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QUASICONFORMAL HARMONIC MAPS INTO
NEGATIVELY CURVED MANIFOLDS

HAROLD DONNELLY

Abstract. Let F : M → N be a harmonic map between complete
Riemannian manifolds. Assume that N is simply connected with sec-

tional curvature bounded between two negative constants. If F is a
quasiconformal harmonic diffeomorphism, then M supports an infinite
dimensional space of bounded harmonic functions. On the other hand,
if M supports no non-constant bounded harmonic functions, then any
harmonic map of bounded dilation is constant.

1. Introduction

Let F : M → N be a differentiable map between manifolds M and N .
Suppose that M is endowed with a complete Riemannian metric g and that
N is endowed with a complete Riemannian metric h. If x ∈ M , then there
is a self adjoint operator (dF )∗dF : TxM → TxM , where the adjoint (dF )∗ is
taken with respect to the metrics g on TxM and h on TF (x)N . Assume that
n = dimM and denote the eigenvalues of (dF )∗dF by λ1(x) ≥ λ2(x) ≥ . . . ≥
λn(x) ≥ 0. These eigenvalues are all non–negative, but some of them may be
zero. If F is a diffeomorphism and λ1(x) ≤ cλn(x) for some constant c, then
we say that F is a quasiconformal diffeomorphism.

Suppose that M is a compactification of M . Given f ∈ C(M −M), we
would like to extend f to C2(M)∩C(M), so that the extended f is a harmonic
function on M . Our first main result, which also appears as Theorem 3.2
below, is as follows.

Theorem 1.1. Suppose that (N,h) is complete and simply connected with
sectional curvature bounded between two negative constants. Let (M, g) be any
complete Riemannian manifold and F : (M, g) → (N,h) a quasiconformal
harmonic diffeomorphism. Then M admits a natural compactification M so
that the Dirichlet problem at infinity is solvable.
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If (M, g) = (N,h) and F is the identity map, then this theorem is well
known [1]. So the improvement here is that the result is invariant under
quasiconformal harmonic diffeomorphisms.

One notable feature of Theorem 1.1 is that no curvature hypotheses are im-
posed on (M, g). The same feature is present in the theorem of [6] concerning
harmonic maps of bounded dilatation. In the notation of the first paragraph
above, a differentiable map F has bounded dilatation when λ1(x) ≤ cλ2(x),
for some constant c. In particular, the rank of dF is either zero or greater
than one, at each x ∈ M . We will prove the following theorem, which also
appears as Theorem 4.3 below.

Theorem 1.2. Suppose that (M, g) supports no nonconstant bounded har-
monic functions. Assume that (N,h) is complete and simply connected with
sectional curvature bounded between two negative constants. Then any har-
monic map F : M → N of bounded dilatation is constant.

Theorem 1.2 was proved earlier in [6] via stochastic methods. The new
contribution here is to give an alternative proof using classical analysis and
geometry.

There are some previous publications concerning harmonic maps of bounded
dilatation and quasiconformal harmonic diffeomorphisms. Typically, the au-
thors of these works rely on a Bochner formula, and (M, g) is assumed to
have non–negative Ricci curvature. If (M, g) is only assumed to be a com-
plete Riemannian manifold, the Bochner method seems difficult to apply. The
techniques used below are therefore quite different from the techniques of [3],
[8], and [9].

2. Harmonicity of the identity map

Suppose that (M, g) and (N, ĝ) are Riemannian manifolds and F : M → N
is a harmonic diffeomorphism. We define another metric h on M by setting
h = F ∗ĝ. It follows from the definitions that the identity map I : (M, g) →
(M,h) is a harmonic map. In particular, since F is a diffeomorphism, it can
be used to define local charts on M and, in the corresponding coordinates, I
is represented by F . However, the notion of harmonic map is independent of
the choice of coordinates.

In this section, we will give various characterizations for the harmonic-
ity of the identity map I : (M, g) → (N,h). The observations of the pre-
vious paragraph can often be invoked to reduce questions about harmonic
diffeomorphisms to the study of the harmonicity of I. Let ∇g and ∇h de-
note the Levi–Civita connections of g and h. Define E = ∇g − ∇h, that is,
E(X,Y ) = ∇gXY −∇hXY , for vector fields X and Y . One verifies that E is a
tensor field. Our first characterization of the harmonicity of the identity map
is given by the following result:
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Lemma 2.1. I : (M, g)→ (M,h) is harmonic if and only if
TrgE = 0. In coordinate notation, this reads gijEkij = 0.

Proof. In local coordinates, the tension field of a map u is given by τα(u) =
∆uα + (Γ

α

βγ ◦u)uβi u
γ
j g
ij . Here ∆ is the invariant Laplacian of the metric g on

the domain. Moreover, Γ
α

βγ are the Christoffel symbols on the target. Since
∆f = Tr(∇df), for any function f : M → R, one has

∆f = gij
∂2f

∂xi∂xj
− gijΓkij

∂f

∂xk
.

Therefore,

τα = gij
∂2uα

∂xi∂xj
− gijΓkij

∂uα

∂xk
+ (Γ

α

βγ ◦ u)uβi u
γ
j g
ij .

Here Γkij are the Christoffel symbols of the metric g. If u is the identity map,
then uα(x) = xα, and we find τα(I) = gij(Γ

α

ij − Γαij) = −Trg Eα. A map is
harmonic exactly when its tension field vanishes. �

Recall that the invariant Laplacian of a metric g is given by ∆g = Trg Hessg.
If two metrics g and h are given on the same manifold, then one may define
the second order differential operator Trg Hessh. In general, this is an el-
liptic operator, but not of divergence form. Another characterization of the
harmonicity of the identity map is the following:

Lemma 2.2. Suppose that I : (M, g) → (M,h) is harmonic. Then ∆g =
Trg Hessh.

Proof. In general, Hess f = ∇df , so that

Hessg f =
∂2f

∂xi∂xj
dxi ⊗ dxj − Γkij

∂f

∂xk
dxi ⊗ dxj ,

Hessh f =
∂2f

∂xi∂xj
dxi ⊗ dxj − Γ

k

ij

∂f

∂xk
dxi ⊗ dxj .

Taking the trace of the difference gives ∆gf − Trg Hessh f = Trg(Hessg f −
Hessh f) = −df(Trg E) = 0, by Lemma 2.1. �

In this paper, we are concerned with harmonic functions, that is, with
Ker(∆g) and Ker(∆h). The goal is to show that certain existence results
for bounded harmonic functions are preserved under appropriate types of
harmonic diffeomorphisms. Naively, the most immediate idea is to consider
conformal harmonic diffeomorphisms. If the identity map is both conformal
and harmonic, then Lemma 2.2 gives ∆g = Trg Hessh = φTrh Hessh = φ∆h,
where h = φg. However, this condition is too restrictive in dimensions n =
dimM ≥ 3. For conformal maps and n = 2, most of our results follow easily
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from the uniformization theorem. The following lemma describes when the
identity map is both conformal and harmonic.

Lemma 2.3. Assume that h = φg is conformal to g.
(i) If n = 2, then I : (M, g)→ (M,h) is harmonic.
(ii) If n ≥ 3 and I : (M, g)→ (M,h) is harmonic, then φ is constant.

Proof. The standard local formula for the Christoffel symbols is

Γkij =
1
2
gkl
(
∂gil
∂xj

+
∂gjl
∂xi
− ∂gij
∂xl

)
.

If Γ
k

ij denote the Christoffel symbols for h, then one computes

gij(Γ
k

ij − Γkij) =
1
2
φ−1(2− n)gki

∂φ

∂xi
.

The result now follows from Lemma 2.1. �

If n ≥ 3, it follows that conformal harmonic diffeomorphisms are isometries,
after rescaling the metric on the domain by a constant factor. The paucity
of conformal harmonic diffeomorphisms suggests the study of quasiconformal
harmonic diffeomorphisms. If I : (M, g) → (M,h) is harmonic, then ∆g =
Trg Hessh, by Lemma 2.2. If I is also quasiconformal, then there exists a third
metric g̃ = φg and g̃ is quasi–isometric to h. Since Ker(∆g) = Ker(Trg̃ Hessh),
one may hope to prove that bounded harmonic functions for ∆g exist when
there are bounded harmonic functions for ∆h. The idea is that the operator
Trg̃ Hessh is closely related to ∆h, since g̃ and h are quasi–isometric and
∆h = Trh Hessh. One serious difficulty is that the operator Trg̃ Hessh need
not be of divergence form. Many results about the Laplacian ∆h are strongly
dependent upon its divergence form structure.

3. Quasiconformal harmonic diffeomorphisms

Let (N,h) be a complete, simply connected, negatively curved Riemannian
manifold, with sectional curvature bounded between two negative constants,
−b2 ≤ K ≤ −a2 < 0. The Riemannian manifold N admits a natural com-
pactification N = N ∪ S(∞), where each point in S(∞) represents a class
of asymptotic geodesic rays. Given a continuous function f : S(∞)→ R, the
Dirichlet problem at infinity is to extend f continuously to N , so that the
extended f is harmonic on N , i.e., ∆hf = 0. The solvability of the Dirichlet
problem at infinity was established in [1].

Suppose that ĥ is a second metric on N , which is quasi–isometric to h, i.e.,
c1h ≤ ĥ ≤ c2h. We will need to solve the Dirichlet problem at infinity for
the second order elliptic operator defined by Trĥ Hessh. The method of [1]
is remarkably robust and can be extended in a straightforward way. This is
noteworthy since Trĥ Hessh may not be of divergence form. Many analytic
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methods do not generalize readily from the divergence form to other elliptic
operators. We have the following result.

Proposition 3.1. Suppose that f : S(∞)→ R is a given continuous func-
tion. Then f extends uniquely to C2(N)∩C(N), so as to satisfy Trĥ Hessh f =
0 on N .

Proof. Uniqueness follows from the maximum principle applied on suffi-
ciently large geodesic balls in N . Existence is the more difficult issue. Here
we follow the arguments of [1]. For the convenience of the reader and for
future reference, we summarize the main ideas.

Choose a fixed basepoint 0 ∈ N and identify S(∞) with the collection of
geodesic rays starting at 0. This provides a homeomorphism between S(∞)
and the unit sphere S0(1), centered at 0. Using this identification, S(∞)
is endowed with a noncanonical differentiable structure. By the maximum
principle and elliptic regularity, we reduce the existence question to the case
where f : S(∞)→ R is Lipschitz continuous.

The next step is to construct some approximate solutions ζ(f̂). We extend
f radially from S(∞) to a function f̂ on N . By using a cut–off function near
the basepoint 0, we may assume that f̂ is continuous. Let χ : R → R be a
fixed C2 approximation of the characteristic function of [0, 1], with χ having
support in [−2, 2]. If ρ(x, y) denotes the geodesic distance, corresponding to
the metric h, then we define

ζ(f̂) =

∫
N

χ(ρ2(x, y))f̂(y)dy∫
N
χ(ρ2(x, y))dy

.

The integration uses the volume element induced by the metric h. Applying
the Hessian comparison theorem [4], it follows that

‖dζ(f̂)‖+ ‖Hessh ζ(f̂)‖ ≤ c1e−ar,

where the norms are relative to h and r(x) = ρ(0, x) is the geodesic distance
from the basepoint, again relative to h. The exponential decay rate is e−ar,
since this corresponds to an upper bound of the angle subtended in S0(1),
by a ball of radius two at distance r from 0. Note that all of the above
constructions and estimates, concerning ζ(f̂), depend only upon the metric
h.

It is straightforward to calculate

Hessh e−δr = e−δr[δ2dr ⊗ dr − δHessh r].

Applying the Hessian comparison theorem [4] to h and the fact that ĥ is
quasi–isometric to h, we find

Trĥ Hessh e−δr ≤ −c2δe−δr
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for δ sufficiently small. Consequently, f+ = ζ(f̂) + c3e
−δr is a supersolution

to the Dirichlet problem at infinity for Trĥ Hessh. Similarly, f− = ζ(f̂) −
c3e
−δr is a subsolution to the same problem. Solving the Dirichlet problem

on an exhaustion of M by compact sets, and using f+ and f− as barrier
functions at infinity, we solve the Dirichlet problem at infinity for the operator
Trĥ Hessh. �

Assume now that (M, g) is another complete Riemannian manifold and
F : M → N is a quasiconformal harmonic diffeomorphism, relative to the
Riemannian structure (N,h) on the range. If λ1(x) ≥ λ2(x) ≥ . . . ≥ λn(x)
are the eigenvalues of (dF )∗dF , at x ∈ M , then quasiconformal means that
λ1(x) ≤ c4λn(x). Since F is a homeomorphism, the compactification N of N
induces a compactification M of M , so that M = M ∪S(∞). The main result
of this section is the following theorem.

Theorem 3.2. Suppose that f : S(∞) → R is a given continuous func-
tion. Then f extends uniquely to C2(M) ∩C(M) as a harmonic function for
the metric g, ∆gf = 0.

Proof. Pulling back the metric h by the diffeomorphism F , we reduce the
problem to the case where M = N and F is the identity map. So assume
that I : (M, g) → (N,h) is harmonic and quasiconformal. By Lemma 2.2,
the harmonicity of I gives ∆g = Trg Hessh. Of course, g need not be quasi–
isometric to h. However, we may define a third metric ĥ = λ1(x)g. Then
Ker(∆g) = Ker(Trg Hessh) = Ker(Trĥ Hessh). Since ĥ is quasi–isometric to
h, the result follows from Proposition 3.1. �

The methods of this section can also be used to prove the following more
elementary result.

Proposition 3.3. Suppose that (M, g) is a complete Riemannian man-
ifold with no Greens function. Assume that (N,h) is complete and simply
connected with strictly negative sectional curvature KN ≤ −a2. Then there
exists no quasiconformal harmonic diffeomorphism F : M → N .

Proof. We apply the argument and the notation of the proof of Theorem
3.2. This reduces us to the case where M = N and F is the identity map,
I : (M, g) → (N,h). Recall that ĥ is quasi–isometric to h, but ĥ is also con-
formal to g. The Hessian comparison theorem implies that exp(−δr) is a
positive supersolution of Trĥ Hessh f = 0. So, ∆g admits a positive superhar-
monic function, using the identification ∆g = Trg Hessh, of Lemma 2.2. This
contradicts the hypothesis that (M, g) admits no Greens function. �
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4. Harmonic maps of bounded dilatation

Suppose that (M, g) and (N,h) are complete Riemannian manifolds. We
assume that (N,h) is simply connected and negatively curved, with sectional
curvatures bounded between two negative constants, −b2 ≤ KN ≤ −a2 < 0.
One has the geometric compactification, N = N ∪ S(∞), constructed using
asymptotic classes of geodesic rays. No curvature conditions will be imposed
upon (M, g). We study harmonic maps F : M → N . In contrast to Section 3,
one no longer assumes that F is a diffeomorphism.

Our first result concerns bounded harmonic maps. Proposition 4.1 was
proved in [6] via both probabilistic and classical analysis methods. The proof
given below is a small modification of Kendall’s classical method. One step
in [7] used the heat equation on M , but the proof below employs only the
theory of elliptic equations. This modification is more consistent with the
other arguments in this paper and suggests some of the developments below.

Proposition 4.1. Suppose that (M, g) supports no non–constant bounded
harmonic functions. Then any bounded harmonic map, F : M → N , is con-
stant. We need only assume that N is complete and simply connected with
KN ≤ 0.

Proof. Since F is bounded, and N is complete, the closure of the image
F (M) is compact. If y ∈ N , let dy(x) = d(x, y) denote the geodesic distance
from x to y. For each fixed y, suppose that cy is the infimum of all harmonic
functions h : M → R satisfying h(m) ≥ dy(F (m)) for all m ∈ M . Apriori, cy
is a harmonic function on M . Since (M, g) supports no non–constant bounded
harmonic functions, cy is actually constant.

Let Dj be an exhaustion of M by open sets with regular boundaries and
compact closures. Suppose that vy,j : Dj → R is a harmonic function with
boundary values cy − dy ◦ F , on ∂Dj . Passing to a subsequence in j, vy,j
converges to a bounded harmonic function ay, which is necessarily constant.
Invoking the definition of cy, one deduces that ay = 0. Suppose that one
applies the same argument to a finite sum s =

∑k
i=1 cyi−dyi◦F . If wj |∂Dj = s

solves the Dirichlet problem, then wj →
∑k
i=1 ayi = 0. Consequently, for any

r > 0, we have
k⋂
i=1

{m|cyi − dyi(F (m)) ≤ r} 6= ∅.

Otherwise s ≥ r, and thus wj ≥ r, by the maximum principle. However, this
contradicts wj → 0.

Suppose that

T =
⋂
r>0

⋂
y∈F (M)

{x ∈ F (M)|cy − dy(x) ≤ r}.
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By the compactness of F (M) and the finite intersection property of compact
sets, T is not the empty set. If z ∈ T , then cy = dy(z) for all y ∈ F (M).
In particular, cz = dz(z) = 0. Therefore dz(F (m)) = 0 for all m ∈ M , and
F (M) = z. �

We now record a lemma concerning bounded harmonic functions. The
techniques used in proving Lemma 4.2 are related to the modifications made
in Kendall’s proof of Proposition 4.1. Similar arguments have been used by
Grigor’yan [5] in his study of bounded harmonic functions and massive sets.

Lemma 4.2. Suppose that w1 and w2 are bounded subharmonic functions
on (M, g). Assume that (i) supw1 = supw2 = 1 and (ii) w1 + w2 ≤ 2 − ε.
Then (M, g) supports at least one nonconstant bounded harmonic function.

Proof. Let Dj be an exhaustion of M by open sets with compact closures
and regular boundaries. For i = 1, 2, we solve the Dirichlet problem on Dj ,
to obtain bounded harmonic functions vi,j , with boundary values wi on ∂Dj .
Letting j →∞ and passing to a subsequence gives harmonic functions vi with
wi ≤ vi ≤ 1. Moreover, since harmonic functions assume their maximum
values on the boundary, and w1 +w2 ≤ 2− ε, we have v1,j + v2,j ≤ 2− ε, for
every j. Consequently, v1 + v2 ≤ 2− ε. However, since sup vi = supwi = 1, if
vi is constant, we must have vi ≡ 1. The condition that both of the functions
vi are constant is thus inconsistent with v1 + v2 ≤ 2− ε. �

Let F : M → N be a differentiable map. For each x ∈ M , let λ1(x) ≥
λ2(x) ≥ . . . ≥ λr(x) > 0, be the positive eigenvalues of the self–adjoint
linear transformation (dF )∗dF : TxM → TxM . We say that F has bounded
dilatation if, for each x ∈M , either (i) dF (x) = 0 or (ii) λ1(x) ≤ cλ2(x), r ≥
2, where c is a constant independent of x. A map of bounded dilatation cannot
have rank one at any point. The rank is either zero or at least two.

Theorem 4.3 was proved in [6] using stochastic methods. The techniques
of Section 3 lead naturally to a proof using classical analysis and geometry.
The main result of this section is the following theorem.

Theorem 4.3. Suppose that (M, g) supports no nonconstant bounded har-
monic function. Then any harmonic map F : M → N of bounded dilatation
is constant.

Proof. If F is bounded, then the result follows from Proposition 4.1. So
we may assume that F (M) ∩ S(∞) 6= φ, where F (M) denotes the closure of
the image of F in N .

Suppose that F (M) ∩ S(∞) contains at least two distinct points p1, p2.
Choose a basepoint 0 ∈ N and identify S0(1) and S(∞), as in the proof
of Proposition 3.1. Since p1 6= p2, we may choose two Lipschitz continuous
functions ψ1, ψ2, defined on S(∞), and satisfying:
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(i) ψi ≡ 1 on a neighborhood of pi;
(ii) ψ1 and ψ2 have disjoint supports: supp ψ1 ∩ supp ψ2 = ∅;
(iii) ψi ≤ 1, for i = 1, 2.

We construct the approximate solutions ζ(ψ̂i), for the Dirichlet problem at
infinity on N , as in Proposition 3.1 and its proof. One easily ensures that the
properties (i), (ii), and (iii) of the ψi are also satisfied by the ζ(ψ̂i).

If φ : N → R is a C2–function, defined on N , then since F is harmonic,
∆(φ ◦ F ) = D2φ(dF, dF ) = φαβF

α
i F

β
j g

ij . Employing the hypothesis that
F has bounded dilatation, we deduce |∆(φ ◦ F )| ≤ c1‖D2φ‖λ2(x), when
dF : TxM → TF (x)N is not identically zero. If dF = 0, at x, then ∆(φ ◦
F )(x) = 0, for any φ. In particular, we may take φ = ζ(ψ̂i), and deduce, from
the estimate of ‖D2ζ(ψ̂i)‖ appearing in the proof of Proposition 3.1,

|∆(ζ(ψ̂i) ◦ F )| ≤ c2λ2e
−ar◦F ,

where r denotes the geodesic distance from the basepoint 0 in N .
For δ > 0, we have D2(e−δr) = e−δr[δ2dr⊗dr−δD2r]. Since F has bounded

dilatation its rank is either zero or strictly greater than one. In particular,
im(dF ) cannot be contained in the kernel of D2r, which is one dimensional.
Applying the Hessian comparison theorem [4] and our curvature hypothesis
on N , we deduce that, for δ sufficiently small,

∆(e−δr◦F ) ≤ −c3λ2δe
−δr◦F

at points where dF is not identically zero.
For an appropriate constant c4, we define subharmonic functions wi =

ζ(ψ̂i) ◦ F − c4 exp(−δr ◦ F ), for i = 1, 2. The wi satisfy the hypotheses of
Lemma 4.2, since ζ(ψ̂i) have disjoint supports. Lemma 4.2 then asserts that
M admits a nonconstant bounded harmonic function. This contradiction
completes the proof in the case when F (M) ∩ S(∞) contains at least two
points.

Suppose now that F (M)∩S(∞) consists of a single point p1. Let p2 be any
point in F (M), the image of M in N . There is a geodesic with γ(0) = p2 and
lim
t→∞

γ(t) = p1. We choose our basepoint to be at γ(t0), where t0 is sufficiently
large. There will then be two points which are antipodal on a very large sphere
centered at the origin 0 = γ(t0). The method used when F (M) ∩ S(∞) has
cardinality at least two then applies, with small modifications. �

Remark. The lower bound of the sectional curvature is needed for the
application of the Hessian comparison theorem in the proof of Theorem 4.3.
The stochastic approach requires such a bound for quite different reasons.
However, no lower bound is needed if the Ricci curvature of M is non-negative.
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Holomorphic maps F between Kaehler manifolds are harmonic. Moreover,
since the eigenspaces of (dF )∗dF have complex dimension at least one, holo-
morphic maps have bounded dilatation, λ1(x) = λ2(x), in the real tangent
space. Consequently, one has:

Corollary 4.4. Suppose that F : M → N is a holomorphic map, between
complete Kaehler manifolds, where (i) M supports no nonconstant bounded
harmonic functions, and (ii) N is simply connected with sectional curvature
bounded between two negative constants. Then F is the constant map.

The proof of Theorem 4.3 generalizes readily to give the following more
technical statement, which may nevertheless retain a certain interest.

Proposition 4.5. Suppose that F : M → N is a harmonic map of bounded
dilatation between complete Riemannian manifolds. Assume that N is simply
connected with sectional curvature bounded between two negative constants.
If F (M) ∩ S(∞) has cardinality at least k ≥ 1, then the space of bounded
harmonic functions on M has dimension at least k + 1.

Proof. Following the argument used to establish Theorem 4.3, we obtain
k+1 nonnegative harmonic functions hi, and k+1 points pj , so that |hi(pj)−
δij | < ε, for any ε > 0. If some linear combination

∑k+1
i=1 cihi is zero, then

evaluating at pj , we get
∑k+1
i=1 hi(pj)ci = 0. But the square matrix hi(pj)

may be taken arbitrarily close to the identity matrix. In particular, hi(pj) is
invertible, and ci = 0, 1 ≤ i ≤ k + 1. �

One also obtains the following improvement of Proposition 3.3.

Proposition 4.6. Suppose that (M, g) is a complete Riemannian man-
ifold with no Greens function. Assume that (N,h) is complete and simply
connected with strictly negative sectional curvature KN ≤ −a2 < 0. Then any
harmonic map F : M → N of bounded dilatation is constant.

Proof. If F is bounded, then Proposition 4.1 shows that F is constant.
Otherwise, the proof of Theorem 4.3 shows that exp(−δr ◦ F ) is a bounded
nonconstant superharmonic function on M . �

References

[1] M. T. Anderson and R. Schoen, Positive harmonic functions on complete manifolds

of negative curvature, Annals of Math. 121 (1985), 429–461.
[2] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order,

Springer Verlag, New York, 1983.

[3] S. T. Goldberg and Z. Har’El, A general Schwarz lemma for Riemannian manifolds,
Bull. Greek Math. Soc. 18 (1977), 141–148.

[4] R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, Lecture
Notes in Math., vol. 699, Springer Verlag, New York, 1979.



QUASICONFORMAL HARMONIC MAPS 613

[5] A. A. Grigor’yan, Dimension of spaces of harmonic functions, Math. Notes USSR 48
(1990), 1114–1118.

[6] W. S. Kendall, Brownian motion and a generalised little Picard’s theorem, Trans.
American Math. Soc. 275 (1983), 751–760.

[7] , Probability, convexity, and harmonic maps with small image I: uniqueness

and fine existence, Proc. London Math. Soc. 61 (1990), 371–406.
[8] L. Ni, Non–existence of some quasiconformal harmonic diffeomorphisms, Michigan

Math. Journal 45 (1998), 489–495.
[9] C. L. Shen, A generalization of the Schwarz-Ahlfors lemma to the theory of harmonic

maps, J. Reine Angew. Math. 348 (1984), 23–33.

Department of Mathematics, Purdue University, West Lafayette, IN 47907,

USA

E-mail address: hgd@math.purdue.edu


