Z/k) of

its localization at every codimension 1 point. Thus it suffices to check that
for every codimension 1 point η ∈ Z−U , the image of i∗Trpf |V is contained in
the localization of (ΩpZ/k)∨∨ at η.

The image of i∗Trpf |V does not change if we replace Y by the disjoint union
of the irreducible components of Y , with the induced reduced scheme struc-
ture. Therefore assume that Y is reduced and every connected component of
Y is irreducible. The morphism f is finite on an open subset of Z whose com-
plement has codimension ≥ 2. Thus there exists an open affine W ⊂ Zsmooth

such that η ∈ W and such that f |W : f−1(W ) → W is finite. Denote
A = H0(W,OZ) and denote B = H0(f−1(W ),OY ). By [19], the image of
ΩpB/k under i∗Trpf |V is contained in ΩpA/k (Zannier only proves this when Y

is connected, but the generalization here follows trivially). In particular, the
image of i∗Trpf |V is contained in the localization of (ΩpZ/k)∨∨ at η. �

Remark 3.4. For each integer p ≥ 0, there is a generic trace map

(Tr⊗pf )gen : f∗(Ω1
Y/k)⊗p → (Ω1

Z/k)⊗p ⊗OZ K(Z).
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By the proposition, when restricted to the submodule corresponding to an
exterior power, the generic trace map factors through (ΩpZ)∨∨. One might
hope that the entire generic trace map factors through the reflexive hull of
(Ω1

Z)⊗p. This is true, for instance, if f : Y → Z is étale away from codimension
2. But typically this is not the case: Consider the morphism f : A1

k → A
1
k

which pulls back a coordinate t on the target to u2, the square of a coordinate
u on the domain. Then the generic trace of du⊗ du is 1

4tdt⊗ dt.

Lemma 3.5. Let Z be a finite type k-scheme that is connected and geo-
metrically normal. Let f : Y → Z be a proper morphism that is étale on a
dense open subset of Y . The trace maps Trpf satisfy the following properties.

(i) For p = 0, Tr0
f : f∗OY → OZ is the usual trace map.

(ii) For every pair of integers, p, p′ ≥ 0, for every section σ ∈ H0(Z,ΩpZ),
and for every section τ ∈ H0(Y,ΩqY ),

Trp+p
′

f f∗(f∗σ ∧ τ) = σ ∧ Trp
′

f (f∗τ).

(iii) For every integer p and every section τ ∈ H0(Y,ΩpY/k),

Trp+1
f (f∗dτ) = d(Trpf (f∗τ)).

(iv) Let Z ′ be a finite type k-scheme that is connected and geometrically
normal. Let g : Z ′ → Z be a morphism of k-schemes such that g−1(U)
is dense in Z ′. Denote by Y ′ the closure in Z ′ ×Z Y of the inverse
image of g−1(U). And denote by f ′ : Y ′ → Z ′ and g′ : Y ′ → Y the
projection morphisms. For each integer p ≥ 0, there is a commutative
diagram of OZ′-modules.

g∗f∗Ω
p
Y/k

g∗Trpf−−−−→ g∗ΩpZ/k
(dg)†−−−−→ ΩpZ′/ky y=

(f ′)∗(g′)∗Ω
p
Y/k

(f ′)∗(dg
′)†−−−−−−−→ (f ′)∗Ω

p
Y ′/k

Trp
f′−−−−→ ΩpZ′/k

(v) Let h : X → Y be a proper morphism. Suppose that Y is normal and
h is étale on a dense open subset of X. Then f ◦h is étale on a dense
open subset of X, and for each integer p ≥ 0, Trpf◦h = Trpf ◦ f∗Trph.

3.3. Descent for p-forms on a stack. Let k be a field (not necessarily
algebraically closed nor of characteristic 0). Let M be a finite type Deligne-
Mumford stack over k. Recall from [1] thatM is tame if the stabilizer group of
every geometric point ofM has order prime to char(k). Recall from [15] that
there exists a coarse moduli space, M , for M, and M is an algebraic space
of finite type over k. Suppose that M is tame, irreducible, and generically
reduced and that M is a geometrically normal k-scheme.
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Denote by c : M → M the morphism of M to the coarse moduli space.
Let U ⊂M be the maximal open subscheme over which c is smooth. Then for
every p, the pullback map H0(U,ΩpM/k) → H0(c−1(U),ΩpM/k) is an isomor-
phism. It is not true that the pullback map over all of M is an isomorphism,
even modulo torsion. For instance, let char(k) 6= 2, consider A2

k with coor-
dinates x, y, let Γ be the cyclic group of order 2, and let Γ act on A2

k by
x 7→ −x, y 7→ −y. Let M be the quotient stack [A2

k/Γ]. Then the 2-form
dx ∧ dy is Γ-invariant and thus gives rise to a global section of Ω2

M/k. But
this 2-form is not the pullback of any global section of Ω2

M/k.
A slightly weaker result is true, and will be proved in Proposition 3.6. This

result is good enough for our application. First we explain the result, then
we prove it. If M is tame, irreducible and generically reduced and if M is a
geometrically normal k-scheme, then for each integer p ≥ 0 there is a k-linear
map,

c∗ : H0(M, (ΩpM/k)free)→ H0(M, (ΩpM/k)∨∨).

Here, for a coherent sheaf F , the notation (F)free denotes the maximal torsion-
free quotient, i.e., the image of the sheaf map F → F ⊗OM K(M). There is
also a generic pullback map,

c∗gen : H0(M, (ΩpM/k)∨∨)→ H0(M, (ΩpM/k)free ⊗OM K(M)).

And the composition c∗gen ◦ c∗ equals the obvious inclusion map.
Let N be a finite type k-scheme that is geometrically normal. Let g : N →

M be a k-morphism such that g−1(U) is dense. There is a generic pullback
map,

g∗gen : H0(M, (ΩpM/k)∨∨)→ H0(N, (ΩpN/k)∨∨ ⊗ON K(N)).

In fact the image of g∗genc∗ is contained in the image of H0(N, (ΩpN/k)∨∨).

Proposition 3.6. Let k be a field (not necessarily algebraically closed
nor of characteristic 0), and let M be a finite type Deligne-Mumford stack.
Suppose that M is tame, irreducible, and generically reduced, and that the
coarse moduli space M is a k-scheme that is geometrically normal. For each
integer p ≥ 0, there is a k-linear map,

c∗ : H0(M, (ΩpM/k)free)→ H0(M, (ΩpM/k)∨∨),

whose composition with the generic pullback map, c∗gen, is the obvious inclusion
map. Moreover, for every finite type k-scheme N , and for every k-morphism
g : N → M , if N is geometrically normal and if g−1(U) ⊂ N is dense, then
the image of g∗genc∗ is contained in the image of H0(N, (ΩpN/k)∨∨).

Proof. If there exists a map c∗ such that c∗genc∗ is the inclusion map, then
c∗ is unique. Thus we may prove that c∗ exists after étale base change of M :
the uniqueness of c∗ guarantees the cocycle condition for étale descent.

By [1, Lem. 2.2.3], there exists an étale covering {Mi →M} such that
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(i) each base change Mi ×MM is a finite quotient stack [Ui/Γi],
(ii) each Ui is a scheme finite over Mi,
(iii) each Γi is a finite group whose order is prime to char(k),
(iv) Γi acts on Ui by Mi-morphisms, and
(v) the quotient Mi-scheme Ui//Γi equals Mi.

Thus, without loss of generality, assume thatM = [U/Γ] where U is a scheme
finite over M and where Γ is a group whose order is prime to char(k) acting
on U by M -morphisms.

Denote by h : U →M the morphism above. By Proposition 3.3, there is a
morphism

Trph : H0(U, (ΩpU/k)free)→ H0(M, (ΩpM/k)∨∨).

The global sections of (ΩpM/k)free are precisely the Γ-invariant global sections
of (ΩpU/k)free. So there is an induced morphism

(Trph)Γ : H0(M, (ΩpM/k)free)→ H0(M, (ΩpM/k)∨∨).

It is straightforward to check that 1
|Γ| (Trph)Γ satisfies the condition for c∗.

Consider g∗genc∗. Denote by N the fiber product N ×M M. Denote by
c′ : N → N and g′ : N → M the projection morphisms. Then (c′)∗geng

∗
genc∗

equals (g′)∗c∗genc∗. And this equals (c′)∗gen(c′)∗(g′)∗. Since (c′)∗gen is injective,
g∗genc∗ = (c′)∗(g′)∗. In particular, the image is contained in H0(N, (ΩpN/k)∨∨).

�

4. Construction of the 2-form

Let k be a field (not necessarily algebraically closed, nor of characteristic
0). Let M be a finite type Deligne-Mumford stack over k and let p : C →M
be a representable 1-morphism of Deligne-Mumford stacks such that

(i) p is proper and flat of relative dimension 1, and
(ii) every geometric fiber of p is a reduced, at-worst-nodal curve,

i.e., p : C → M is a semi-stable family of curves. There is a canonical
morphism from the sheaf of relative Kähler differentials to the dualizing sheaf
Ω1
p → ωp. This is an isomorphism on the open substack U ⊂ C which is

the smooth locus of p. For each integer i ≥ 0, this isomorphism induces a
morphism of OU -modules,

φU,i : Ωi+1
C/k|U → (Ωi+1

C/k/p
∗Ωi+1
M/k)|U ∼= p∗ΩiM/k ⊗ ωp|U .

This morphism has the property that for every section α ∈ ΩiM/k and β ∈
ΩjC/k, φU,i+j(p∗α ∧ β) = p∗α ∧ φU,j(β).

Lemma 4.1. For each integer i ≥ 0 there exists a unique morphism of
OC-modules, φi : Ωi+1

C/k → p∗ΩiM/k ⊗OC ωp, such that φi|U = φU,i and such

that for every section α ∈ ΩiM/k and β ∈ ΩjC/k, φi+j(p∗α ∧ β) = p∗α ∧ φj(β).
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Proof. If φi exists, then by construction it annihilates p∗Ωi+1
M , i.e., it factors

through the quotient. The quotient has a canonical subsheaf isomorphic to
p∗ΩiM ⊗ Ω1

p with an obvious map to p∗ΩiM ⊗ ωp. The lemma claims this
map extends to the entire quotient. It also claims the extension is unique.
Uniqueness is straightforward: the cokernel of p∗ΩiM ⊗ Ω1

p is a sheaf that is
torsion on fibers, whereas the sheaf p∗ΩiM ⊗ ωp is torsion-free on fibers. So
there is no nonzero map from the cokernel to p∗ΩiM ⊗ ωp, i.e., if the map
extends, then the extension is unique. The extension problem is equivalent to
the vanishing of a section of a sheaf Ext. This vanishing can be checked after
passing to the completion of the local ring at each geometric closed point of
C, i.e., it suffices to check that the sheaf map extends formally locally at each
geometric closed point of C.

Since the property can be checked formally locally, without loss of gener-
ality assume that M is a scheme. Let z ∈ C be a closed point. Denoting
A = ÔM,p(z) and B = ÔC,z, there is an isomorphism

B ∼= A[[x, y]]/〈xy − a〉.
for some element a ∈ A. By Remark 4.4, the base change of φU,i does extend
to a map φi ⊗OC B as required. �

Corollary 4.2. For each pair of integers, i, j ≥ 0, there is a k-linear
map,

Hj+1(C,Ωi+1
C/k)→ Hj(M,ΩiM/k).

Proof. The morphism φi induces a k-linear map,

Hj+1(C,Ωi+1
C/k)→ Hj+1(C, p∗ΩiM/k ⊗ ωp).

Associated to the morphism p, there is a Leray spectral sequence for the target
vector space. Because Rlp∗(p∗ΩiM/k⊗ωp) = ΩiM/k⊗R

lp∗ωp is zero for l ≥ 2,
there is an abutment map,

Hj+1(C, p∗ΩiM/k ⊗ ωp)→ Hj(M,ΩiM/k ⊗R
1p∗ωp).

And there is a trace isomorphism R1p∗ωp
∼=−→ OM. Composing these maps

gives the k-linear map,

Hj+1(C,Ωi+1
C/k)→ Hj(M,ΩiM/k). �

Assume that char(k) = 0. Let X be a quasi-projective k-scheme and let
Mg,r(X, e) be the Kontsevich moduli space of stable maps from r-pointed
curves of arithmetic genus g to X of degree e. There is a universal curve p :
C → Mg,r(X, e) satisfying the hypotheses above. And there is an evaluation
morphism ev : C → X. For each pair of integers, i, j ≥ 0, there is a pullback
morphism

ev∗ : Hj+1(X,Ωi+1
X/k)→ Hj+1(C,Ωi+1

C/k).
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Composing with the k-linear map from Corollary 4.2 gives the following result.

Corollary 4.3. For each pair of integers i, j ≥ 0, there is an “integration
along fibers” morphism,

Hj+1(X,Ωi+1
X/k)→ Hj(Mg,r(X, e),ΩiMg,r(X,e)/k

).

In particular, suppose X is the smooth locus of a cubic hypersurface in
P

4. As will be recalled in the next section, the Griffiths residue calculus gives
a canonical map from a 1-dimensional k-vector space to H1(X,Ω3

X/k). If X
is projective, this map is an isomorphism of k-vector spaces. Using the map
above, for each integer e > 0, this gives a global section ωe of Ω2 on the
stack Me parametrizing stable maps from curves of arithmetic genus 0 to X
of degree e. The section ωe is well-defined up to non-zero scalar. This is the
object of study in the rest of the article.

Remark 4.4. Let A be a ring and let B = A[x, y]/(xy−a) for some a ∈ A.
Consider the canonical exact sequence

0→ Ω1
A ⊗B → Ω1

B → Ω1
B/A → 0.

Exactness on the left follows as B is a complete intersection flat over A whose
cotangent complex LB/A is quasi-isomorphic to Ω1

B/A. Moreover, the relative
dualizing sheaf is the determinant of LB/A (which is perfect of amplitude
[−1, 0]). So, the relative dualizing module ωB/A is free with generator

θ =
dx ∧ d y
xy − a

.

and there is a canonical B-module homomorphism

Ω1
B/A −→ ωB/A

which is determined by the rules dx 7→ xθ and d y 7→ −yθ. From this we will
define maps

ΩiB → Ωi−1
A ⊗A ωB/A.

Namely, any element in ΩiB can be written as a B-linear combination of forms
of the type η, η ∧ dx, η ∧ d y and η ∧ dx ∧ d y, where η is in ΩjA, with j = i,
i− 1, or i− 2. We claim there exists a map as above such that

η 7→ 0, η∧dx 7→ η⊗xθ, η∧d y 7→ −η⊗ yθ, η∧dx∧d y 7→ −η∧d a⊗ θ.

The reader easily verifies that this is well defined (the main concern being
that forms of the type η∧ (y dx+xd y−d a) and η∧ (y dx+xd y−d a)∧dx
get mapped to zero).
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5. Explicit description of the 2-form

Let k be a field of characteristic 0 and let X be a quasi-projective k-scheme.
As in the last section, for each pair of integers, i, j ≥ 0, there is k-linear map
Hj+1(X,Ωi+1

X/k) → Hj(Mg,r(X, e),ΩiMg,r(X,e)/k
). When j = 0, this gives

global sections of Ωi. Let z ∈ M be a geometric closed point, and consider
the fiber of this section at z. The goal of this section is to describe the fiber
of the section in terms of the local geometry of the associated stable map
f : C → X, i.e., in terms of the pullback of the tangent bundle of X, etc. In
the special case that X is the smooth locus of a cubic hypersurface in P4 and
g = 0, we give an explicit description of the fiber of this section.

5.1. Explicit description of H1(X,Ω3
X). First we recall a small part of

the Griffiths residue calculus [8, Section 8]. This is also discussed very briefly
in [18, Section 0]. Let X ⊂ Pn be a hypersurface of degree d, and let U ⊂ X
be the smooth locus. The cotangent sequence is

0 −−−−→ OU (−d) −−−−→ Ω1
Pn
|U −−−−→ Ω1

U −−−−→ 0.

Taking the exterior power of this sequence, and twisting by OX(d)|U , gives
an exact sequence,

0 −−−−→ Ωn−2
U −−−−→ Ωn−1

Pn
|U ⊗OU (d) −−−−→ Ωn

Pn
|U ⊗OU (2d) −−−−→ 0.

(This also follows by taking the dual of the first exact sequence and twisting
by Ωn

Pn
|U ⊗ OU (d).) The connecting homomorphism in cohomology gives a

map,
H0(Pn,Ωn

Pn ⊗OPn(2d))→ H1(U,Ωn−2
U ).

In the special case of a cubic fourfold, there is an exact sequence,
(1)

0 −−−−→ Ω3
U −−−−→ Ω4

P5 |U ⊗OU (3) −−−−→ Ω5
P5 |U ⊗OU (6) −−−−→ 0.

Of course Ω5
P5 ⊗OP5(6) ∼= OP5 . Thus the connecting homomorphism,

H0(P5,Ω5
P5 ⊗OP5(6))→ H1(U,Ω3

U ),

is a map from a 1-dimensional vector space to H1(U,Ω3
U ). If U = X, this

map is an isomorphism. Choose a nonzero element in H0(P5,Ω5
P5 ⊗OP5(6)),

and define ωpre
e to be the image of this element in H1(U,Ω3

U ). Define ωe ∈
H0(Me,Ω2

Me/k
) to be the global section associated to ωpre

e .

5.2. The explicit description. Let f : C → X be a point of Me ⊂Me.
Assume that C ∼= P

1 is smooth and that f is a regular embedding into the
smooth locus U ⊂ X. Consider the sequence of vector bundles over C given
by the normal bundle NC/X of C in X mapping to the normal bundle NC/P5

of C in P5,

(2) 0 −−−−→ NC/X −−−−→ NC/P5 −−−−→ f∗NX/P5 −−−−→ 0.
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Of course NX/P5 ∼= OX(3), so that f∗NX/P5 ∼= OC(3e), where the notation
OC(a) indicates any invertible sheaf of degree a on C. In particular, observe
that

∧3
NC/X = OC(3e − 2) and that

∧4
NC/P5 = OC(6e − 2). The Zariski

tangent space T[f ](Me), which is the same thing as the dual vector space of
the fiber Ω1

Me
|[f ], is given by the space of global sections H0(C,NC/X) (cf.

[16, Theorem I.2.8]). So the fiber Ω2
Me
|[f ] is just the vector space dual of∧2

H0(C,NC/X). And the 2-form ωe gives a procedure to associate to any
two sections of NC/X a complex number.

Next consider the exact sequence
(3)

0 −→
∧3

NC/X ⊗OC(−3e) −→
∧3

NC/P5 ⊗OC(−3e) −→
∧2

NC/X −→ 0.

This sequence is obtained from Equation (2) by taking exterior powers and
twisting by OC(−3e). In any case, the sheaf on the left is OC(−2) by what
was said above. Choose an isomorphism H1(C,OC(−2)) = C, and let

δ : H0(C,
∧2

NC/X)→ H1(C,
∧3

NC/X ⊗OC(−3)) = H1(C,O(−2)) = C,

be the boundary map on cohomology coming from the exact sequence above.
This is another procedure which associates to any two sections of NC/X a
complex number. In the following theorem we prove that the two procedures
agree. The best argument for this is the usual one: What else could it be?
The actual proof is even more annoying.

Theorem 5.1. Up to a nonzero scalar factor the pairing associated to ωe
on T[f ](Me) = H0

(
C,NC/X

)
is equal to the pairing (s1, s2) 7→ δ(s1 ∧ s2).

Proof. Observe that the construction of Section 4 is compatible with ar-
bitrary base change of the stack M. To prove the theorem, perform a base
change to the Artin local ring Z = SpecA which is the base of the universal
first order deformation of C ⊂ X, say C ⊂ Z ×X. The construction of Sec-
tion 4 restricts the exact sequence from Equation (1) to C and then pushes-out
the sequence by the map

f∗
(
Ω3
X

)
→ Ω3

C → p∗
(
Ω2
Z

)
⊗ ωC/Z .

Then the construction takes the cohomology of the resulting sequence to ob-
tain the 2-form ωe. By a diagram chase, the resulting sequence is simply
the “Serre dual” of the sequence from Equation (3) from which the theorem
follows.

First consider the universal first order deformation of C ⊂ X. By Serre
duality the vector space V = H1

(
C, I/I2 ⊗ ωC

)
is dual to H0

(
C,NC/X

)
.

Here I is the ideal sheaf of C in X. Consider the local Artin k-algebra,
A = k ⊕ V , where V ⊂ A is an ideal of square zero. Set Z = SpecA. Denote
by C → Z the universal first order deformation of C. Let s1, . . . , sA be an
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ordered basis for H0
(
C,NC/X

)
and let t1, . . . , tA in V be the dual ordered

basis. The elements s1, . . . , sA are canonically identified with OC-linear maps
I/I2 → OC . Let p ∈ C be a point, let U ⊂ X be an open affine subset
containing p, and let g1, g2, g3 be generators for H0(U, I) as an H0(U,OX)-
module. Then the ideal of C is locally generated by the equations

g̃j := gj +
A∑
i=1

ti · si(fj), j = 1, 2, 3,

g̃j ∈ OX [t1, . . . , tA]/〈titi′ , tigj , gjgj′ |i, i′ = 1, . . . , A, j, j′ = 1, 2, 3〉.

Denote by p : C → Z and f̃ : C → X the two projections.
To prove the theorem, we compute the 2-form on Z obtained from the

construction of Section 4 applied to (p : C → Z, f̃ : C → X). This is not as
crazy as it sounds; namely Ω2

A/k⊗Ak = ∧2V , so this computation will provide
the necessary information.

To compute f̃∗η, form the pullback by f̃∗ of the exact sequence from Equa-
tion (1). Considered as an element of the Yoneda-Ext group Ext1

C(OC ,Ω3
C),

the element f̃∗η is simply the push-out of this exact sequence by the canonical
map f̃∗

(
Ω3
X

)
→ Ω3

C . According to Section 4, take the image of f∗η under the
map

Ext1
C(OC ,Ω3

C)→ Ext1
C(OC , p∗

(
Ω2
Z

)
⊗ ωC/Z).

In terms of Yoneda-Ext, take an additional push-out of the exact sequence
by Ω3

C → p∗
(
Ω2
Z

)
⊗ ωC/Z . So, in terms of Yoneda-Ext, the exact sequence is

obtained as the push-out of the pullback of Equation (1) by the map f̃∗Ω3
X →

p∗
(
Ω2
Z

)
⊗ ωC/Z .

Of course it is only necessary to compute the restriction of this exact se-
quence to the closed fiber, so restrict the push-out exact sequence to the closed
fiber. In particular, the restriction to the closed fiber of p∗

(
Ω2
Z

)
⊗ ωC/Z is∧2

V ⊗k Ω1
C . The next step is an explicit local description of the map

ψ : Ω3
X |C →

2∧
V ⊗k Ω1

C .

Let t be a regular function on X restricting to a local coordinate on C. Any
local 3-form on X is an OX -linear combination of the forms εjj′ = d fj∧d fj′∧
d t, 1 ≤ j < j′ ≤ 3, and the form d f1 ∧ d f2 ∧ d f3. So it suffices to evaluate ψ
on these 3-forms. The result is

ψ(ηjj′) =
A∑

i,i′=1

si(fj)si′(fj′)ti ∧ ti′ ⊗ dt, 1 ≤ j < j′ ≤ 3,(4)

ψ(df1 ∧ df2 ∧ df3) = 0.(5)
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Of course there is a more “global” way of thinking about ψ. The exact
sequence

(6) 0 −−−−→ I/I2 −−−−→ Ω1
X |C −−−−→ Ω1

C −−−−→ 0

determines a canonical map α : Ω3
X |C →

∧2
I/I2 ⊗OC Ω1

C . And there is a
map of OC-modules β : I/I2 → V ⊗k OC defined as the transpose of the
map H0

(
C,NC/X

)
⊗k OC → NC/X . The global description of ψ is as the

composition of α with
∧2

β ⊗ IdΩ1
C
.

Just as the exact sequence in Equation (6) induces the map α, also the
exact sequence

(7) 0 −−−−→ Ĩ/Ĩ2 −−−−→ Ω1
P5 |C −−−−→ Ω1

C −−−−→ 0

induces a map α′ : Ω4
P5 |C →

∧3
Ĩ/Ĩ2 ⊗ Ω1

C where Ĩ is the ideal sheaf of C
in P5. By adjunction, there are isomorphisms Ω5

P5 |C ⊗ OC(3e) ∼= Ω4
X |C and

Ω4
X |C ∼=

∧3
I/I2 ⊗ Ω1

C . Combining these adjunction isomorphisms gives an
isomorphism,

α′′ : Ω5
P5 |C ⊗OC(6e)→

3∧
I/I2 ⊗OC(3e)⊗ Ω1

C .

Both terms in this map are isomorphic to OC . Choosing such isomorphisms,
α′′ is just an isomorphism of OC to itself.

We leave it to the reader to verify that the following diagram commutes:
(8)
0 −−−−→ Ω3

X |C −−−−→ Ω4
P5 |C(3e) −−−−→ OC −−−−→ 0

α

y α′

y α′′

y
0 −−−−→

∧2
I/I2 ⊗ Ω1

C −−−−→
∧3

Ĩ/Ĩ2(3e)⊗ Ω1
C −−−−→ OC −−−−→ 0.

The top exact sequence is the restriction to C of Equation (1), and the bottom
exact sequence is the dual of Equation (3) tensored with Ω1

C . More canonically,
the last term in the top sequence is Ω5

P5 |C(6e) and the last term in the bottom
sequence is

∧3
I/I2(3e) ⊗ Ω1

C . The diagram follows using the isomorphisms
of these sheaves with OC from the last paragraph.

The conclusion is that the extension ofOC by ∧2V ⊗kΩ1
C obtained from f̃∗η

is precisely the Serre dual exact sequence of Equation (3) used to define the
coboundary map δ. Hence the coboundary map on cohomology H0(C,OC)→
H1(C,

∧2
I/I2 ⊗ Ω1

C) is the dual of δ. �

6. Proof of Theorem 1.2: degree five case

The strategy of the proof of Theorem 1.2 is the following. Form the P55

parametrizing all cubic hypersurfaces in P5. Let Ue → P
55 be the Deligne-

Mumford stack over P55 parametrizing pairs ([X], [C]) of a cubic hypersurface
X ⊂ P5 and a smooth rational curve C ⊂ X of degree e such that X is smooth
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along C and such that H1(C,NC/X) is zero (i.e., C ⊂ X is unobstructed).
The last condition guarantees that Ue → P

55 is a smooth morphism. Also, by
Proposition 2.4, a general fiber of Ue → P

55 is irreducible. In particular, Ue
is also irreducible.

There is a straightforward generalization of the construction of Section 4
to the relative setting. This produces (locally over P55) a 2-form ωe that is
a global section of Ω2

Ue/P55 such that the restriction of ωe to any fiber is the
2-form of the fiber constructed in Section 4. The rank of ωe on fibers is a
lower semicontinuous function on Ue, so to prove that the rank of ωe is the
maximum possible for a general pair ([X], [C]), it suffices to find a single pair
([X], [C]) ∈ Ue where the rank of ωe is the maximum possible.

Let

0 −→ O(a1)⊕O(a2)⊕O(a3) −→ NC/P5 −→ O(3e) −→ 0

be the usual exact sequence, where a1 + a2 + a3 = 3e − 2. In other words,
NC/X =

⊕
O(ai). The extension class of this sequence is an element ψ of

H1(P1,O(a1 − 3e) ⊕ O(a2 − 3e) ⊕ O(a3 − 3e)). Write P1 = Proj(S), where
S = C[X0, X1]. Then, using Serre duality, ψ equals ψ1 ⊕ ψ2 ⊕ ψ3 for ψi ∈
Hom(S3e−ai−2,C). Writing elements of H0(C,NC/X) in the form (g1, g2, g3)
for gi ∈ H0(C,O(ai)), then the pairing takes the following form:〈 g1

g2

g3

 ,

 h1

h2

h3

〉 = ψ3(g1h2 − g2h1) +ψ2(g1h3 − g3h1) +ψ1(g2h3 − g3h2).

To compute the pairing for a given curve, we have to find the linear functionals
ψ1, ψ2, ψ3 above. For large e this reduces to a rather involved computation.
We will present this computation later, but first we show that in the special
case e = 5 there is a short solution (which will hopefully motivate the reader
to brave the computations of the next two sections).

Theorem 6.1. Let f : C → X be a general quintic rational curve on a
general cubic fourfold X. Then NC/X = O(4)⊕O(4)⊕O(5) and the extension
class ψ of the sequence 0→ NC/X → NC/P5 → O(15)→ 0 is a general point
of the space Hom(S9 ⊕ S9 ⊕ S8,C).

Proof. Fix a rational normal curve C ⊂ P5 of degree 5. Its normal bun-
dle NC/P5 is O(7)⊕4. Thus any (not necessarily smooth) cubic fourfold X
containing C determines a homomorphism of OC-modules

ϕX : O(7)⊕4 → O(15).

Note that ϕX = 0 if and only if X is singular along C, which happens if
and only if the defining equation of X is a section of I2(3). The following
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computations are left to the reader:

dimH0(P5, I(3)) = 40, dimH0(P5, I2(3)) = 4,

dim HomC(O(7)4,O(15)) = 36.

Thus the rule X 7→ ϕX is onto. Hence a general exact sequence of the form
0→ Ker(α)→ O(7)4−α→ O(15)→ 0 occurs as the normal bundle sequence
for a general (nonsingular) X. The theorem follows. �

To finish, choose ψi as follows:

ψ1

(∑9

i=0
aiX

9−i
0 Xi

1

)
=

9∑
i=0

νiai,

ψ1

(
9∑
i=0

aiX
9−i
0 Xi

1

)
=

9∑
i=0

µiai,

ψ1

(
8∑
i=0

aiX
8−i
0 Xi

1

)
=

8∑
i=0

λiai.

Choose νi, µi and λi general. Form the matrix of the pairing with respect to
the obvious basis of H0(P1,O(4)⊕O(4)⊕O(5)). The computation gives:

0 0 0 0 0 λ0 λ1 λ2 λ3 λ4 µ0 µ1 µ2 µ3 µ4 µ5

0 0 0 0 0 λ1 λ2 λ3 λ4 λ5 µ1 µ2 µ3 µ4 µ5 µ6

0 0 0 0 0 λ2 λ3 λ4 λ5 λ6 µ2 µ3 µ4 µ5 µ6 µ7

0 0 0 0 0 λ3 λ4 λ5 λ6 λ7 µ3 µ4 µ5 µ6 µ7 µ8

0 0 0 0 0 λ4 λ5 λ6 λ7 λ8 µ4 µ5 µ6 µ7 µ8 µ9

−λ0 −λ1 −λ2 −λ3 −λ4 0 0 0 0 0 ν0 ν1 ν2 ν3 ν4 ν5

−λ1 −λ2 −λ3 −λ4 −λ5 0 0 0 0 0 ν1 ν2 ν3 ν4 ν5 ν6

−λ2 −λ3 −λ4 −λ5 −λ6 0 0 0 0 0 ν2 ν3 ν4 ν5 ν6 ν7

−λ3 −λ4 −λ5 −λ6 −λ7 0 0 0 0 0 ν3 ν4 ν5 ν6 ν7 ν8

−λ4 −λ5 −λ6 −λ7 −λ8 0 0 0 0 0 ν4 ν5 ν6 ν7 ν8 ν9

−µ0 −µ1 −µ2 −µ3 −µ4 −ν0 −ν1 −ν2 −ν3 −ν4 0 0 0 0 0 0
−µ1 −µ2 −µ3 −µ4 −µ5 −ν1 −ν2 −ν3 −ν4 −ν5 0 0 0 0 0 0
−µ2 −µ3 −µ4 −µ5 −µ6 −ν2 −ν3 −ν4 −ν5 −ν6 0 0 0 0 0 0
−µ3 −µ4 −µ5 −µ6 −µ7 −ν3 −ν4 −ν5 −ν6 −ν7 0 0 0 0 0 0
−µ4 −µ5 −µ6 −µ7 −µ8 −ν4 −ν5 −ν6 −ν7 −ν8 0 0 0 0 0 0
−µ5 −µ6 −µ7 −µ8 −µ9 −ν5 −ν6 −ν7 −ν8 −ν9 0 0 0 0 0 0

.

Finally, to complete the proof of Theorem 1.2 for e = 5, consider the
determinant of this matrix. For λ0 = 1, λ1 = 2, λ2 = −1, λ3 = 1, λ4 =
1, λ5 = 1, λ6 = −1, λ7 = −4, λ8 = 2, µ0 = 1, µ1 = 2, µ2 = −1, µ3 = 2, µ4 =
5, µ5 = −1, µ6 = 13, µ7 = −1, µ8 = 1, µ9 = 1, ν0 = 1, ν1 = 2, ν2 = 3, ν3 =
5, ν4 = 4, ν5 = −5, ν6 = −6, ν7 = −7, ν8 = −5, ν9 = 1 the determinant equals
445717799641. Since this is nonzero, Theorem 1.2 is true for e = 5.
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7. Proof of Theorem 1.2

By Section 6, to prove Theorem 1.2 it suffices to determine a certain exten-
sion class ψ. The proof for e = 5 was short because ψ can be chosen to be a
general element of the Ext group. Comparing the dimension of the parameter
space Ue of pairs ([X], [C]) (cf. Section 6) and the dimension of the relevant
Ext group, the Ext group grows more quickly. So, for large e, the extension
class ψ will not be a general element of the Ext group.

Instead we work with a specific pair ([X], [C]) ∈ Ue for which we can prove
the rank of ωe is maximal and h1(C,NC/X) = 0. The reader is warned that
for this pair, X is not smooth! But X is smooth on an open set containing
C, and this is all that matters.

The proof of Theorem 1.2 in the case that e is odd is almost identical to
the proof in the case that e is even. For this reason, most of the argument
is carried out for both cases simultaneously. For each construction, the even
case is specified by a subscript “ε” and the odd case is specified by a subscript
“o”. Arguments that apply verbatim to both cases will not have a subscript
(i.e., if there is no subscript, a true statement is obtained by either applying
the subscript “o” throughout, or by applying the subscript “ε” throughout).
In the odd case, the degree is eo = 2ro + 1 for some integer ro ≥ 2. In the
even case, the degree is eε = 2rε for some integer rε ≥ 3.

7.1. Computation of NC/P5 . We begin by specifying C and computing
NC/P5 . As in the last section, choose homogeneous coordinates X0, X1 on
P

1. Choose homogeneous coordinates Y0, Y1, Y2, Y3, Y4, Y5 on P5. Consider
the maps fo : P1 → P

5, resp. fε : P1 → P
5 given by

fo([X0 : X1]) = [X2ro+1
0 : X2ro

0 X1 : Xro+1
0 Xro

1 :

Xro
0 Xro+1

1 : X0X
2ro
1 : X2ro+1

1 ],

resp.

fε([X0 : X1]) = [X2rε
0 : X2rε−1

0 X1 : Xrε+1
0 Xrε−1

1 :

Xrε−1
0 Xrε+1

1 : X0X
2rε−1
1 : X2rε

1 ].

This is a closed immersion, and local inverses are given by [Y0 : · · · : Y5] 7→
[Y0 : Y1] and [Y0 : · · · : Y5] 7→ [Y4 : Y5] on P5 − V(Y0, Y1) and P5 − V(Y4, Y5)
respectively (the image of C does not intersect V(Y0, Y1, Y4, Y5)). To compute
the normal bundle of C in P5, we use the Euler sequence for TP1 and for TP5 .
There is a map between these Euler sequences induced by fo, resp. fε, and
the important term is

d̃fo : OP1(1)⊕2 → f∗o
(
OP5(1)⊕6

)
= OP1(2ro + 1)⊕6,

resp.
d̃fε : OP1(1)⊕2 → f∗ε

(
OP5(1)⊕6

)
= OP1(2rε)⊕6.
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These maps are given by the matrices

d̃fo =



(2ro + 1)X2ro
0 0

2roX2ro−1
0 X1 X2ro

0

(ro + 1)Xro
0 Xro

1 roX
ro+1
0 Xro−1

1

roX
ro−1
0 Xro+1

1 (ro + 1)Xro
0 Xro

1

X2ro
1 2roX0X

2ro−1
1

0 (2ro + 1)X2ro
1

 ,

resp.

d̃fε =



2rεX2rε−1
0 0

(2rε − 1)X2rε−2
0 X1 X2rε−1

0

(rε + 1)Xrε
0 X

rε−1
1 (rε − 1)Xrε+1

0 Xrε−2
1

(rε − 1)Xrε−2
0 Xrε+1

1 (rε + 1)Xrε−1
0 Xrε

1

X2rε−1
1 (2rε − 1)X0X

2rε−2
1

0 2rεX2rε−1
1

 .

Observe that both matrices have rank 2 at every point of P1. The nor-
mal bundle of C in P5 is the cokernel of d̃fo, resp. d̃fε. To compute this,
consider the sheaf morphism To : OP1(2ro + 1)⊕6 → OP1(3ro + 1)⊕4, resp.
Tε : OP1(2rε)⊕6 → OP1(3rε − 1) ⊕ OP1(3rε) ⊕ OP1(3rε) ⊕ OP1(3rε − 1) given
by the matrices

To =


(ro − 1)Xro

1 −roX0X
ro−1
1 Xro

0

0 Xro
1 −roXro−1

0 X1

0 0 (ro − 1)Xro
1

0 0 0

∣∣∣∣∣∣∣∣ . . .∣∣∣∣∣∣∣∣
0 0 0

(ro − 1)Xro
0 0 0

−roX0X
ro−1
1 Xro

0 0
Xro

1 −roXro−1
0 X1 (ro − 1)Xro

0

 ,
resp.

Tε =


(rε − 2)Xrε−1

1 −(rε − 1)X0X
rε−1
1 Xrε−1

0

0 2Xrε
1 −rεXrε−2

0 X2
1

0 0 Xrε
1

0 0 0

∣∣∣∣∣∣∣∣ . . .∣∣∣∣∣∣∣∣
0 0 0

(rε − 2)Xrε
0 0 0

−rεX2
0X

rε−2
1 2Xrε

0 0
Xrε−1

1 −(rε − 1)Xrε−2
0 X1 (rε − 2)Xrε−1

0

 .
It is straightforward to verify that To ◦ d̃fo is zero, resp. Tε ◦ d̃fε is zero. And
To, resp. Tε, has rank 4 everywhere. Thus To, resp Tε, gives an isomorphism
of NC/P5 with OP1(3ro + 1)⊕4, resp. OP1(3rε − 1) ⊕ OP1(3rε) ⊕ OP1(3rε) ⊕



CUBIC FOURFOLDS 437

OP1(3rε − 1). Each of these isomorphisms is taken to be an identification of
locally free sheaves.

7.2. Computation of NC/X . Next we specify X and compute the normal
bundleNC/X . Observe that the quadric equations Qa = Y1Y4−Y0Y5 andQb =
Y2Y3 − Y0Y5 both vanish on the image of fo, resp. fε. Let La and Lb be any
linear homogeneous polynomials in Y0, . . . , Y5 which are linearly independent
and consider the homogeneous cubic polynomial F = LaQa + LbQb (later
we will specialize to the case that La and Lb are general linear homogeneous
polynomials in Y0 and Y5 alone). For our purposes it is convenient to make
a “change of variables” and define M = La + Lb and No = La + roLb, resp.
Nε = La + (rε − 1)Lb (here we are using that ro 6= 1, resp. rε 6= 2, to see
that La and Lb are uniquely determined by M and No, resp. Nε). Consider
X = {[Y0 : · · · : Y5] ∈ P5|F (Y0, . . . , Y5) = 0}. Observe that X is singular
along the common zero locus of La, Lb, Qa and Qb—which will typically be a
geometrically connected degree 4 curve of arithmetic genus 1.

To determine whether X is smooth along the image of fo, resp. fε, we
need to compute the pullback of the “gradient vector” [ ∂F∂Yi ]i=0,...,5. Define

L̃a = f∗La, L̃b = f∗Lb, M̃ = f∗M and Ñ = f∗N , considered as sections of
H0(P1, f∗OP5(1)) = H0(P1,OP1(5)). The pullback of the gradient vector of
F is the sheaf morphism Uo : OP1(2ro + 1)⊕6 → OP1(6ro + 3), resp. Uε :
OP1(2rε)⊕6 → OP1(6rε) given by

Uo =

[
−X2ro+1

1 (L̃a + L̃b) X0X
2ro
1 L̃a Xro

0 Xro+1
1 L̃b

∣∣∣ . . .∣∣∣ Xro+1
0 Xro

1 L̃b X2ro
0 X1L̃a −X2ro+1

0 (L̃a + L̃b)
]
,

resp.

Uε =

[
−X2rε

1 (L̃a + L̃b) X0X
2rε−1
1 L̃a Xrε−1

0 Xrε+1
1 L̃b

∣∣∣ . . .∣∣∣ Xrε+1
0 Xrε−1

1 L̃b X2rε−1
0 X1L̃a −X2rε

0 (L̃a + L̃b)
]
.

If L̃a and L̃b have no common zeroes and if L̃a + L̃b is nonzero at the points
[1 : 0] and [0 : 1], then these matrices are everywhere nonzero, i.e., X is
smooth along C. From now on, assume this is the case. The matrix U factors
as U = S ◦ T where So : NC/P5 → OP1(6ro + 3), resp. Sε : NC/P5 → OP1(6rε),
are given by the matrices

So =
−1

ro − 1

[
Xro+1

1 M̃ X0X
ro
1 Ño Xro

0 X1Ño Xro+1
0 M̃

]
,

resp.

Sε =
−1

2(rε − 2)

[
2Xrε+1

1 M̃ X0X
rε−1
1 Ñε Xrε−1

0 X1Ñε 2Xrε+1
0 M̃

]
.
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The normal bundle NC/X is the kernel of the sheaf morphism S. To de-
scribe this map, we write out{

Mo = c0,oY0 + c1,oY1 + c2,oY2 + c3,oY3 + c4,oY4 + c5,oY5,
No = d0,oY0 + d1,oY1 + d2,oY2 + d3,oY3 + d4,oY4 + d5,oY5,

resp. {
Mε = c0,εY0 + c1,εY1 + c2,εY2 + c3,εY3 + c4,εY4 + c5,εY5,
Nε = d0,εY0 + d1,εY1 + d2,εY2 + d3,εY3 + d4,εY4 + d5,εY5.

Then we have
M̃o = c0,oX

2ro+1
0 + c1,oX

2ro
0 X1 + c2,oX

ro+1
0 Xro

1

+c3,oXro
0 Xro+1

1 + c4,oX0X
2ro
1 + c5,oX

2ro+1
1 ,

Ño = d0,oX
2ro+1
0 + d1,oX

2ro
0 X1 + d2,oX

ro+1
0 Xro

1

+d3,oX
ro
0 Xro+1

1 + d4,oX0X
2ro
1 + d5,oX

2ro+1
1 ,

resp. 
M̃ε = c0,εX

2rε
0 + c1,εX

2rε−1
0 X1 + c2,εX

rε+1
0 Xrε−1

1

+c3,εXrε−1
0 Xrε+1

1 + c4,εX0X
2rε−1
1 + c5,εX

2rε
1 ,

Ñε = d0,εX
2rε
0 + d1,εX

2rε−1
0 X1 + d2,εX

rε+1
0 Xrε−2

1

+d3,εX
rε−1
0 Xrε+1

1 + d4,εX0X
2rε−1
1 + d5,εX

2rε
1 .

Denote by no, n′o,mo,m
′
o the following expressions:

no = d4,oX
2
0X

ro
1 + d5,oX0X

ro+1
1 ,

n′o = d0,oX
ro+1
0 X1 + d1,oX

ro
0 X2

1 + d2,oX0X
ro+1
1 + d3,oX

ro+2
1 ,

mo = c4,oX0X
ro+1
1 + c5,oX

ro+2
1 ,

m′o = c0,oX
ro+2
0 + c1,oX

ro+1
0 X1 + c2,oX

2
0X

ro
1 + c3,oX0X

ro+1
1 .

Denote by nε, n′ε,mε,m
′
ε the following expressions:

nε = d3,εX0X
rε
1 + d4,εX

2
0X

rε−1
1 + d5,εX0X

rε
1 ,

n′ε = d0,εX
rε
0 X1 + d1,εX

rε−1
0 X2

1 + d2,εX0X
rε
1 ,

mε = 2c4,εX0X
rε+1
1 + 2c5,εXrε+2

1 ,

m′ε = 2c0,εXrε+2
0 + 2c1,εXrε+1

0 X1 + 2c2,εX3
0X

rε−1
1 + 2c3,εX0X

rε+1
1 .

Then X0X1Ño = Xro+1
1 no +Xro+1

0 n′o and M̃o = Xro−1
1 mo +Xro−1

0 m′o, resp.
X0X1Ñε = Xrε+1

1 nε +Xrε+1
0 n′ε and 2M̃ε = Xrε−2

1 mε +Xrε−2
0 m′ε.

Consider the sheaf morphism Ro : OP1(2ro)⊕OP1(2ro+2)⊕OP1(2ro−1)→
NC/P5 , resp. Rε : OP1(2rε − 2)⊕OP1(2rε + 2)⊕OP1(2rε − 2)→ NC/P5 given
by the matrices

Ro =


Xro+1

0 0 no
0 Xro−1

0 −mo

0 −Xro−1
1 −m′o

−Xro+1
1 0 n′o

 ,
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resp.

Rε =


Xrε+1

0 0 nε
0 Xrε−2

0 −mε

0 −Xrε−2
1 −m′ε

−Xrε+1
1 0 n′ε

 .
The composition S ◦ R is zero. The matrix R has rank 3 generically (in
particular, it has rank 3 at [0 : 1] and [1 : 0] by the hypothesis that M̃ is
nonzero at those points). By degree considerations, R has rank 3 everywhere
and gives an isomorphism of OP1(2ro) ⊕ OP1(2ro + 2) ⊕ OP1(2ro − 1), resp.
OP1(2rε − 2)⊕OP1(2rε)⊕OP1(2rε − 2) with the kernel of S, i.e., with NC/X .
In particular, h1(P1, NC/X) = 0, so ([X], [C]) is a point of Ue.

7.3. Initial description of the pairing. In this subsection we begin
the description of the skew-symmetric bilinear pairing on H0(C,NC/X) in-
duced by ωe. We complete the description in the next subsection. Elements
in H0(P1, NC/X) are denoted by (g1, g2, g3) or g1e1 + g2e2 + g3e3 where ei
is the ith column of the matrix R and where g1 ∈ H0(P1,OP1(2ro)), g2 ∈
H0(P1,OP1(2ro + 2)) and g3 ∈ H0(P1,OP1(2ro − 1)), resp. g1 ∈
H0(P1,OP1(2rε−2)), g2 ∈ H0(P1,OP1(2rε+2)) and g3 ∈ H0(P1,OP1(2rε−2)).

By Theorem 5.1, to compute the bilinear pairing ωe on H0(P1, NC/X) it is
equivalent (up to a nonzero scalar) to compute the boundary map

δ : H0(P1,
∧2

NC/X)→ H1(P1,OP1(−2)).

The next term in the long exact sequence of cohomology isH1(P1,OP1(3ro))⊕4,
resp. H1(P1,OP1(3rε−1))⊕2⊕H1(P1,OP1(3rε−2))⊕2, both of which are zero.
Therefore the connecting homomorphism is the cokernel of the map on global
sections

R†o : H0(P1,OP1(3ro))⊕4 → H0(P1,
∧2

NC/X),

resp.

R†ε : H0(P1,OP1(3rε − 1)⊕OP1(3rε − 2)⊕OP1(3rε − 2))⊕OP1(3rε − 1))

−→ H0(P1,
∧2

NC/X),

determined by the sheaf morphism R† : N∨C/P5⊗
∧3

NC/X →
∧2

NC/X that is
adjoint to R. (The adjoint R† = diag(1,−1, 1)◦Rt, where Rt is the transpose
of R.) If we use as “ordered basis” for

∧2
NC/X the elements e2 ∧ e3, e1 ∧ e3

and e1 ∧ e2, then the matrix of R† is

R†o =

 Xro+1
0 0 0 −Xro+1

1

0 −Xro−1
0 Xro−1

1 0
no −mo −m′o n′o

 ,
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resp.

R†ε =

 Xrε+1
0 0 0 −Xrε+1

1

0 −Xrε−2
0 Xrε−2

1 0
nε −mε −m′ε n′ε

 .
In other words, the pairing ωe is given by

[(g1e1 + g2e2 + g3e3), (h1e1 + h2e2 + h3e3)] = (g1h2 − g2h1)e1 ∧ e2

+(g1h3 − g3h1)e1 ∧ e3 + (g2h3 − g3h2)e2 ∧ e3 mod Im(R†).

7.4. The image of the map R†. To compute an explicit formula for the
pairing [·, ·], we need to find the image of R†. First consider the intersection of
H0(P1,OP1(4ro+ 2))e1∧e2 with the image of R†o, resp. H0(P1,OP1(4rε))e1∧
e2 with the image of R†ε . A global section of OP1(3ro)⊕4, resp. OP1(3rε −
1) ⊕ OP1(3rε − 2) ⊕ OP1(3rε − 2) ⊕ OP1(3rε − 1) is mapped under R† into
H0(P1,OP1(4ro+ 2))e1 ∧e2, resp. H0(P1,OP1(4rε))e1 ∧e2 iff it is of the form

vo =


Xro+1

1 po
−Xro−1

1 qo
−Xro−1

0 qo
Xro+1

0 po


for some po ∈ H0(P1,OP1(2ro− 1)) and qo ∈ H0(P1,OP1(2ro + 1)), resp. iff it
is of the form

vε =


Xrε+1

1 pε
−Xrε−2

1 qε
−Xrε−2

0 qε
Xrε+1

0 pε


for some pε ∈ H0(P1,OP1(2rε − 2)) and qε ∈ H0(P1,OP1(2rε)). The image of
such an element is

R†o(vo) = (X0X1Ñopo + M̃oqo)e1 ∧ e2,

resp.
R†ε(vε) = (X0X1Ñεpε + 2M̃εqε)e1 ∧ e2.

There is one last simplification. Assume that c1 = c2 = c3 = c4 = 0 and
d1 = d2 = d3 = d4 = 0, in other words, La and Lb are 2 linearly independent,
linear combinations of Y0 and Y5 and c0, c5, d0 and d5 are all nonzero. Consider
those q such that q = X0X1q

′ for some q′ ∈ H0(P1,OP1(2ro − 1)), resp.
q′ ∈ H0(P1,OP1(2rε − 2)). Then R†o(vo) equals X0X1(Ñopo + M̃oq

′
o), resp.

R†ε(vε) equals X0X1(Ñεpε + 2M̃εqε). Since M̃ and Ñ are linearly independent
elements in the span of X2ro+1

0 and X2ro+1
1 , resp. in the span of X2rε

0 and
X2rε

1 , as p and q′ vary the expression R†(v) varies over the whole linear span
of

X4ro+1
0 X1, . . . , X

2ro+2
0 X2ro

1 , X2ro
0 X2ro+2

1 , . . . , X0X
4ro+1
1 ,
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resp.

X4rε−1
0 X1, . . . , X

2rε+1
0 X2rε−1

1 , X2rε−1
0 X2rε+1

1 , . . . , X0X
4rε−1
1 .

Notice that X4ro+2
0 , X2ro+1

0 X2ro+1
1 and X4ro+2

1 are missing, resp. X4rε
0 ,

X2rε
0 X2rε

1 and X4rε
1 are missing. Taking qo = X2ro+1

0 and qo = X2ro+1
1 gives

c0,oX
4ro+2
0 +c5,oX2ro+1

0 X2ro+1
1 and c0,oX2ro+1

0 X2ro+1
1 +c5,oX4ro+2

1 . And tak-
ing qε = X2rε

0 and qε = X2rε
1 gives c0,εX4rε

0 +c5,εX2rε
0 X2rε

1 and c0,εX2rε
0 X2rε

1 +
c5,εX

4rε
1 . Thus the intersection of H0(P1,OP1(4r+ 2))e1 ∧ e2 with the image

of R† is the subspace with basis

c0,oX
4ro+2
0 + c5,oX

2ro+1
0 X2ro+1

1 , X4ro+1
0 X1, X

4ro
0 X2

1 , . . . , X
2ro+2
0 X2ro

1 ,

X2ro
0 X2ro+2

1 , . . . , X0X
4ro+1
1 , c0,oX

2ro+1
0 X2ro+1

1 + c5,oX
4ro+2
1 ,

resp.

c0,εX
4rε
0 + c5,εX

2rε
0 X2rε

1 , X4rε−1
0 X1, X

4rε−2
0 X2

1 , . . . , X
2rε+1
0 X2rε−1

1 ,

X2rε−1
0 X2rε+1

1 , . . . , X0X
4rε−1
1 , c0,εX

2rε
0 X2rε

1 + c5,εX
4rε
1 .

For each pair of nonnegative integers (i, j), denote by αi,j : H0(P1,OP1(i+
j))→ C the linear functional such that for every homogeneous polynomial g
of degree d,

g(X0, X1) =
∑
i+j=d

αi,j(g)Xi
0X

j
1 ,

i.e., αi,j(g) is the coefficient of Xi
0X

j
1 in g. Then the linear functional

c25,oα4ro+2,0−c0,oc5,oα2ro+1,2ro+1+c20,oα0,4ro+2, resp. c25,εα4rε,0−c0,εc5,εα2rε,2rε

+c20,εα0,4rε , is a nonzero linear functional on H0(P1,OP1(4r+2)) whose kernel
is precisely the intersection with the image of R†.

Using the first two rows of R†, every element in H0(P1,
∧2

NC/X) is congru-
ent to some element in H0(P1,OP1(4ro+2))e1∧e2, resp. H0(P1,OP1(4rε))e1∧
e2 modulo the image of R†. Carrying this out, up to a nonzero scalar, the
pairing [·, ·] is

[(g1e1 + g2e2 + g3e3), (h1e1 + h2e2 + h3e3)]o

= (c25,oα4ro+2,0 − c0,oc5,oα2ro+1,2ro+2 + c20,oα0,4ro+2)(g1h2 − g2h1)

+ c0,oc5,o(c5,oα3ro,ro−1 − c0,oαro−1,3ro)(g1h3 − g3h1)

+ c0,oc5,o(d5,oα3ro+1,ro − d0,oαro,3ro+1)(g2h3 − g3h2),

resp.

[(g1e1 + g2e2 + g3e3), (h1e1 + h2e2 + h3e3)]ε

= (c25,εα4rε,0 − c0,εc5,εα2rε,2rε + c20,εα0,4rε)(g1h2 − g2h1)

+ 2c0,εc5,ε(c5,εα3rε−2,rε−2 − c0,εαrε−2,3rε−2)(g1h3 − g3h1)

+ c0,εc5,ε(d5,εα3rε,rε − d0,εαrε,3rε)(g2h3 − g3h2).



442 A.J. DE JONG AND JASON STARR

7.5. Diagonalizing the pairing. The antisymmetric bilinear map [·, ·]
gives a linear transformation ω̃e : H0(P1, NC/X) → H0(P1, NC/X)∨ and we
want to find the kernel of this linear transformation. This is done by “diag-
onalizing” the pair (H0(P1, NC/X), [·, ·]), i.e., by finding a direct sum decom-
position

H0(P1, NC/X)o =
ro−2⊕
i=0

Ei,o ⊕ Ero−1,o ⊕ Ero,o,

resp.

H0(P1, NC/X)ε =
rε−3⊕
i=0

Ei,ε ⊕ Erε−2,ε ⊕ Erε−1,ε ⊕ Er,ε,

into pairwise orthogonal subspaces with respect to [·, ·]. In the odd case, to
show [·, ·]o has trivial kernel, it suffices to show the restriction to each space
Ei,o has trivial kernel.

In the even case, there is a vector w in Erε,ε lying in the kernel. On the
quotient vector space H0(P1, NC/X)/C {w}, there is an induced alternating
bilinear form [·, ·]′ε and an induced direct sum decomposition

⊕rε
i=0E

′
i,ε by

pairwise orthogonal subspaces. To show [·, ·]′ε has trivial kernel, it suffices to
show the restriction to each space E′i,ε has trivial kernel. In both cases, this
is done by computing the determinant of the matrix of [·, ·]o, resp. [·, ·]′ε, with
respect to a suitable basis.

For i = 0, . . . , ro− 2, denote by Ei,o ⊂ H0(P1, NC/X)o the subspace gener-
ated by 

vi,1,o = Xro+1+i
0 Xro−1−i

1 e1

vi,2,o = Xro−i
0 Xro+2+i

1 e2

vi,3,o = X2ro−1−i
0 Xi

1e3

vi,4,o = Xi
0X

2ro−1−i
1 e3

vi,5,o = Xro+2+i
0 Xro−i

1 e2

vi,6,o = Xro−1−i
0 Xro+1+i

1 e1

For i = 0, . . . , rε−3, denote by Ei,ε ⊂ H0(P1, NC/X)ε the subspace generated
by 

vi,1,ε = Xrε+i
0 Xrε−2−i

1 e1

vi,2,ε = Xrε−i
0 Xrε+2+i

1 e2

vi,3,ε = X2rε−2−i
0 Xi

1e3

vi,4,ε = Xi
0X

2rε−2−i
1 e3

vi,5,ε = Xrε+2+i
0 Xrε−i

1 e2

vi,6,ε = Xrε−2−i
0 Xrε+i

1 e1
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For i = ro−1 denote by Ero−1,o ⊂ H0(P1, NC/X)o the subspace generated by

vr−1,1,o = X2ro
0 e1

vr−1,2,o = X2ro+2
0 e2

vr−1,3,o = X2ro+1
0 X1e2

vr−1,4,o = Xro
0 Xro+1

1 e3

vr−1,5,o = Xro+1
0 Xro

1 e3

vr−1,6,o = X0X
2ro+1
1 e2

vr−1,7,o = X2ro+2
1 e2

vr−1,8,o = X2ro
1 e1

For i = rε−2, denote by Erε−2,ε ⊂ H0(P1, NC/X)ε the subspace generated by

vr−2,1,ε = X2rε−2
0 e1

vr−2,2,ε = X2rε+2
0 e2

vr−2,3,ε = Xrε
0 X

rε−2
1 e3

vr−2,4,ε = X2
0X

2rε
1 e2

vr−2,5,ε = X2rε
0 X2

1e2

vr−2,6,ε = Xrε−2
0 Xrε

1 e3

vr−2,7,ε = X2rε+2
1 e2

vr−2,8,ε = X2rε−2
1 e1

For i = ro denote by Ero,o ⊂ H0(P1, NC/X)o the subspace generated by{
vr,1,o = Xr,o

0 Xr,o
1 e1

vr,2,o = Xro+1
0 Xro+1

1 e2

For i = rε− 1 denote by Erε−1,ε ⊂ H0(P1, NC/X)ε the subspace generated by{
vr−1,1,ε = Xrε−1

0 Xrε−1
1 e1

vr−1,2,ε = Xrε+1
0 Xrε+1

1 e2

Finally, for i = rε, denote by Erε,ε ⊂ H0(P1, NC/X)ε the subspace generated
by 

vr,1,ε = X2rε+1
0 X1e2

vr,2,ε = Xrε−1
0 Xrε−1

1 e3

vr,3,ε = X0X
2rε+1
1 e2

Each of these generating sets is a subbasis of the standard monomial basis
of H0(P1, NC/X). Visibly, every monomial basis vector is in precisely one of
the subspaces Ei, and thus these spaces give a direct sum decomposition of
H0(P1, NC/X). As a consistency check, observe that for i = 0, . . . , ro−2, resp.
i = 0, . . . , rε − 3, dim(Ei,o) = 6, resp. dim(Ei,ε) = 6, dim(Ero−1,o) = 8, resp.
dim(Erε−2,ε) = 8, dim(Ero,o) = 2, resp. dim(Erε−1,ε) = 2, and dim(Erε,ε) =
3. So the sum of the dimensions of the spaces Ei,o is

6(ro − 1) + 8 + 2 = 6ro + 4 = (2ro + 1) + (2ro + 3) + 2ro,
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i.e.,

dimH0(P1,OP1(2ro))e1 + dimH0(P1,OP1(2ro + 2))e2

+ dimH0(P1,OP1(2ro − 1))e3.

Similarly, the sum of the dimensions of the spaces Ei,ε is

6(rε − 2) + 8 + 2 + 3 = 6rε + 1 = (2rε − 1) + (2rε + 3) + (2rε − 1),

i.e.,

dimH0(P1,OP1(2rε − 2))e1 + dimH0(P1,OP1(2rε + 2))e2

+ dimH0(P1,OP1(2rε − 2))e3.

Checking the spaces Ei are pairwise orthogonal with respect to [·, ·] is
straightforward, but tedious. One way to think of it is to consider the graph
whose vertices are the standard monomial basis vectors of H0(P1, NC/X),
and where there is an edge between two such basis vectors iff the pairing is
nonzero for this pair. Thus there is never an edge between g1e1 and h1e1,
nor between g2e2 and h2e2, nor between g3e3 and h3e3. There is an edge
between g1e1 and h2e2 iff g1h2 = X4ro+2

0 , X2ro+1
0 X2ro+1

1 or X4ro+2
1 , resp.

iff g1h2 = X4rε
0 , X2rε

0 X2rε
1 or X4rε

1 . There is an edge between g1e1 and
h3e3 iff g1h3 = X3ro

0 Xro−1
1 or Xro−1

0 X3ro
1 , resp. iff g1h3 = X3rε−2

0 Xrε−2
1

or Xrε−2
0 X3rε−2

1 . And there is an edge between g2e2 and h3e3 iff g2h3 =
X3ro+1

0 Xro
1 or Xro

0 X3ro+1
1 , resp. iff g2h3 = X3rε

0 Xrε
1 or Xrε

0 X
3rε
1 . Thus, the

valences of X2ro
0 e1 , X2ro

1 e1, Xro
0 Xro−1

1 e3 and Xro−1
0 Xro

1 e3 are each 3, resp.
the valences of X2rε−2

0 e1, X2rε−2
1 e1, Xrε

0 X
rε−2
1 e3 and Xrε−2

0 Xrε
1 e3 are each

3. Also the valences of Xro
0 Xro

1 e1 and Xro+1
0 Xro+1

1 e2 are each 1, resp. the
valences of Xrε−1

0 Xrε−1
1 e1, X

rε+1
0 Xrε+1

1 e2, X
2rε+1
0 X1e2 and X0X

2rε+2
1 e2 are

each 1. Every other vertex has valence two. Moreover, there is a symmetry of
the graph by permuting the variables X0 and X1. Using this, it is straightfor-
ward to compute the maximal connected subgraph containing the vector vi,1
for each i. The vertices of this subgraph are the generators of Ei. Therefore
the Ei are pairwise orthogonal.

7.6. Computing the determinants. Finally, we will compute the ma-
trix and determinant of the restriction of ω̃e to each of the subspace Ei. In
the odd case, each determinant is nonzero, proving that ω̃ has trivial kernel.
In the even case, all but one of the determinants is nonzero, and for Erε , the
restriction of ω̃ has a 1-dimensional kernel.

For i = 0, . . . , ro − 2, resp. for i = 0, . . . , rε − 3, denote by Ai the matrix
of ω̃e : Ei → E∨i with respect to the ordered basis vi,1, . . . ,vi,6 and the dual
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ordered basis of E∨i . The computation gives

Ai,o =


0 c0c5 −c0c25 0 0 0

−c0c5 0 0 c0c5d0 0 0
c0c

2
5 0 0 0 c0c5d5 0
0 −c0c5d0 0 0 0 −c20c5
0 0 −c0c5d5 0 0 −c0c5
0 0 0 c20c5 c0c5 0

 ,
resp.

Ai,ε =


0 c0c5 −2c0c25 0 0 0

−c0c5 0 0 c0c5d0 0 0
2c0c25 0 0 0 c0c5d5 0

0 −c0c5d0 0 0 0 −2c20c5
0 0 −c0c5d5 0 0 −c0c5
0 0 0 2c20c5 c0c5 0


The Pfaffian of each matrix is Pfaff(Ai,o) = c30c

3
5(c0d5 − c5d0), resp.

Pfaff(Ai,ε) = 2c30c
3
5(c0d5 − c5d0). Thus the determinant is Det(Ai,o) =

c60c
6
5(c0d5 − c5d0)2, resp. Det(Ai,ε) = 4c60c

6
5(c0d5 − c5d0)2. By hypothesis,

c0, c5 are nonzero and (c0, c5) is linearly independent from (d0, d5). Thus each
determinant is nonzero.

For i = ro − 1, resp. i = rε − 2, denote by Ai the matrix of ω̃e : Ei → E∨i
with respect to the ordered basis vi,1, . . . ,vi,8 and the dual ordered basis of
E∨i . The computation gives

Aro−1,o =



0 −c25 0 −c0c25 0 c0c5 0 0
c25 0 0 0 −c0c5d5 0 0 0
0 0 0 −c0c5d5 0 0 0 −c0c5

c0c
2
5 0 c0c5d5 0 0 0 −c0c5d0 0
0 c0c5d5 0 0 0 −c0c5d0 0 −c20c5

−c0c5 0 0 0 c0c5d0 0 0 0
0 0 0 c0c5d0 0 0 0 c20
0 0 c0c5 0 c20c5 0 −c20 0


,

resp.

Arε−2,ε =



0 −c25 −2c0c
2
5 c0c5 0 0 0 0

c25 0 0 0 0 −c0c5d5 0 0
2c0c

2
5 0 0 0 c0c5d5 0 −c0c5d0 0

−c0c5 0 0 0 0 c0c5d0 0 0
0 0 −c0c5d5 0 0 0 0 −c0c5
0 c0c5d5 0 −c0c5d0 0 0 0 −2c20c5
0 0 c0c5d0 0 0 0 0 c20
0 0 0 0 c0c5 2c20c5 −c20 0


.

The Pfaffian of this matrix is Pfaff(Aro−1,o) = c30c
3
5(c0d5 − c5d0)2, resp.

Pfaff(Arε−2,ε) = c30c
3
5(c0d5 − c5d0)2. Thus the determinant is Det(Aro−1,o) =

c60c
6
5(c0d5−c5d0)4, resp. the determinant is Det(Arε−2,ε) = c60c

6
5(c0d5−c5d0)4.
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By hypothesis, c0, c5 are nonzero and (c0, c5) is linearly independent from
(d0, d5). Thus each determinant is nonzero.

For i = ro, resp. i = rε − 1, denote by Ai the matrix of ω̃e : Ei → E∨i with
respect to the ordered basis vi,1,vi,2 and the dual ordered basis of E∨i . The
computation gives

Aro,o =
[

0 c0c5
−c0c5 0

]
,

resp.

Arε−1,ε =
[

0 c0c5
−c0c5 0

]
.

Visibly the Pfaffian of this matrix is c0c5 and the determinant is c20c
2
5. By

hypothesis, c0, c5 are nonzero, thus each determinant is nonzero.
In the odd case, since the determinant of each matrix Ai,o is nonzero, the

kernel of ω̃e is trivial. This proves Theorem 1.2 in case e ≥ 5 is an odd integer.
From this point on, suppose that e ≥ 6 is even.

Denote by Arε,ε the matrix of ω̃e : Erε,ε → E∨rε,ε with respect to the
ordered basis vrε,1,ε,vrε,2,ε,vrε,3,ε and the dual ordered basis of E∨rε,ε. The
computation gives

Arε,ε =

 0 −c0c5d5 0
c0c5d5 0 −c0c5d0

0 c0c5d0 0

 .
This matrix is singular: the kernel contains the vector w = d0,εvrε,1+d5,εvrε,3,
i.e., (d0,εX

2rε
0 + d5,εX

2rε
1 )X0X1e2. So this vector is in the kernel of ω̃e. Con-

sider the quotient vector space V ′ = H0(P1, NC/X)/C{w}. There is an in-
duced alternating bilinear pairing ω̃′e on V ′. Since w′ ∈ Erε,ε, there is an
induced direct sum decomposition V ′ =

⊕rε
i=0E

′
i,ε by pairwise orthogonal

subspaces where for i = 0, . . . , r − 1 the quotient map Ei,ε → E′i,ε is an iso-
morphism. And E′rε,ε has as basis the images of the vectors vrε,1,ε,vrε,2,ε
provided d5,ε 6= 0, and has as basis the images of the vectors vrε,2,εvrε,3,ε
provided d0,ε 6= 0.

First consider the case, d5,ε 6= 0. Denote by A′rε,ε the matrix of ω̃′e : E′rε,ε →
(E′rε,ε)

∨ with respect to the ordered basis v′rε,1,ε,v
′
rε,2,ε and the dual ordered

basis of (E′rε,ε)
∨. The computation gives

A′rε,ε =
[

0 −c0c5d5

c0c5d5 0

]
.

The Pfaffian of this matrix is c0c5d5 and the determinant is c20c
2
5d

2
5. By hy-

pothesis c0, c5, d5 are nonzero, thus the determinant is nonzero.
The remaining case is that d0 6= 0. Again denote by A′rε,ε the matrix of

ω̃′e : E′rε,ε → (E′r,ε)
∨ with respect to the ordered basis v′rε,2,ε,v

′
rε,3,ε and the
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dual ordered basis of (E′rε,ε)
∨. The computation gives

A′rε,ε =
[

0 −c0c5d0

c0c5d0 0

]
.

The Pfaffian of this matrix is c0c5d0 and the determinant is c20c
2
5d

2
0. By hy-

pothesis c0, c5, d0 are nonzero, thus the determinant is nonzero.
In both cases, the determinant of the restriction of ω̃′e to each subspace

E′i,ε is nonzero. Thus the kernel of ω̃e is spanned by w = (d0,εX
2rε
0 +

d5,εX
2rε
1 )X0X1e2. In particular, the kernel of ω̃e is 1-dimensional. This proves

Theorem 1.2 in case e ≥ 6 is an even integer.

8. Comments and questions

There are some generalizations of Theorem 1.2 to stable maps with marked
points. The cubic hypersurface X ⊂ P5 and the stable map f : P1 → P

5 are
the same as in Section 7. The marked points are [0 : 1], [1 : 0] ∈ P1. The same
method as Section 7 proves the following.

Theorem 8.1. Let X ⊂ P5 a smooth cubic hypersurface, let M0,n(X, e)
denote the Kontsevich moduli space of pointed stable maps to X of arithmetic
genus 0 and degree e, and let Me,n be a nonsingular projective model of the
coarse moduli space. Denote by ev : Me,n → Xn evaluation at each marked
point. And denote by Tev the kernel of the derivative, dev : TMe,n

→ ev∗TXn .
There is a canonical section ωe ∈ H0(Me,n,Ω2

Me,n
). Suppose that X is

general.
(i) If n = 1, if e ≥ 5 is an odd integer, and if ζ = (C, p, f : C → X)

is a general point of Me,1, the restriction of ωe to Tev|ζ has a 1-
dimensional kernel.

(ii) If n = 1, if e ≥ 6 is even, e ≥ 6, and if ζ = (C, p, f : C → X) is a
general point of Me,1, the restriction of ωe to Tev|ζ is nondegenerate.
Therefore a general fiber of ev has Kodaira dimension ≥ 0 and, in
particular, it is not uniruled.

(iii) If n = 2, if e ≥ 5 is odd, and if ζ = (C, p1, p2, f : C → X) is a
general point of Me,2, the restriction of ωe to Tev|ζ is nondegenerate.
Therefore a general fiber of (ev1, ev2) has Kodaira dimension ≥ 0 and,
in particular, it is not uniruled.

(iv) If n = 2, if e ≥ 6 is even, and if ζ = (C, p1, p2, f : C → X) is a general
point of Me,2, the restriction of ωe to Tev|ζ has a 1-dimensional kernel.

Proof. Most of the details are left to the reader. The technique is almost
identical to the proof of Theorem 1.2 and is roughly as follows: For (i) and
(ii), consider the special pairs ([X], [C]) used in Section 7. In addition, as-
sume that d0,o, d5,o are both nonzero. For the marked point on C, use either
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f([0 : 1]) or f([1 : 0]). The tangent space to Tev|ζ is the subspace of sections
of H0(P1, NC/X) vanishing at [0 : 1], resp. [1 : 0]. The form ωe on this
subspace is the form computed in Section 7. In particular, since the space of
sections vanishing at [0 : 1] is generated by standard monomial basis vectors
of H0(P1, NC/X), the direct sum decomposition into pairwise orthogonal sub-
spaces yields a direct sum decomposition of the space of sections vanishing at
[0 : 1].

In the odd case, the kernel is generated by c5,ov0,2,o + v0,3,o + d5,ov0,6,o.
And the induced pairing on the quotient space is nondegenerate. In the even
case, the kernel is nontrivial: it is generated by d0,εvrε,1,ε + d5,εvrε,3,ε and
vrε−2,1 + 2c5,εvrε−2,3 − d5,εvrε−2,6,ε. However, under a nontrivial first-order
deformation of the pointed curve not changing the map f : P1 → X, only
moving the point [0 : 1] on P1, the kernel becomes trivial (this is a simple
deformation theory exercise).

Parts (iii) and (iv) are the same. In the odd case, the kernel is trivial. In
the even case, the kernel is generated by d0,εvrε,1,ε+d5,εvrε,3,ε (no deformation
theory is needed). �

Question 8.2. What is the Kodaira dimension of Me, resp. what is the
dimension of a fiber of the MRC quotient of Me, when the form ωe does have
a kernel? If e ≥ 6 is even, is Me uniruled?

We are convinced that Me is not uniruled, but we do not have a proof for
e ≥ 8. In case e is 6, we can prove that M6 is not uniruled by an ad hoc
argument. It is possible this could be used as the base case of an induction
by considering how the kernel of ωe+2 specializes on the boundary divisor
∆e,2 ⊂Me.

Proposition 8.3. If the cubic hypersurface X ⊂ P5 is general, then M6

is not uniruled. More precisely, there exists a rational transformation f :
M6 99K Hilb6t

X whose general fiber is a genus 1 curve which is a leaf of the
distribution Ker(ωe).

Here is a rough sketch of the proof. The method of proof is similar to
that in [13], but instead of using residual curves in an intersection of X with
a cubic scroll, we use residual curves in an intersection of X with a quartic
scroll. For a general nondegenerate, rational, degree 6 curve C ⊂ P5, there is a
unique quartic scroll Σ ⊂ P5 containing C. If X is general, then X contains no
quartic scrolls (although special smooth cubic fourfolds can contain a quartic
scroll, [14, Section 4.1.3]). The intersection Σ ∩ X is a degree 12 curve in
Σ that is a local complete intersection (in particular, it is Gorenstein) and
contains C as a subcurve of degree 6. By Gorenstein liaison, the residual
curve C ′ to C in Σ is a degree 6 curve of arithmetic genus 1, and is a smooth,
connected curve if C general. This gives a rational transformation from M6 to
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the open subset U of the Chow variety/Hilbert scheme parametrizing degree
6 curves in X of arithmetic genus 1; [C] 7→ [C ′]. The fiber of this rational
transformation containing [C] is isomorphic to Pic2(C ′), i.e., it is a connected,
smooth curve of genus 1 (actually it will only be a dense open subset since we
are working on the non-complete variety M6).

On M6 there is the 2-form ω6 constructed in Section 4. On U there is a 2-
form by the same process as in Section 4 corresponding to the family of degree
6 curves of arithmetic genus 1. On the domain of definition of the rational
transformation M6 → U , form the pullback of the 2-form on U ; denote this
pullback 2-form by ω′. Over a dense open set of M6, the curve Σ ∩ X is
a connected, reduced at-worst-nodal curve and the process from Section 4
produces a 2-form ω′′ corresponding to this family of curves. The relation
between these forms is

ω6 + ω′ = ω′′

on the open, dense locus where all three are defined.
On the other hand, there is a unirational space W ⊂ Hilb(2t+1)(t+1)(P5)

parametrizing all smooth, nondegenerate quartic scrolls in Σ ⊂ P5 (in fact
this is a homogeneous space for PGL6 since any two such scrolls are projec-
tively equivalent). Over a dense open subset of W the process from Section 4
produces a 2-form corresponding to the family of curves whose fiber over [Σ]
is Σ ∩X. And ω′′ is the pullback of this 2-form by the obvious rational map
M6 99K W . Since W is unirational, it does not support any nonzero 2-form,
i.e., ω′′ = 0. So ω6 = −ω′. In particular, the kernel of ω6 coincides with the
kernel of ω′. Since ω′ is a pullback by the rational transformation M6 → U ,
in particular, the tangent space of the fiber of this rational transformation is
contained in ω6. We know the fiber is one-dimensional. By Theorem 1.2, also
the kernel of ω6 is one-dimensional. Thus the kernel of ω6 at a general point of
M6 is precisely the tangent space to the fiber of M6 → U . In other words, the
foliation determined by the kernel of ω6 is algebraically integrable on a dense
(Zariski) open subset of M6, the leaf space is (birationally) an open subset
U of the Hilbert scheme of smooth, degree 6 curves in X of genus 1, and
the projection to the leaf space is (birationally) the rational transformation
M6 99K U .

From this it follows that U has Kodaira dimension ≥ 0, in particular, it is
not uniruled. By the special case of the Iitaka conjecture proved in [17], the
Kodaira dimension of M6 is ≥ 0. In particular, M6 is not uniruled.

There are lots of missing details in this argument. They each follow by
straightforward arguments of projective geometry, and are left to the reader.
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