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ON HARMONIC NORMAL AND Q#
p FUNCTIONS

RAUNO AULASKARI, PETER LAPPAN, AND RUHAN ZHAO

Abstract. We investigate relationships between classes of harmonic

functions corresponding to the meromorphic Q#
p classes. We give many

analogs to the situations in the corresponding analytic and meromorphic
classes, and we give some examples in which the behavior is different in

the harmonic classes.

1. Introduction

Let C denote the complex plane; W the Riemann sphere; D denote the
unit disk {z ∈ C : |z| < 1}; and Σ the collection of all one-to-one conformal
mappings of D onto itself. If f is a meromorphic function in D, we say that
f is a normal function if the family F = {f(γ(z)) : γ ∈ Σ} is a normal family.
We denote the family of all normal meromorphic functions by N . There is a
related subfamily, the so-called “little normal functions”, defined by

N0 = {f : f meromorphic in D and lim
|z|→1

(1− |z|2)f#(z) = 0},

where f#(z) = |f ′(z)|
1+|f(z)|2 is the spherical derivative of f .

If u is a function which is harmonic and real-valued in D, we say that u is
a normal harmonic function if the family F = {u(γ(z)) : γ ∈ Σ} is a normal
family. It is consequence of this definition that if u is a normal harmonic
function, and if f is the analytic function f(z) = u(z) + iv(z), where v(z)
is a harmonic conjugate of u(z), then f is a normal (analytic) function (see
[La1]). However, the converse is not true, since the elliptic modular function is
a normal (analytic) function for which the real part is not a normal harmonic
function (see [La1, p. 158]). We denote by Nh the family of all real harmonic
normal functions.

Let w ∈ D and let g(z, w) = log
∣∣∣ 1−wzz−w

∣∣∣ be the Green’s function in D with

logarithmic singularity at w. Let u#(z) = | gradu(z)|
1+|u(z)|2 , and let dm(z) denote
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the Euclidean element of area in C. In [La1] it was shown that a real-valued
function u that is harmonic in D is a normal function if and only if

sup
z∈D

(1− |z|2)u#(z) <∞.

In addition to Nh, we will be considering the following classes of functions:

UBCh =
{
u : u real harmonic in D and

sup
a∈D

∫∫
D

(u#(z))2g(z, a)dm(z) <∞
}
,

UBCh,0 =
{
u : u real harmonic in D and

lim
|a|→1

∫∫
D

(u#(z))2g(z, a)dm(z) = 0
}
,

Nh,0 =
{
u : u real harmonic in D and

lim
|z|→1

(1− |z|2)u#(z) = 0
}
,

D#
h =

{
u : u real harmonic in D and∫∫

D

(u#(z))2dm(z) <∞
}
,

and, for 0 < p <∞,

Q#
h,p =

{
u : u real harmonic in D and

sup
a∈D

∫∫
D

(u#(z))2(g(z, a))pdm(z) <∞
}
,

Q#
h,p,0 =

{
u : u real harmonic in D and

lim
|a|→1

∫∫
D

(u#(z))2(g(z, a))pdm(z) = 0
}
.

Meromorphic (and analytic) normal functions have been studied exten-
sively by many authors (see, for example, [AnClPo], [LeVi], and [Po]). Com-
plex-valued functions (that are not necessarily meromorphic) and real-valued
functions (that are not necessarily harmonic) can also be considered as nor-
mal functions; this has been studied in [AuLa1], [AuLa2], [La1], [La2], and
[La3]. Some new characterizations for the classes N and N0 have appeared
in [AuZh]. One of the goals of this paper is to investigate how these charac-
terizations apply to harmonic normal functions. We will give results in this
direction in Sections 2 and 3.
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For 0 < p <∞, the classes

Qp = {f : f analytic in D and sup
a∈D

∫∫
D

|f ′(z)|2(g(z, a))pdm(z) <∞}

and the classes

Q#
p = {f : f meromorphic in D and sup

a∈D

∫∫
D

(f#(z))2(g(z, a))pdm(z) <∞}

were introduced in [AuLa2] and [AuXiZh]. It is possible to extend this defi-
nition to the case p = 0 with the interpretation that

Q0 =
{
f : f analytic in D and

∫∫
D

|f ′(z)|2dm(z) <∞
}

and

Q#
0 =

{
f : f meromorphic in D and

∫∫
D

(f#(z))2dm(z) <∞
}
.

Then Q0 is simply the usual Dirichlet space DA and Q#
0 is the spherical

Dirichlet space D#
A . We will use these interpretations in Section 5.

It has been shown that the classes Qp and Q#
p have the nesting property,

i.e., that for 0 < p < q <∞ both Qp ⊂ Qq and Q#
p ⊂ Q#

q hold (see [AuXiZh]).
In Section 4, we will give the corresponding property for the classes Q#

h,p. In
[AuLa1], it was proved that D#

h ⊂ Nh (also see [Ko]). Chen and Gauthier
improved this result by showing that D#

h ⊂ Nh,0 (see [ChGa, Theorem 4]).
By considering the classes Q#

h,p,0, we can sharpen this result, as we will show
in Section 4.

In Section 5, we will establish some relationships between a harmonic func-
tion in the class Q#

h,p and its corresponding analytic function. These results
generalize results in [La1] and [La3].

The authors are happy to express their thanks to the referee for several
excellent suggestions for improvements in this paper.

2. Characterizations of harmonic normal functions

The result of this section is an analog of a result for meromorphic normal
functions in [AuZh]. If a ∈ D, let φa(z) = (a− z)/(1− az), and, if 0 < r < 1,
let D(a, r) = {z : |φa(z)| < r}. Finally, let |D(a, r)| denote the Euclidean area
of the disk D(a, r).

Theorem 1. Let u be a real harmonic function in D, let 0 < r < 1,
2 < p <∞, and 1 < q <∞. The following statements are equivalent:



426 RAUNO AULASKARI, PETER LAPPAN, AND RUHAN ZHAO

u ∈ Nh,(A)

sup
a∈D

1
|D(a, r)|1−p/2

∫∫
D(a,r)

(u#(z))pdm(z) <∞,(B)

sup
a∈D

∫∫
D(a,r)

(u#(z))p(1− |z|2)p−2dm(z) <∞,(C)

sup
a∈D

∫∫
D

(u#(z))p(1− |z|2)p−2(1− |φa(z)|2)qdm(z) <∞,(D)

sup
a∈D

∫∫
D

(u#(z))p(1− |z|2)p−2(g(z, a))qdm(z) <∞,(E)

sup
a∈D

∫∫
D

(u#(z))p
(

log
1
|z|

)p
|φ′a(z)|2dm(z) <∞.(F)

Proof. The proofs of the implications (A) =⇒ (E) =⇒ (D) =⇒ (C)⇐⇒ (B)
and (A) =⇒ (F) =⇒ (D) follow the proof of Theorem 1 of [AuZh], with
obvious modifications, so we omit these proofs here. Thus, to establish the
theorem, we need only prove (C) =⇒ (A).

Suppose that u satisfies (C) but not (A). By [AuLa1], there are two se-
quences of points {zn} and {z′n} in D such that u(zn) → 0, u(z′n) → 1, and
the pseudohyperbolic distance ρ(zn, z′n) = |φzn(z′n)| → 0. Let f = u + iv be
an analytic function whose real part is u, and let fn(z) = f(γn(z)) − f(zn),
where γn(z) = (z + zn)/(1 + znz). Then fn(0) = 0 and Re(fn(γ−1

n (z′n)))→ 1,
which means that {fn} is not a normal family in any neighborhood of z = 0.
By a result of Zalcman [Za], there exist a sequence of points {ζn} in D, and
a sequence of positive real numbers {ρn} with ζn → 0 and ρn → 0, and there
exists a subsequence of the sequence {hn(t) = fn(ζn + ρnt)}, which converges
uniformly on each compact subset of C to a non-constant entire function h(t).
Without loss of generality, we may assume that the full sequence {hn(t)} con-
verges uniformly to h(t) on each compact subset of C. Now

Re(hn(t)) = Re(fn(ζn + ρnt))→ Reh(t)

uniformly on each compact subset of C. Thus we have∫∫
|t|<s

((Rehn)#(t))pdm(t)→
∫∫
|t|<s

((Reh)#(t))pdm(t) > 0.

Since ζn → 0, ρ → 0, and 2 < p < ∞, we have, for each r > 0 and each
s > 0,

{z = γn(ζn + ρnt) : |t| < s} ⊂ D(γn(ζn), r)

for n sufficiently large, and

(2.1)
∫∫
|t|<s

((Rehn)#(t))p
(

1− |ζn + ρnt|2

ρn

)p−2

dm(t)→∞.
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But∫∫
|t|<s

((Rehn)#(t))p
(

1− |ζn + ρnt|2

ρn

)p−2

dm(t)

=
∫∫
|t|<s

(
|f ′(γn(ζn + ρnt))γ′n(ζn + ρnt)|ρn

1 + |Re(f(γn(ζn + ρnt))− f(zn))|2

)p
×
(

1− |γn(ζn + ρnt)|2

|γ′n(ζn + ρnt)|ρn

)p−2

dm(t)

≤
∫∫

D(γn(ζn),r)

(
| gradu(z)|

1 + |u(z)− u(zn)|2

)p
(1− |z|2)p−2dm(z).

However, by condition (C), this last term is finite, contradicting (2.1). Hence
we have shown that (C) implies (A), and the proof is complete. �

Remark 1. For p = 2, the implication (A) =⇒ (E) was proved in
[AuLa1]. All of the implications cited in the first sentence of the proof are
valid for 0 < p <∞. However, for the implication (C) =⇒ (A) the condition
p > 2 is necessary (see [AuZh]).

3. Characterizations of the class Nh,0

In this section we prove a result analogous to Theorem 1 with the class
Nh,0 of Nh. The corresponding result for meromorphic functions in the class
N was proved in [AuZh].

Theorem 2. Let u be a real-valued harmonic function in D, let 0 < r < 1,
2 ≤ p <∞, and 1 < q <∞. The following statements are equivalent:

u ∈ Nh,0,(a)

lim
|a|→1

1
|D(a, r)|1−p/2

∫∫
D(a,r)

(u#(z))pdm(z) = 0,(b)

lim
|a|→1

∫∫
D(a,r)

(u#(z))p(1− |z|2)p−2dm(z) = 0,(c)

lim
|a|→1

∫∫
D

(u#(z))p(1− |z|2)p−2(1− |φa(z)|2)qdm(z) = 0,(d)

lim
|a|→1

∫∫
D

(u#(z))p(1− |z|2)p−2(g(z, a))qdm(z) = 0,(e)

lim
|a|→1

∫∫
D

(u#(z))p
(

log
1
|z|

)p
|φ′a(z)|2dm(z) = 0.(f)

Proof. The theorem will be proved if we show the implications (a) =⇒
(e) =⇒ (d) =⇒ (c) ⇐⇒ (b) and (c) =⇒ (a) =⇒ (f) =⇒ (d). However, the
proofs of (a) =⇒ (e) =⇒ (d) =⇒ (c) ⇐⇒ (b) and (a) =⇒ (f) =⇒ (d) are,
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aside from obvious modifications, contained in the proofs of Theorems 2 and
3 of [AuZh], so we will omit these proofs. Thus, we will have proved the
theorem if we prove the implication (c) =⇒ (a).

We first suppose that u satisfies condition (c) with p = 2. We claim that
this implies that u ∈ Nh. If u is not in the class Nh, we can let {zn},
{z′n}, γn(z), {ζn}, {ρn}, hn(t), and h(t) be as in the proof of the implication
(C) =⇒ (A) of Theorem 1. Thus we have

Rehn(t) = un(γ(ζn + ρnt))− u(zn)→ Reh(t)

uniformly on compact subsets of C, and∫∫
|t|<s

((Rehn)#(t))2dm(t)→
∫∫
|t|<s

((Reh)#(t))2dm(t) > 0,

since h(t) is a nonconstant entire function. Now, for 0 < r < 1, s > 0, and n
sufficiently large, we have {z = γn(ζn + ρnt) : |t| < s} ⊂ D(γn(ζn), r), so that∫∫

D(γn(ζn),r)

(
| gradu(z)|

1 + |u(z)− u(zn)|2

)2

dm(z) ≤ K
∫∫

D(γn(ζn),r)

(u#(z))2dm(z)

and∫∫
D(γn(ζn),r)

(
| gradu(z)|

1 + |u(z)− u(zn)|2

)2

dm(z)

≥
∫∫
|t|<s

((Rehn)#(t))2dm(t)→
∫∫
|t|<s

((Reh)#(t))2dm(t) > 0

for some constant K > 0. Since |zn| → 1 and |ζn| → 0, we have |γn(ζn)| → 1,
and hence, by condition (c) with p = 2,

lim
n→∞

∫∫
D(γn(ζn),r)

(u#(z))2dm(z) = 0.

But this contradicts the previous inequality, so we have shown that u ∈ Nh.
Now suppose that u is not in Nh,0. Then there exists a sequence of points

{an} in D with |an| → 1 and a constant C such that

lim
n→∞

(1− |an|2)u#(an) = C > 0.

Set γn(w) = (w + an)/(1 + anw) and let un(w) = u(γn(w)). Since u ∈ Nh,
we may suppose that {un(w)} converges uniformly on each compact subset of
D to a function u0(w) which is either harmonic on D or identically infinite.
We claim that |u0(w)| cannot be identically infinite.

Let f be any function that is analytic in a disk D∗ with radius r0 and center
at the origin and whose image is in the right half-plane. Without loss of gen-
erality we may assume that f(0) is real. Then the mapping g(z) = f(z)−f(0)

f(z)+f(0)

sends D∗ into the unit disk and satisfies g(0) = 0, so by the Schwarz Lemma
we have |g′(0)| ≤ 1/r0. But |g′(0)| = |f ′(0)|/(2|f(0)|). Thus, setting U(z) =
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Re f(z), we have | gradU(0)|
2|U(0)| ≤ 1/r0, and hence U#(0) ≤ 2|U(0)|

r0(1+|U(0)|2) . Thus,
if {Un(z)} is a sequence of harmonic functions which converges uniformly to
infinity on D∗, we have U#

n (0) ≤ 2
r0|Un(0)| → 0. It follows that if {Un(z)} is

a sequence of harmonic functions which converges uniformly to either +∞ or
−∞ on a disk with center at the origin, then U#

n (0)→ 0.
Returning to the sequence {un(w)}, we conclude that if |u0(w)| is iden-

tically infinite, then u#
n (0) → 0. Since we assumed that u#

n (0) → C > 0,
we conclude that u0(w) is harmonic in D and u#

0 (0) = C > 0. Since
| gradun(0)| → | gradu0(0)| ≥ C > 0, we conclude that u0(w) is a nonconstant
function, and hence∫∫

D(an,r)

(u#
n (z))2dm(z) =

∫∫
D(0.r)

(u#
n (w))2dm(w)

→
∫∫

D(0,r)

(u#
0 (w))2dm(w) > 0.

This contradicts (c) in the case p = 2 and thus proves the implication (c) =⇒
(a) for p = 2.

Now let p > 2. By the Hölder inequality,∫∫
D(a,r)

(u#(z))2dm(z)

≤

(∫∫
D(a,r)

(u#(z))pdm(z)

)2/p(∫∫
D(a,r)

dm(z)

)1−(2/p)

=

(
1

|D(a, r)|1−(p/2)

∫∫
D(a,r)

(u#(z))pdm(z)

)2/p

.

Thus, from condition (b) with 2 < p < ∞, which is equivalent to (c) (see
[AuZh]), we get

lim
|a|→1

∫∫
D(a,r)

(u#(z))2dm(z) = 0.

But this is condition (c) with p = 2, and we have proved above that this
implies (a). This completes the proof. �

Remark 2. For 0 < p < 2 we do not know whether the conditions given
in Theorem 2 are equivalent. The implications stated in the second sentence
of the proof of Theorem 2 remain valid for all p > 0, but the implication
(c) =⇒ (a) requires other methods.

4. Inclusions

In [AuLa2, Theorem 3] it was proved that Q#
h,p = Nh for p > 1. In the

previous section, we showed that Q#
h,p,0 = Nh,0 for p > 1. From the definitions
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it is easy to see that Q#
h,1 = UBCh and Q#

h,1,0 = UBCh,0. The meromorphic
classes UBC and UBC0 have been studied extensively; see, for example, [Ya1],
[Ya2], and [Pa]. In this section, we will show that, for 0 < p ≤ 1, the classes
Q#
h,p and Q#

h,p,0 are different and establish various inclusion relationships.
We begin with characterizations of Q#

h,p and Q#
h,p,0.

Proposition 1. Let 0 < p ≤ 1, let u be a real-valued harmonic function
in D such that u ∈ Nh, and for a ∈ D let φa(z) = (z − a)/(1− az).

(i) We have u ∈ Q#
h,p if and only if

(4.1) sup
a∈D

∫∫
D

(u#(z))2(1− |φa(z)|2)pdm(z) <∞.

(ii) We have u ∈ Q#
h,p,0 if and only if

(4.2) lim
|a|→1

∫∫
D

(u#(z))2(1− |φa(z)|2)pdm(z) = 0.

Proof. Since 1−|φa(z)|2 ≤ 2g(z, a), the “only if” part in (i) and (ii) follows
from the definitions of Q#

h,p and Q#
h,p,0.

To prove the “if” part, suppose that (4.1) is valid. Because g(z, a) =
log(1/|φa(z)|), we have g(z, a) ≥ log 4 > 1 for z ∈ D(a, 1/4); that is, |φa(z)| <
1/4, and g(z, a) ≤ 4(1 − |φa(z)|2) for z ∈ D − D (a, 1/4). Then, for a fixed
q > 1, ∫∫

D

(u#(z))2(g(z, a))pdm(z)(4.3)

=
∫∫

D(a,1/4)

(u#(z))2(g(z, a))pdm(z)

+
∫∫

D−D(a,1/4)

(u#(z))2(g(z, a))pdm(z)

≤
∫∫

D(a,1/4)

(u#(z))2(g(z, a))pdm(z)

+ 4p
∫∫

D−D(a,1/4)

(u#(z))2(1− |φa(z)|2)pdm(z)

≤
∫∫

D

(u#(z))2(g(z, a))qdm(z)

+ 4p
∫∫

D−D(a,1/4)

(u#(z))2(1− |φa(z)|2)pdm(z).

However, since u ∈ Nh, we have, by [AuLa2, Theorem 3],

(4.4) sup
a∈D

∫∫
D

(u#(z))2(g(z, a))qdm(z) <∞.
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Hence it follows from (4.3) and (4.4) that u ∈ Q#
h,p, and the “if” part is

established for (i).
Now suppose (4.2). If we fix q > 1 and recall that 0 < p ≤ 1, then, using

the inequality (1− |φa(z)|2)q ≤ (1− |φa(z)|2)p, we have

lim
|a|→1

∫∫
D

(u#(z))2(1− |φa(z)|2)qdm(z) = 0.

Hence, by Theorem 2(d), we have u ∈ Nh,0, and thus, by Theorem 2(e),

(4.5) lim
|a|→1

∫∫
D

(u#(z))2(g(z, a))qdm(z) = 0.

Now it follows from (4.2), (4.3), and (4.5) that

lim
|a|→1

∫∫
D

(u#(z))2(g(z, a))pdm(z) = 0,

which means that u ∈ Qh,p,0. This establishes the “if” part for (ii) and
completes the proof. �

Remark 3. For 0 ≤ p <∞, we say that a positive measure µ defined on
D is a bounded p-Carleson measure, provided

(4.6) µ(S(I)) = O(|I|p)

for all subarcs I of ∂D, where |I| denotes the arc length and S(I) denotes
the Carleson box based on I. When p = 1, this gives the standard definition
of a Carleson measure (see, for example, [Ba]). If the right side of (4.6) is
o(|I|p), then we say that µ is a compact p-Carleson measure. In [AuStXi], it
was proved that, for 0 < p < ∞, a positive measure µ on D is a bounded
p-Carleson measure if and only if

(4.7) sup
a∈D

∫∫
D

|φ′a(z)|pdµ(z) <∞,

and µ is a compact p-Carleson measure if and only if

lim
|a|→1

∫∫
D

|φ′a(z)|pdµ(z) = 0.

Thus, since |φ′a(z)|(1 − |z|2) = 1 − |φa(z)|2, Proposition 1 implies that if
u ∈ Nh and 0 < p ≤ 1, then u ∈ Q#

h,p if and only if (u#(z))2(1− |z|2)pdm(z)
is a bounded p-Carleson measure, and also that u ∈ Q#

h,p,0 if and only if
(u#(z))2(1− |z|2)pdm(z) is a compact p-Carleson measure.

Remark 4. The analog of Proposition 1 for meromorphic functions is
given in [AuXiZh, Proposition 2]. Note that in the meromorphic case we do
not need the additional assumption f ∈ N to obtain the characterization of
Q#
p . It seems reasonable to conjecture that the assumption u ∈ Nh is not
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necessary in Proposition 1, but we do not know how to prove (i) without this
assumption. Note that this assumption is not necessary to prove (ii).

Next, we prove an inclusion result.

Lemma 1. For 0 < p ≤ 1 we have Q#
h,p ⊂ Nh.

Proof. Let 0 < p ≤ 1, and let u ∈ Q#
h,p, so that

(4.8) M = sup
a∈D

∫∫
D

(u#(z))2(g(z, a))pdm(z) <∞.

If u is not a normal function, let {zn}, {z′n}, γn(z), {ζn}, {ρn}, hn(t), and
h(t) be as in the proof of the implication (C) =⇒ (A) of Theorem 1. Since
h(t) is a nonconstant entire function, we have, for s > 0,∫∫

|t|<s

(
| grad Rehn(t)|
1 + |Rehn(t)|2

)2

dm(t)(4.9)

→
∫∫
|t|<s

(
| grad Reh(t)|
1 + |Reh(t)|2

)2

dm(t) > 0.

Since ζn → 0, ρn → 0, and u(zn)→ 0, we have, for some r with 0 < r < 1,∣∣∣∣∣
∫∫

D(γn(ζn),r)

(
| grad(u(w)− u(zn))|
1 + |u(w)− u(zn)|2

)2

(g(w, γn(ζn)))pdm(w)(4.10)

−
∫∫

D(γn(ζn),r)

(u#(w))2(g(w, γn(ζn)))pdm(w)

∣∣∣∣∣→ 0.

On the other hand, letting w = γn(ζn + ρnt), we have∫∫
D(γn(ζn),r)

(
| grad(u(w)− u(zn))|
1 + |u(w)− u(zn)|2

)2

(g(w, γn(ζn)))pdm(w)

≥
∫∫
|t|<s

(
| grad(u(γn(ζn + ρnt))− u(zn))|
1 + |u(γn(ζn + ρnt))− u(zn)|2

)2

|ρnγ′n(ζn + ρnt)|2

× (g(γn(ζn + ρnt), γn(ζn)))pdm(t)

=
∫∫
|t|<s

(
| grad Rehn(t)|
1 + |Rehn(t)|2

)2

(g(γn(ζn + ρnt), γn(ζn)))pdm(t)

≥ inf
|t|<s
{(g(γn(ζn + ρnt), γn(ζn)))p}

∫∫
|t|<s

(
| grad Rehn(t)|
1 + |Rehn(t)|2

)2

dm(t)

→∞,
by (4.9) and the relation

inf
|t|<s
{(g(γn(ζn + ρnt), γn(ζn)))p} → ∞
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(which holds since ρ(ζn + ρnt, ζn)→ 0 for |t| < s). But, by observing (4.10),
we see that (4.8) is now violated, and the lemma is proved. �

Lemma 1 is actually valid for 0 < p < ∞ since, for p > 1, we have
Qh,p = Nh (see [AuLa2, Theorem 3]).

Theorem 3. For 0 < p < q <∞, we have
(i) Q#

h,p ⊂ Q
#
h,q,

(ii) Q#
h,p,0 ⊂ Q

#
h,q,0.

Proof. (i) If q > 1, then Q#
h,q = Nh, and the result follows from Lemma

1. If 0 < p < q ≤ 1 and u ∈ Q#
h,p, then, by Lemma 1, u ∈ Nh and, by

Proposition 1,

sup
a∈D

∫∫
D

(u#(z))2
(
1− |φa(z)|2

)p
dm(z) <∞.

Since 0 < p < q, we have
(
1− |φa(z)|2

)q ≤ (1− |φa(z)|2
)p and hence

sup
a∈D

∫∫
D

(u#(z))2
(
1− |φa(z)|2

)q
dm(z) <∞,

which by Proposition 1 (since u ∈ Nh) is equivalent to u ∈ Q#
h,q. This

completes the proof of (i).
(ii) Let 0 < p < q <∞ and u ∈ Q#

h,p,0. Since 1− |φa(z)|2 ≤ 2g(z, a) for all
z, a ∈ D, we have

lim
|a|→1

∫∫
D

(u#(z))2(1− |φa(z)|2)pdm(z)

≤ lim
|a|→1

2p
∫∫

D

(u#(z))2(g(z, a))pdm(z) = 0.

Again, since (1− |φa(z)|2)q ≤ (1− |φa(z)|2)p for 0 < p < q <∞, we obtain

lim
|a|→1

∫∫
D

(u#(z))2(1− |φa(z)|2)qdm(z) = 0.

If 0 < q < 1, this yields u ∈ Q#
h,q,0, by Proposition 1. If q > 1, then applying

Theorem 2(d) with p = 2, we see that u ∈ Nh,0 = Q#
h,q,0. This completes the

proof. �

Theorem 4. The inclusions given in Theorem 3 are strict when 0 < p < q
and p < 1.

Proof. Let 0 < p < q ≤ 1 and let f0(z) =
∑∞
n=0 anz

2n , where an =
2−n(1−p)/2. In [AuXiZh, Corollary 3], it was shown that f0 is in the class
Qq,0 ⊂ Qq, but not in the class Q#

p (and hence not in Q#
p,0). (Actually,
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Corollary 3 in [AuXiZh] dealt with the case q ≤ 1, but it is clear that, if p <
1 < q, we can take q′ such that p < q′ < 1 < q and we then have f0 ∈ Q#

q′ ⊂
Q#
q = Nh from [AuXiZh, Theorem 2].) We can write f0(z) = u0(z) + iv0(z),

where u0 and v0 are real harmonic functions. Since |f ′0(z)| = | gradu0(z)| and
f0 is a bounded function, it follows that u0 is not in either of the classes Q#

h,p

or Q#
h,p,0. Hence u0 ∈ Q#

h,q−Q
#
h,p and so u0 ∈ Q#

h,q,0−Q
#
h,p,0. This completes

the proof. �

In [AuLa1, Theorem 1] it was shown that D#
h ⊂ Nh (see also [Ko]). Chen

and Gauthier have improved this result, showing that D#
h ⊂ Nh,0 (see [ChGa,

Theorem 4]). We can sharpen this inclusion as follows.

Theorem 5. We have D#
h ⊂

⋂
0<p<∞Q#

h,p,0.

Proof. If u ∈ D#
h , then

(4.11)
∫∫

D

(u#(z))2dm(z) <∞.

It follows that
lim
|a|→1

∫∫
D(a,r)

(u#(z))2dm(z) = 0

for each fixed r ∈ (0, 1). Hence, by either Theorem 4 of [ChGa] or Theorem
2(b) (with p = 2) we have u ∈ Nh,0. Letting 0 < p < 1 and q > 1, we obtain
by Hölder’s inequality∫∫

D

(u#(z))2(g(z, a))pdm(z)(4.12)

≤
(∫∫

D

(u#(z))2(g(z, a))qdm(z)
)p/q (∫∫

D

(u#(z))2dm(z)
)1−p/q

.

Since u ∈ Nh,0, (4.11), (4.12), and the case p = 2 of Theorem 2(e) yield

lim
|a|→1

∫∫
D(a,r)

(u#(z))2(g(z, a))pdm(z) = 0.

This means that u ∈ Q#
h,p,0, and the theorem is proved. �

We next show that the inclusion in Theorem 5 is strict.

Theorem 6. We have D#
h 6=

⋂
0<p<∞Q#

h,p,0.

Proof. In [AuXiZh, Corollary 4] it was shown that the function f1(z) =∑∞
n=1 2−n/2z2n is a bounded function such that f1 ∈

⋂
0<p<∞Q#

p,0 − DA,
where

DA = {f : f analytic in D and
∫∫

D

|f ′(z)|2dm(z) <∞}.
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We can write f1(z) = u1(z) + iv1(z), where u1 and v1 are real harmonic
functions. Because |f ′1(z)| = | gradu1(z)|, we have u#

1 (z) ≤ |f ′1(z)|, and hence
u1 ∈

⋂
0<p<∞Q#

h,p,0. On the other hand, |u1(z)| ≤ |f1(z)| ≤
∑∞
n=1 2−n/2 <

∞, which implies that u1 is not in D#
h . This completes the proof. �

5. Real parts of analytic functions

In this section, we give some relationships between the classes Q#
h,p and

Q#
h,p,0 and the corresponding classes of analytic functions. The classes Qp

and Q#
p have been defined in Section 1. For completeness, we recall the

definition of the classes Qp,0 and Q#
p,0 (see [AuXiZh]):

Qp,0 =
{
f : f analytic in D and lim

|a|→1

∫∫
|f ′(z)|2(g(z, a))pdm(z) = 0

}
,

and

Q#
p,0 =

{
f : f meromorphic in D and

lim
|a|→1

∫∫
D

(f#(z))2(g(z, a))pdm(z) = 0
}
.

We can generalize [La1, Theorem 5] as follows.

Proposition 2. If u is a real-valued harmonic function in D, 0 < p <∞,
u ∈ Q#

h,p (or Q#
h,p,0), and if f = u+ iv is an analytic function, where v is the

harmonic conjugate of u, then f ∈ Q#
p (or Q#

p,0).

Proof. The result follows easily from the facts that | gradu(z)| = |f ′(z)|
and u#(z) ≥ f#(z). �

We note that the converse of Proposition 2 does not hold. In fact, the fol-
lowing examples show that two different types of converses to this proposition
are not valid.

Example 1. There exists a function f = u + iv with f ∈ Q#
p for each

p > 0, such that u = Re(f) ∈ Q#
h,p for each p > 0, but v = Im(f) ∈ Q#

h,p for
no p > 0.

Proof. Let f be a conformal mapping from D onto the region W = {w =
u + iv : |v| < 1 +

√
u, u > 0} such that f maps the real axis in D onto the

real axis in W . It is clear that the region W has finite spherical area, so
f ∈ Q#

0 ⊂ Q#
p for p > 0 (see [AuXiZh, Theorem 4]), and also that f is not

a Bloch function, since the region W contains arbitrarily large disks. Hence,
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since f is univalent and f is not a Bloch function, f is not in any of the classes
Qp, p > 0, by [AuLaXiZh, Theorem 6.1]. Since

|f(z)|2 = |u(z)|2 + |v(z)|2 ≤ |u(z)|2 + 1 + |u(z)|+ 2
√
|u(z)|

for |u(z)| ≥ 1, we have |f(z)|2 < 5|u(z)|2, and so

| gradu(z)|2

(1 + |u(z)|2)2
=

|f ′(z)|2

(1 + |u(z)|2)2
≤ 25

|f ′(z)|2

(1 + |f(z)|2)2
= 25(f#(z))2.

Also, for |u(z)| ≤ 1 we have |f(z)|2 ≤ 5, which means

| gradu(z)|2

(1 + |u(z)|2)2
=

|f ′(z)|2

(1 + |u(z)|2)2
≤ |f ′(z)|2 ≤ 36(f#(z))2.

Hence it follows that u ∈ Q#
h,p for each p > 0.

Since f maps the real axis onto the real axis, it follows that if r > 0,
ar = f−1(r), and D(ar, 1/e) = {z ∈ D : g(z, ar) > 1}, then f(D(ar, 1/e))
contains a Euclidean disk ∆(r, ρr) = {w : |w−r| < ρr} with radius ρr =

√
r/e

and center at r, where ρr →∞ as r →∞. Thus, for p > 0,∫∫
D(ar,1/e)

| grad v(z)|2

(1 + |v(z)|2)2
(g(z, ar))pdm(z)

=
∫∫

f(D(ar,1/e))

1
(1 + |v|2)2

(gW (w, r))pdm(w)

≥
∫∫

f(D(ar,1/e))

1
(1 + |v|2)2

dm(w),

where w = u+ iv and gW (w, r) is the Green’s function in W with logarithmic
singularity at r. Thus, for

√
r > 2e,∫∫

f(D(ar,1/e))

1
(1 + |v|2)2

dm(w) ≥
∫∫

∆(r,ρr)

1
(1 + |v|2)2

dm(w)

≥
∫ r+

√
r/(2e)

r−
√
r/(2e)

2
(∫ 1

0

1
(1 + |v|2)2

dv

)
du

= (2
√
r/e)

∫ 1

0

1
(1 + |v|2)2

dv →∞.

It follows that v(z) is not in Q#
h,p for any p > 0 (and hence not in Q#

h,p,0 either
for any choice of p > 0). This proves the result. �

In Example 1, we had f ∈ Q#
p and u ∈ Q#

h,p for each p > 0, but v 6∈ Q#
h,p

for any choice of p > 0. In the following example, we show that we can have
f ∈ Q#

p , while neither u nor v are in Q#
h,p.
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Example 2. There exists an analytic function f with f ∈ Q#
p for each

p > 0 such that neither u(z) = Re(f(z)) nor v(z) = Im(f(z)) is in any of the
classes Q#

h,p, p > 0.

Proof. Let {Dn} be a sequence of disjoint disks of radius rn centered on
the positive real axis such that rn → ∞. Let D′n = {w = iz : z ∈ Dn}
denote the disk Dn, rotated so that its center falls on the imaginary axis in
the upper half-plane. For n > 1, Dn and D′n have disjoint closures. For each
n, let Sn be a thin channel from the center of Dn to the center of D′n, and
let S′n be a thin channel from the center of D′n to the center of Dn+1. Let
Ω =

⋃∞
n=1(Dn ∪ Sn ∪D′n ∪ S′n) (so that Ω is simply connected), and let f be

a conformal mapping from the unit disk D onto Ω. If the disk Dn has center
wn and radius rn, then the Green’s function on the disk Dn with singularity
at wn is gDn(w,wn) = ln

∣∣∣ rn
w−wn

∣∣∣, and if gΩ(w,wn) is the Green’s function on
Ω with singularity at wn, then gΩ(w,wn) ≥ gDn(w,wn). We can now repeat
the proof given for Example 1 to show that u is not in Q#

h,p for any positive
p. By a similar argument using the disks D′n, we see that v is not in Q#

h,p for
any positive p. But f(D) = Ω has finite spherical area, so f ∈ Q#

0 ⊂ Q#
p for

each p > 0. This completes the proof. �

It is easy to modify the construction in Example 2 so that, for each α with
0 ≤ α < 2π, the function g(z) = eiαf(z) is in Q#

p for each p > 0, but neither
u(z) = Re g(z) nor v(z) = Im g(z) is in any of the classesQ#

h,p. We simply need
to arrange the disks {Dn} so that each ray from the origin forming a rational
angle with the positive real axis passes through the centers of infinitely many
of these disks. We then create, for each n, a suitable channel Sn connecting
the centers of the disks Dn and Dn+1. Applying the argument in the proof
of Example 2 to the conformal mapping f of the unit disk D onto the region
Ω′ =

⋃∞
n=1(Dn ∪ Sn), we then obtain the result.

Proposition 2 states that if f is analytic and u(z) = Re(f(z)) ∈ Q#
h,p for

some positive p, then f ∈ Q#
p . However, as the next example shows, the

condition u ∈ Q#
h,p does not imply that f ∈ Qp.

Example 3. There exists an analytic function f such that both u(z) =
Re(f(z)) and v(z) = Im(f(z)) satisfy u ∈ Q#

h,p and v ∈ Q#
h,p for each p > 0,

while f 6∈ Qp for all p. (Thus, by Proposition 2, we have f ∈ Q#
p − Qp for

each p > 0.)

Proof. Let f be a conformal mapping from the unit disk D onto the region
Λ = {w = u+ iv : 0 < u < v < 2u}. Then, for w ∈ Λ,

1√
5
|w| ≤ |u|, |v| ≤

√
5|w|
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and | gradu(z)|2 = |f ′(z)|2 = | grad v(z)|2, where f(z) = u(z) + iv(z). Thus,

(u#(z))2 ≤ 25(f#(z))2, (v#(z))2 ≤ 25(f#(z))2.

Now f(D) = Λ has finite spherical area, so f ∈ Q#
0 ⊂ Q#

p for each p > 0.
Thus, we have both u ∈ Q#

h,p and v ∈ Q#
h,p, for each p > 0. But f is a

conformal mapping which is not a Bloch function, so f is not in any Qp for
p > 0, by [AuLaXiZh, Theorem 6.1]. Further, f(D) = Λ does not have finite
planar area, so f is not in Q0. This completes the proof. �

Proposition 3. Let 0 < p < ∞, and let u and v be harmonic conjugate
functions such that the corresponding analytic function f = u + iv is in Qp
(or Qp,0). Then both u and v are in Q#

h,p (or Q#
h,p,0).

Proof. The result follows easily from the inequality u#(z) ≤ | gradu(z)| =
|f ′(z)|. �

The last part of this inequality shows that if we define classes Qh,p and
Qh,p,0 in the natural way, using | gradu(z)| in place of u#(z), then u ∈ Qh,p
(or Qh,p,0) and u(z) = Re(f(z) if and only if f ∈ Qp (or Qp,0). We will not
pursue this direction further here.

The following result generalizes Lemma 1 in [La3].

Proposition 4. Let 0 < p < ∞, let u be a function that is harmonic in
D such that u ∈ Q#

h,p (or Q#
h,p,0), and let v be a conjugate harmonic function

of u. Then f(z) = eu(z)+iv(z) is in Q#
p (or Q#

p,0).

Proof. We note that ex + e−x ≥ 1 + x2 for all real x, which implies eu(z) +
e−u(z) ≥ 1+ |u(z)|2. Also, note that f ′(z) = f(z) d

dz (u(z)+iv(z)), so |f ′(z)| =
|f(z)|| gradu(z)|. Thus, for 0 < p <∞,∫∫

D

(f#(z))2(g(z, a))pdm(z)

=
∫∫

D

(
|f ′(z)|

1 + |f(z)|2

)2

(g(z, a))pdm(z)

=
∫∫

D

| gradu(z)|2
(
|f(z)|

1 + |f(z)|2

)2

(g(z, a))pdm(z)

=
∫∫

D

| gradu(z)|2
(

1
|f(z)|+ 1

|f(z)|

)2

(g(z, a))pdm(z)

=
∫∫

D

| gradu(z)|2 1
(eu(z) + e−u(z))2

(g(z, a))pdm(z)
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≤
∫∫

D

| gradu(z)|2
(

1
1 + |u(z)|2

)2

(g(z, a))pdm(z)

=
∫∫

D

(u#(z))2(g(z, a))pdm(z).

Since u ∈ Q#
h,p (or Q#

h,p,0), it follows from the inequality above that f ∈ Q#
p

(or Q#
p,0). This completes the proof. �
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