UNIQUENESS THEOREMS FOR p-ADIC HOLOMORPHIC CURVES

MIN RU

1. Introduction

It is well known that two non-constant polynomials f and g over an algebraically closed field of characteristic zero are identical if there exist two distinct values a and b such that $f(x)=a \Leftrightarrow g(x)=a$ and $f(x)=b \Leftrightarrow g(x)=b$. In 1926, R. Nevanlinna [Ne] extended this result to meromorphic functions by showing that two non-constant meromorphic functions of a complex variable which attain five distinct values at the same points must be identical.

It has been observed that p-adic entire functions behave in many ways more like polynomials than like entire functions of a complex variable. Confirming this observation, W.W. Adams and E.G. Straus [AS] proved the following result.

Theorem A. Let f and g be two non-constant p-adic entire functions so that for two distinct (finite) values a and b we have $f(x)=a \Leftrightarrow g(x)=a$ and $f(x)=b \Leftrightarrow g(x)=b$. Then $f \equiv g$.

For p-adic meromorphic functions, Adams and Straus obtained the following result, which is an analog of Nevanlinna's result.

Theorem B. Let f and g be two non-constant p-adic meromorphic functions so that there exist four distinct values a_{1}, a_{2}, a_{3}, and a_{4}, such that $f(x)=a_{i} \Leftrightarrow g(x)=a_{i}$ for $i=1,2,3,4$. Then $f \equiv g$.

The aim of this paper is to extend Theorem B to p-adic holomorphic curves in projective spaces.

[^0]
2. Uniqueness problems without counting multiplicity

Before we state our theorems, we recall some definitions and known results. Let p be a prime number, and let $\left|\left.\right|_{p}\right.$ be the standard p-adic valuation on \mathbb{Q} normalized so that $|p|_{p}=p^{-1}$. Let \mathbb{Q}_{p} be the completion of \mathbb{Q} with respect to this valuation, and let \mathbb{C}_{p} be the completion of the algebraic closure of \mathbb{Q}_{p}. As is well known, \mathbb{C}_{p} is algebraically closed. For simplicity, we denote the p-adic norm $\left|\left.\right|_{p}\right.$ on \mathbb{C}_{p} by $| \mid$. We note that the results of this paper also hold for a general complete, algebraically closed non-Archimedean field of characteristic zero.

It is known that an infinite sum converges in a non-Archimedean norm if and only if its general term approaches zero. Thus a function of the form

$$
h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, a_{n} \in \mathbb{C}_{p}
$$

is well defined whenever

$$
\left|a_{n} z^{n}\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

Functions of this type are called p-adic analytic functions. If h is analytic on \mathbb{C}_{p}, then h is called a p-adic entire function. Let

$$
h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, a_{n} \in \mathbb{C}_{p}
$$

be a p-adic analytic function on $|z|<R$. For $0<r<R$, define $M_{h}(r)=$ $\max _{|z|=r}|h(z)|$. We have the following lemma (see [AS]).

Lemma 2.1. The following statements hold:
(1) We have $M_{h}(r)=\max _{n \geq 0}\left|a_{n}\right| r^{n}$.
(2) The maximum on the right of (1) is attained for a unique value of n except for a discrete sequence of values $\left\{r_{\nu}\right\}$ in the open interval $(0, R)$.
(3) If $r \notin\left\{r_{\nu}\right\}$ and $|z|=r<R$, then $|h(z)|=M_{h}(r)$.
(4) If h is a non-constant p-adic entire function, then $M_{h}(r) \rightarrow \infty$ as $r \rightarrow \infty$.
(5) We have $M_{h^{\prime}}(r) \leq M_{h}(r) / r(r>0)$.
(6) We have $M_{f g}(r)=M_{f}(r) M_{g}(r)$ for any analytic functions f and g,

A p-adic holomorphic curve f is a map $f=\left[f_{0}: \cdots: f_{n}\right]: \mathbb{C}_{p} \rightarrow \mathbb{P}^{n}\left(\mathbb{C}_{p}\right)$, where f_{0}, \ldots, f_{n} are p-adic entire functions without common zeros. The map $\mathbf{f}=\left(f_{0}, \cdots, f_{n}\right): \mathbb{C}_{p} \rightarrow \mathbb{C}_{p}^{n+1}-\{0\}$ is called a reduced representation of f. The p-adic holomorphic curve $f: \mathbb{C}_{p} \rightarrow \mathbb{P}^{n}\left(\mathbb{C}_{p}\right)$ is said to be linearly non-degenerate if $f\left(\mathbb{C}_{p}\right)$ is not contained in any proper subspace of $\mathbb{P}^{n}\left(\mathbb{C}_{p}\right)$. Hyperplanes H_{1}, \ldots, H_{q} in $\mathbb{P}^{n}\left(\mathbb{C}_{p}\right)$ are said to be in general position if any
$n+1$ of them are linearly independent. The following theorem generalizes Theorem B.

ThEOREM 2.1. Let $f_{1}, f_{2}, \ldots, f_{\lambda}: \mathbb{C}_{p} \rightarrow \mathbb{P}^{n}\left(\mathbb{C}_{p}\right)$ be linearly non-degenerate p-adic holomorphic curves. Denote by \mathbf{f}_{i} a reduced representation of f_{i} for $1 \leq$ $i \leq \lambda$. Let H_{1}, \ldots, H_{q} be hyperplanes in $\mathbb{P}^{n}\left(\mathbb{C}_{p}\right)$ located in general position, and assume that $f_{1}^{-1}\left(H_{j}\right)=\cdots=f_{\lambda}^{-1}\left(H_{j}\right)$. Let $D_{j}=f_{1}^{-1}\left(H_{j}\right), D=\cup_{j=1}^{q} D_{j}$, and assume that for $i \neq j, D_{i} \cap D_{j}=\emptyset$. Let $l \in\{2,3, \ldots, \lambda\}$ be the minimal index such that for any increasing sequence $1 \leq j_{1}<j_{2}<\cdots<j_{l} \leq \lambda$, we have $\mathbf{f}_{j_{1}}(z) \wedge \cdots \wedge \mathbf{f}_{j_{l}}(z)=0$ for every point $z \in D$, where \wedge is the usual wedge product, and suppose that $q \geq \frac{\lambda n}{\lambda-l+1}+n+1$. Then $f_{1}, \ldots f_{\lambda}$ are algebraically dependent over \mathbb{C}_{p}, i.e., $\mathbf{f}_{1}(z) \wedge \cdots \wedge \mathbf{f}_{\lambda}(z) \equiv 0$ on \mathbb{C}_{p}.

In the case of $\lambda=2$, Theorem 2.1 gives the following result:
TheOrem 2.2. Let $f, g: \mathbb{C}_{p} \rightarrow \mathbb{P}^{n}\left(\mathbb{C}_{p}\right)$ be two p-adic linearly non-degenerate holomorphic curves. Let $H_{1}, \ldots, H_{3 n+1}$ be hyperplanes in $\mathbb{P}^{n}\left(\mathbb{C}_{p}\right)$ located in general position. Assume that $f^{-1}\left(H_{j}\right)=g^{-1}\left(H_{j}\right)$ for $1 \leq j \leq 3 n+1$ and that $f^{-1}\left(H_{i}\right) \cap f^{-1}\left(H_{j}\right)=\emptyset$ for $i \neq j$. If $f(z)=g(z)$ for every point $z \in \cup_{j=1}^{q} f^{-1}\left(H_{j}\right)$, then $f \equiv g$.

We will first give a proof of Theorem 2.2, and then outline the proof of Theorem 2.1.

Proof of Theorem 2.2. Let $\mathbf{f}, \mathbf{g}: \mathbb{C}_{p} \rightarrow \mathbb{C}_{p}^{n+1}-\{0\}$ be the reduced representations of f and g, and write $\mathbf{f}=\left(f_{0}, \ldots, f_{n}\right), \mathbf{g}=\left(g_{0}, \ldots, g_{n}\right)$. Let

$$
H_{j}=\left\{w=\left[w_{0}: \ldots: w_{n}\right] \in \mathbb{P}^{n}\left(\mathbb{C}_{p}\right): a_{j 0} w_{0}+\cdots+a_{j n} w_{n}=0\right\}, 1 \leq j \leq q
$$

and set $L_{j}(X)=a_{j 0} x_{0}+\cdots+a_{j n} x_{n}$, where $X=\left(x_{0}, \ldots, x_{n}\right)$ and L_{j} is the corresponding linear form of H_{j}.

Without loss of generality, we can assume that there exists a sequence $z_{k} \in \mathbb{C}_{p}$ such that $r_{k}=\left|z_{k}\right| \rightarrow \infty, r_{k} \notin\left\{r_{\nu}\right\}$, where the set $\left\{r_{\nu}\right\}$ is the discrete set appearing in part (2) of Lemma 2.1, $L_{j}(\mathbf{f})\left(z_{k}\right) \neq 0$ for $1 \leq j \leq 3 n+1$, and

$$
\begin{equation*}
\left|f_{0}\left(z_{k}\right)\right| \geq \max _{0 \leq i \leq n}\left\{\left|f_{i}\left(z_{k}\right)\right|,\left|g_{i}\left(z_{k}\right)\right|\right\} \tag{2.1}
\end{equation*}
$$

Define

$$
\Psi=\frac{W\left(f_{0}, \ldots, f_{n}\right) \cdot\left(f_{0} g_{1}-f_{1} g_{0}\right)^{n}}{\prod_{j=1}^{3 n+1} L_{j}(\mathbf{f})}
$$

where $W\left(f_{0}, \ldots, f_{n}\right)$ is the Wronskian of f_{0}, \ldots, f_{n}. Since f is linearly nondegenerate, we have $W\left(f_{0}, \ldots, f_{n}\right) \not \equiv 0$. We first show that Ψ is p-adic entire. In fact, since the sets $f^{-1}\left(H_{i}\right)$ are disjoint, each point $z \in \cup_{j=1}^{3 n+1} f^{-1}\left(H_{j}\right)$ satisfies $z \in f^{-1}\left(H_{i_{0}}\right)$ for some i_{0} with $1 \leq i_{0} \leq 3 n+1$, and $z \notin f^{-1}\left(H_{j}\right)$ for $j \neq i_{0}$. Hence $L_{j}(\mathbf{f})(z) \neq 0$ when $j \neq i_{0}$. Assume that $L_{i_{0}}(\mathbf{f})$ vanishes at z with vanishing order m. Then, since $W\left(f_{0}, \ldots, f_{n}\right)=a_{i_{0} 0}^{-1} W\left(L_{i_{0}}(\mathbf{f}), f_{1}, \ldots, f_{n}\right)$ (where
we assume, without of generality, that $\left.a_{i_{0} 0} \neq 0\right), W\left(f_{0}, \ldots, f_{n}\right)$ vanishes at z with order at least $m-n$. On the other hand, by assumption we have $f(z)=g(z)$, so $(\mathbf{f} \wedge \mathbf{g})(z)=0$. Thus, $\left(f_{0} g_{1}-f_{1} g_{0}\right)^{n}$ vanishes at z with order at least n. Hence, by the definition of Ψ, Ψ is continuous at z, so Ψ is p-adic entire.

Now, for each fixed z_{k}, by rearranging the indices we may assume that

$$
\left|L_{1}(\mathbf{f})\left(z_{k}\right)\right| \leq\left|L_{2}(\mathbf{f})\left(z_{k}\right)\right| \leq \cdots \leq\left|L_{3 n+1}(\mathbf{f})\left(z_{k}\right)\right|
$$

Solving the system of linear equations

$$
L_{j}(\mathbf{f})\left(z_{k}\right)=a_{j 0} f_{0}\left(z_{k}\right)+\cdots+a_{j n} f_{n}\left(z_{k}\right), \quad 1 \leq j \leq n+1
$$

we obtain

$$
\left|f_{0}\left(z_{k}\right)\right| \leq B\left|L_{n+1}(\mathbf{f})\left(z_{k}\right)\right| \leq \cdots \leq B\left|L_{3 n+1}(\mathbf{f})\left(z_{k}\right)\right|
$$

where $B>0$ is a constant independent of z_{k}. Hence

$$
\begin{align*}
\left|\Psi\left(z_{k}\right)\right| & =\frac{\left|W\left(f_{0}, \ldots, f_{n}\right)\left(z_{k}\right)\right|\left|\left(f_{0} g_{1}-f_{1} g_{0}\right)\left(z_{k}\right)\right|^{n}}{\left|\prod_{j=1}^{3 n+1} L_{j}(\mathbf{f})\left(z_{k}\right)\right|} \tag{2.2}\\
& \leq \frac{B^{2 n}\left|W\left(f_{0}, \ldots, f_{n}\right)\left(z_{k}\right)\right|\left|\left(f_{0} g_{1}-f_{1} g_{0}\right)\left(z_{k}\right)\right|^{n}}{\left|L_{1}(\mathbf{f})\left(z_{k}\right)\right| \cdots\left|L_{n+1}(\mathbf{f})\left(z_{k}\right)\right|\left|f_{0}\left(z_{k}\right)\right|^{2 n}}
\end{align*}
$$

By Lemma 2.1,

$$
M_{\frac{\left(L_{j}(\mathrm{f})\right)^{\prime}}{L_{j}(\mathrm{f})}}(r) \leq \frac{1}{r}
$$

Since for $1 \leq i \leq n$,

$$
\frac{\left(L_{j}(\mathbf{f})\right)^{(i)}}{L_{j}(\mathbf{f})}=\frac{\left(L_{j}(\mathbf{f})\right)^{(i)}}{\left(L_{j}(\mathbf{f})\right)^{(i-1)}} \cdots \frac{\left(L_{j}(\mathbf{f})\right)^{\prime}}{L_{j}(\mathbf{f})}
$$

it follows that

$$
M_{\left(L_{j}(\mathbf{f})\right)^{(i)} / L_{j}(\mathbf{f})}(r) \leq \frac{1}{r^{i}}
$$

and hence

$$
\begin{equation*}
\left|\frac{\left(L_{j}(\mathbf{f})\right)^{(i)}}{L_{j}(\mathbf{f})}\left(z_{k}\right)\right| \leq \frac{1}{\left|z_{k}\right|^{i}} \tag{2.3}
\end{equation*}
$$

By the properties of the Wronskian and the assumption that the hyperplanes are in general position, we have

$$
\begin{equation*}
\frac{\left|W\left(f_{0}, \ldots, f_{n}\right)\left(z_{k}\right)\right|}{\left|L_{1}(\mathbf{f})\left(z_{k}\right)\right| \cdots\left|L_{n+1}(\mathbf{f})\left(z_{k}\right)\right|}=\frac{C \mid W\left(L_{1}\left(\mathbf{f}, \ldots, L_{n+1}(\mathbf{f})\right)\left(z_{k}\right) \mid\right.}{\left|L_{1}(\mathbf{f})\left(z_{k}\right)\right| \cdots\left|L_{n+1}(\mathbf{f})\left(z_{k}\right)\right|} \tag{2.4}
\end{equation*}
$$

where $C>0$ is a constant. By the properties of the p-adic norm and (2.3), we have

$$
\begin{align*}
& \frac{\mid W\left(L_{1}(\mathbf{f})\left(z_{k}\right), \ldots, L_{n+1}(\mathbf{f})\left(z_{k}\right) \mid\right.}{\left|L_{1}(\mathbf{f})\left(z_{k}\right)\right| \cdots\left|L_{n+1}(\mathbf{f})\left(z_{k}\right)\right|} \\
& \quad \leq \max _{i_{1}+\cdots+i_{n+1}=n}\left|\frac{\left(L_{1}(\mathbf{f})\right)^{\left(i_{1}\right)}}{L_{1}(\mathbf{f})}\left(z_{k}\right)\right| \cdots\left|\frac{\left(L_{n+1}(\mathbf{f})\right)^{\left(i_{n+1}\right)}}{L_{n+1}(\mathbf{f})}\left(z_{k}\right)\right| \tag{2.5}\\
& \quad \leq \frac{1}{\left|z_{k}\right|^{n}}
\end{align*}
$$

On the other hand, by (2.1) and the properties of the p-adic norm, we also have

$$
\begin{equation*}
\left|\left(f_{0} g_{1}-f_{1} g_{0}\right)^{n}\left(z_{k}\right)\right| \leq\left|f_{0}\left(z_{k}\right)\right|^{2 n} \tag{2.6}
\end{equation*}
$$

Combining (2.2), (2.4), (2.5) and (2.6) yields

$$
\left|\Psi\left(z_{k}\right)\right| \leq \frac{B^{2 n} C}{\left|z_{k}\right|^{n}} \rightarrow 0 \text { as } k \rightarrow \infty
$$

where $B>0$ and $C>0$ are two constants which depend only on the hyperplanes. This implies that $\Psi \equiv 0$. Hence

$$
\frac{g_{1}}{g_{0}} \equiv \frac{f_{1}}{f_{0}}
$$

Similarly, we can prove that, for $1 \leq i \leq n$,

$$
\frac{g_{i}}{g_{0}} \equiv \frac{f_{i}}{f_{0}}
$$

So $f \equiv g$. This completes the proof of Theorem 2.2.
Proof of Theorem 2.1. Let $\mathbf{f}_{\lambda}=\left(f_{\lambda, 0}, \ldots, f_{\lambda, n}\right)$ be the reduced representation of f_{λ}. Without loss of generality, we can assume that there exists a sequence $z_{k} \in \mathbb{C}_{p}$ such that $r_{k}=\left|z_{k}\right| \rightarrow \infty, L_{j}\left(\mathbf{f}_{1}\right)\left(z_{k}\right) \neq 0$ for $1 \leq j \leq 3 n+1$ and

$$
\left|f_{1,0}\left(z_{k}\right)\right| \geq \max _{0 \leq i \leq n, 1 \leq t \leq \lambda}\left\{\left|f_{t, i}\left(z_{k}\right)\right|\right\}
$$

Assume that $f_{1}, \ldots f_{\lambda}$ are not algebraically dependent over \mathbb{C}_{p}, i.e., $\mathbf{f}_{1} \wedge \cdots \wedge$ $\mathbf{f}_{\lambda} \not \equiv 0$. Take a non-trivial component $h(z)$ of $\mathbf{f}_{1} \wedge \cdots \wedge \mathbf{f}_{\lambda}$ and set

$$
\Phi=\frac{W\left(f_{1,0}, \ldots, f_{1, n}\right) \cdot h(z)^{\frac{n}{\lambda-l+1}}}{\prod_{j=1}^{q} L_{j}\left(\mathbf{f}_{1}\right)}
$$

where $q \geq \frac{n \lambda}{\lambda-l+1}+n+1$. Let $\Psi=\Phi^{\lambda-l+1}$. We now show that Ψ is p-adic entire. In fact, since $D_{i} \cap D_{j}=\emptyset$ for $i \neq j$, each point $z \in D=\cup_{j=1}^{q} D_{j}$ satisfies $z \in f_{1}^{-1}\left(H_{i_{0}}\right)$ for some i_{0} with $1 \leq i_{0} \leq q$, and $z \notin f_{1}^{-1}\left(H_{j}\right)$ for $j \neq i_{0}$. Thus, $L_{j}\left(\mathbf{f}_{1}\right)(z) \neq 0$ when $j \neq i_{0}$. Assume that $L_{i_{0}}(\mathbf{f})$ vanishes at z with vanishing order m. Then $W\left(f_{1,0}, \ldots, f_{1, n}\right)$ vanishes at z with order at least $m-n$. On the other hand, it is easy to verify, using the assumptions
of Theorem 2.1, that for any $z \in D,|h(z)|^{\frac{n}{\lambda-l+1}}$ vanishes at z with vanishing order at least n. Therefore Ψ is continuous at z, and hence Ψ is p-adic entire. The rest of proof follows that of Theorem 2.2.

3. Uniqueness problems counting multiplicity

The results in Section 2 are concerned with uniqueness problems without counting multiplicity. In this section we consider the uniqueness problem counting multiplicity. In this case, the result is simple and elegant:

THEOREM 3.1. Let $f, g: \mathbb{C}_{p} \rightarrow \mathbb{P}^{n}\left(\mathbb{C}_{p}\right)$ be two p-adic holomorphic curves, at least one of which is linearly non-degenerate. Let H_{1}, \ldots, H_{n+2} be hyperplanes in $\mathbb{P}^{n}\left(\mathbb{C}_{p}\right)$ located in general position such that $f\left(\mathbb{C}_{p}\right) \not \subset H_{j}$ and $g\left(\mathbb{C}_{p}\right) \not \subset H_{j}$ for $1 \leq j \leq n+2$. Denote by L_{j} the linear form associated with H_{j}, and assume that $L_{j}(f) / L_{j}(g), 1 \leq j \leq n+2$, is non-vanishing on \mathbb{C}_{p} (i.e., that $L_{j}(f)$ and $L_{j}(g)$ vanish at the same points with the same vanishing order). Then $f \equiv g$.

Proof. Without loss of generality, we can assume that g is linearly nondegenerate. We recall the fact that any non-vanishing p-adic entire function must be constant (see [R1]). Consider the functions

$$
h_{j}=\frac{L_{j}(f)}{L_{j}(g)}, 1 \leq j \leq n+2
$$

Each h_{j} is a non-vanishing p-adic entire function, so $h_{j}=c_{j}$, where c_{j} is constant. Without loss of generality, we may assume that the hyperplanes H_{j} are represented by

$$
H_{j}=\left\{w=\left[w_{0}: \cdots: w_{n}\right] \in \mathbb{P}^{n}\left(\mathbb{C}_{p}\right) \mid w_{j-1}=0\right\}, 1 \leq j \leq n+1
$$

and

$$
H_{n+2}=\left\{w=\left[w_{0}: \cdots: w_{n}\right] \in \mathbb{P}^{n}\left(\mathbb{C}_{p}\right) \mid w_{0}+\cdots+w_{n}=0\right\}
$$

Thus we can write $c_{n+1}\left(g_{0}+\cdots+g_{n}\right)=f_{0}+\cdots+f_{n}$, and hence

$$
\left(c_{n+1}-c_{0}\right) g_{0}+\cdots+\left(c_{n+1}-c_{n}\right) g_{n}=0
$$

By the linear-nondegeneracy condition, this implies $c_{0}=c_{1}=\cdots=c_{n+1}$. Hence $f \equiv g$.

References

[AS] W.W. Adams and E.G. Straus, Non-Archimedean analytic functions taking the same values at the same points, Illinois J. Math. 15 (1971), 418-424.
[Bo] A. Boutabaa, Théorie de Nevanlinna p-adique, Manuscripta Math. 67 (1990), 251269.
[Ch1] W. Cherry, Hyperbolic p-adic analytic spaces, Ph.D. Thesis, Yale University, 1993.
[Ch2] , A survey of Nevanlinna theory over non-Archimedean fields. Bull. Hong Kong Math. Soc. 1 (1994), 235-249.
[CY] W. Cherry and Z. Ye, Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem, Trans. Amer. Math. Soc. 349 (1997), 5043-5071.
[Kh] H.H. Khoái, On p-adic meromorphic functions, Duke Math. J. 50 (1983), 695-711.
[KQ] H.H. Khoái and M.V. Quang, On p-adic Nevanlinna theory, Lecture Notes in Math., vol. 1351, Springer-Verlag, New York, 1988, pp. 16-158.
[KT] H.H. Khoái and M.V. Tu, p-adic Nevanlinna-Cartan theorem Internat. J. Math. 6 (1995), 719-731.
[Ne] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta. Math. 48 (1926), 367-391.
[Co1] C. Corrales-Rodrigáñez, Nevanlinna theory in the p-adic plane, Annales Polonici Mathematici 57 (1992), 135-147.
[R1] Min Ru, A note on p-adic Nevanlinna theory, Proc. Amer. Math. Soc. 129 (2001), 1263-1269.
[R2] _, An uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc. 129 (2001), 2701-2707.
[V] W. Stoll, On the propagation of dependences, Pacific J. Math. 139 (1989), 311-337.
Department of Mathematics, University of Houston, Houston, TX 77204, USA E-mail address: minru@math.uh.edu

[^0]: Received December 10, 1999; received in final form June 16, 2000.
 2000 Mathematics Subject Classification. Primary 11J99. Secondary 32H30.
 The author is supported in part by NSF grant DMS-9800361 and by NSA grant MDA904-01-1-0051. The United State Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation herein.

