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THE SPECTRUM OF DIFFERENTIAL OPERATORS IN Hp

SPACES

QUAN ZHENG, LIANGPAN LI, XIAOHUA YAO, AND DASHAN FAN

Abstract. This paper is concerned with linear partial differential op-
erators with constant coefficients in Hp(Rn). In the case 0 < p ≤ 1, we

establish some basic properties and the spectral mapping property, and
determine completely the essential spectrum, point spectrum, approx-
imate point spectrum, continuous spectrum, and residual spectrum of
such differential operators. In the case p > 2, we show that the point
spectrum of such differential operators in Lp(Rn) is the empty set for

p ∈ (2, 2n
n−1

), but not for p > 2n
n−1

in general. Moreover, we make some

remarks on the case p > 1 and give several examples.

1. Introduction

The spectrum of linear partial differential operators (PDOs) with constant
coefficients in Lp(Rn) has been extensively studied (cf. [19], [15]). In partic-
ular, the spectral mapping property holds for all PDOs in L2(Rn), and for
many classes of PDOs (e.g., elliptic PDOs) in Lp(Rn) (p > 1). On the other
hand, the application of the theory of Hp spaces has become an interesting
subject in harmonic analysis since the 1980s. However, as yet we do not know
any results related to the spectrum of PDOs in Hp(Rn) (0 < p ≤ 1).

Since Hp(Rn) (0 < p < 1) is not a Banach space, one might expect that the
spectral theory of PDOs with constant coefficients in Lp(Rn) is more complete
than in Hp(Rn). However, our work shows that the opposite is true. One
of the main reasons is that the structure of the eigenvalues of such PDOs is
well understood in Hp(Rn), but not in Lp(Rn) (p > 2). There are also many
technical differences in the study of such PDOs on those two spaces, especially
for the problem of the essential spectrum. The theory of Hp(Rn) spaces (see
[4]) and Fourier multipliers in such spaces (see [14]) provide the fundamental
knowledge that we need in this subject.
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This paper is organized as follows.
In Section 2, we start with some preliminaries on Hp(Rn) (0 < p ≤ 1) and

Fourier multipliers in such spaces. The main results of this section give some
general properties of PDOs with constant coefficients in Hp(Rn) (0 < p ≤ 1).
In particular, we show that the space Sc (see Lemma 2.1(b) below) is a core
of PDOs. This space plays a key role in the treatment of PDOs in Hp(Rn),
analogous to the role of the Schwartz space in the case of Lp(Rn).

Section 3 is concerned with the spectrum of PDOs with constant coefficients
in Hp(Rn) (0 < p ≤ 1). We first prove the spectral mapping theorem for
some classes of coercive PDOs, in which a practical sufficient condition is
given by using coercive and hypoelliptic indices of their symbols. Next, we
show that the essential spectrum is always consistent with their spectra; the
proof is based on the structure of an important sequence in Hp(Rn) (see
Lemma 3.4 below). Finally, we prove that such PDOs have no eigenvalues,
and that the approximate point spectrum is also consistent with their spectra.
In particular, a characterization of the residual spectrum is obtained by using
their symbols.

Section 4 is devoted to the spectrum of PDOs with constant coefficients
in Lp(Rn) (p > 1). We first consider general spectral results, and then deal
with the eigenvalues of such PDOs in Lp(Rn) (p > 2). The main result of this
section shows that such PDOs have no eigenvalues in Lp(Rn) (2 < p < 2n

n−1 ).
We give an example showing that there exist PDOs having eigenvalues in
Lp(Rn) (p > 2n

n−1 ). We find that the existence of eigenvalues of PDOs depends
on the geometrical property of level surfaces associated with their symbols. As
a result in this direction we prove that if the level surfaces are all contained in
planes, then the corresponding PDO has no eigenvalues in Lp(Rn) (p > 2n

n−1 ).
We have made some progress in this direction, and further results will be
given in a forthcoming paper.

Finally, in Section 5, we provide four examples. The first one corrects a
result given in [1]. The second one shows that the spectral mapping property
may not hold for certain non-coercive PDOs in Lp(Rn) for all p > 0 (p 6= 2),
and also corrects the form of a polynomial that appeared in several papers
([19], [6], [1], [15]). The third one shows that there are PDOs which satisfy the
spectral mapping property in Lp(Rn) for larger p-values, but not for smaller
p-values. The last example deals with semi-elliptic PDOs. We conclude by
posing two questions.

Throughout this paper, S (resp. C∞c , S ′) denotes the space of rapidly
decreasing functions (resp. C∞ functions with compact support, tempered
distributions) on Rn. We denote by Fφ (or φ̂) the Fourier transform of
φ ∈ S; that is,

(Fφ)(y) = φ̂(y) =
∫

Rn

e−iy·xφ(x)dx for y ∈ Rn,
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and F−1φ (i.e., φ̂(−·)) is the inverse transform. We let Dj = −i∂/∂xj (1 ≤
j ≤ n), Dα = Dα1

1 · · ·Dαn
n , and |α| = α1 + · · · + αn for α ∈ Nn

0 , where
N0 = N ∪ {0}. Moreover, we set np = n| 12 −

1
p | for p > 0.

2. General properties of PDOs in Hp (0 < p ≤ 1)

We first recall the definition of Hp (p > 0). For fixed ϕ ∈ S with ϕ̂(0) 6= 0,
let ϕt = t−nϕ( ·t ) (t > 0) and f+(x) = supt>0 |(f ∗ ϕt)(x)| (x ∈ Rn, f ∈ S ′),
where ∗ denotes the convolution. Define Hp = {f ∈ S ′; f+ ∈ Lp} with norm
‖f‖Hp = ‖f+‖Lp .

It is known that, if we replace the function ϕ by another function in S, then
the space Hp remains the same and the norm changes to an equivalent one.
If p > 1, then Hp = Lp with equivalent norms. If p = 1, then H1 is a Banach
space and H1 ⊂ L1; If 0 < p < 1, we consider Hp merely as a Fréchet space,
and ‖ · ‖pHp is subadditive and so gives a metric on Hp. In the remainder of
this section we always assume 0 < p ≤ 1.

The following lemma collects several properties of Hp spaces (see [21], [2]),
which are used later. Define

Sc =
{
f ∈ S; f̂ is in C∞c and vanishes in a neighborhood of the origin

}
.

Lemma 2.1.

(a) Hp ↪→ S ′, i.e., Hp is continuously embedded in S ′.
(b) C∞c ∩Hp and Sc both are dense subspaces of Hp.
(c) Let f ∈ Hp, and let ϕ ∈ S with ϕ̂(0) = 1. Then ‖ϕt∗f‖Hp ≤M‖f‖Hp

and ϕt ∗ f → f (t→ 0) in Hp.

We refer to [14] for Fourier multipliers in Hp. Define

Mp = {u ∈ L∞; ‖u‖Mp
<∞},

where

‖u‖Mp = sup{‖F−1(uf̂)‖Hp ; f ∈ S ∩Hp, ‖f‖Hp ≤ 1}.

Lemma 2.2.

(a) If u ∈Mp, then u ∈ C(Rn \ {0}).
(b) Let u ∈ Ck(Rn) with k = [np]+1. If there exist constants a ≥ −1 and

b ≥ (a + 1)np such that |Dαu(ξ)| = O(|ξ|a|α|−b) as |ξ| → ∞, where
|α| ≤ k, then u ∈Mp.

(c) Let T be a bounded linear operator on Hp which commutes with trans-
lations. Then there exists a unique u ∈Mp such that Tf = F−1(uf̂)
for f ∈ S ∩Hp.

Proof. (a) This is well known (see [22]).
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(b) By the assumption there exist constants M > 0, L > 1 such that

|Dαu(ξ)| ≤M |ξ|a|α|−b ≤M |ξ|a|α|−(a+1)np for |ξ| ≥ L and |α| ≤ k.
Let φ ∈ C∞c be such that

φ(ξ) =

{
1, |ξ| ≤ L,
0, |ξ| ≥ L+ 1.

Then by Leibniz’s formula there exists a constant M1 > 0 such that

|Dα(u(ξ)(1− φ(ξ)))| ≤M1|ξ|a|α|−(a+1)np

for ξ ∈ Rn and |α| ≤ k, and so Theorem G(i) in [14] implies that u(1− φ) ∈
Mp. On the other hand, there exists a constant M2 > 0 such that

|Dα(u(ξ)φ(ξ))| ≤M2χ{ξ; |ξ|≤L+1} ≤M2((L+ 1)/|ξ|)|α|

for ξ ∈ Rn and |α| ≤ k. It follows thus from a generalization of Mihlin’s
multiplier theorem (see [2]) that uφ ∈Mp. The proof is complete.

(c) By Remark 2.4 in [14] there exists K ∈ S ′ such that Tf = K ∗ f for
f ∈ S∩Hp. Since T is bounded on Hp, it follows from Theorem 3.5 in [14] that
there exists a polynomial P of degree ≤ [n/p−n] such that f 7→ (K−P )∗f is a
bounded operator on L2, and so u := K̂−P̂ ∈ L∞. Noting that supp P̂ ⊂ {0},
we have Tf = F−1(K̂f̂) = F−1(uf̂) for f ∈ S ∩ Hp. Since Mp ⊂ L∞, the
uniqueness is obvious. �

In the sequel, we always assume that P : Rn → C is a polynomial of degree
m > 0. The corresponding PDO in Hp is defined by Pp = P (D) with maximal
domain in Hp in the distributional sense. Equivalently, Ppf = F−1(P f̂) with
D(Pp) = {f ∈ Hp; F−1(P f̂) ∈ Hp}. For s > 0 define

Hp
s = {f ∈ Hp; F−1((1 + | · |2)s/2f̂) ∈ Hp}

with norm ‖f‖Hps := ‖F−1((1 + | · |2)s/2f̂)‖Hp . Then Hp
s is a Fréchet space.

P is called coercive if |P (ξ)| → ∞ as |ξ| → ∞. For r ∈ (0,m], P is called
r-coercive if |P (ξ)|−1 = O(|ξ|−r) as |ξ| → ∞. It is known that P is coercive
if and only if it is r-coercive for some r ∈ (0,m] (cf. [8]). Furthermore, P is
called elliptic if the principal part of P never vanishes outside of the origin.
This is equivalent to P being m-coercive. Moreover, we say that D(⊂ D(Pp))
is a core of Pp if Pp is the closure of P (D)|D in Hp, where P (D)|D is the
operator P (D) defined on D.

Theorem 2.3.

(a) Pp is a closed and densely defined operator, and S ∩ Hp ⊂ Hp
m ⊂

D(Pp).
(b) If P is r-coercive, then D(Pp) ⊂ Hp

s , where s = max{0, r−(m−r)np}.
In particular, if P is elliptic, then D(Pp) = Hp

m.
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(c) Sc and C∞c ∩Hp both are cores of Pp.

Proof. (a) The closedness of Pp is a direct consequence of Lemma 2.1(a).
Since S ∩Hp = {f ∈ S; (Dαf̂)(0) = 0 for |α| ≤ [n/p− n]}, it is not hard to
check that S ∩Hp ⊂ Hp

m. On the other hand, ξ 7→ ξα/(1 + |ξ|2)m/2 ∈Mp for
|α| ≤ m by Lemma 2.2(b), and thus Hp

m ⊂ D(Pp). Noting that Sc ⊂ S ∩Hp,
we have by Lemma 2.1(b) that Pp is densely defined.

(b) By assumption there exist constants M,L > 0 such that |P (ξ)| ≥M |ξ|r
for |ξ| ≥ L. Let f ∈ D(Pp), and let φ ∈ C∞c be such that

φ(ξ) =

{
1, |ξ| ≤ L,
0 |ξ| ≥ 2L.

Then (1+ | · |2)s/2φ ∈Mp, and thus F−1((1+ | · |2)s/2φf̂) ∈ Hp. On the other
hand, since we may check that

|Dα((1 + |ξ|2)s/2(1− φ(ξ))P−1(ξ))| = O(|ξ|(m−r−1)|α|+s−r) (|ξ| → ∞)

for α ∈ Nn
0 , Lemma 2.2(b) leads to (1 + | · |2)s/2(1 − φ)P−1 ∈ Mp. Conse-

quently,

F−1((1 + | · |2)s/2(1− φ)f̂) = F−1((1 + | · |2)s/2(1− φ)P−1F(Ppf)) ∈ Hp,

and thus f ∈ Hp
s .

(c) Let ϕ ∈ S with ϕ̂(0) = 1. Then for g ∈ D(Pp),

F−1(PF(ϕt ∗ g)) = F−1(ϕ̂tP ĝ) = ϕt ∗ (Ppg),

which implies by Lemma 2.1(c) that D(Pp) 3 ϕt ∗g → g and Pp(ϕt ∗g)→ Ppg
(t→ 0) in Hp. Since (a) and Lemma 2.1(b) implies that Sc is a dense subset
in D(Pp), it follows that for h ∈ Sc,

‖ϕt ∗ h− ϕt ∗ g‖Hp ≤ ‖ϕ̂t‖Mp
‖h− g‖Hp ,

‖Pp(ϕt ∗ h)− Pp(ϕt ∗ g)‖Hp ≤ ‖ϕ̂tP‖Mp‖h− g‖Hp .
Combining these inequalities and noting that ϕt ∗ h ∈ Sc, we see that Sc is a
core of Pp. Similarly, we can show that C∞c ∩Hp is also a core of Pp. �

3. The spectrum of PDOs in Hp (0 < p ≤ 1)

Denote by ρ(Pp) the resolvent set of Pp, i.e.,

ρ(Pp) = {λ ∈ C; the range R(λ− Pp) is dense in Hp and there exists

M > 0 such that ‖f‖Hp ≤M‖(λ− Pp)f‖Hp for f ∈ D(Pp)}.

The spectrum of Pp is σ(Pp) := C \ ρ(Pp). Since Hp is a Fréchet space, the
closed graph theorem yields that for every λ ∈ ρ(Pp), (λ− Pp)−1 is bounded,
i.e., sup{‖(λ− Pp)−1f‖Hp ; ‖f‖Hp = 1} <∞. Furthermore, ρ(Pp) is an open
set.
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We start with the spectral inclusion theorem and a characterization of
λ ∈ ρ(Pp).

Theorem 3.1.

(a) P (Rn) ⊂ σ(Pp), where P (Rn) = {P (ξ); ξ ∈ Rn}.
(b) λ ∈ ρ(Pp) if and only if (λ− P )−1 ∈Mp.

Proof. (a) Let λ ∈ ρ(Pp). Since (λ − Pp)−1 is translation invariant, by
Lemma 2.2(c) there exists u ∈ Mp such that (λ − Pp)−1φk = F−1(uφ̂k),
where φk ∈ Sc with φ̂k(ξ) = 1 for 1/k ≤ |ξ| ≤ k (k ∈ N). This implies that
u(ξ)(λ − P (ξ)) = 1 for ξ 6= 0, and thus λ /∈ P (Rn \ {0}) by Lemma 2.2(a).
The claim follows now from the closedness of σ(Pp).

(b) We may assume λ = 0. If 0 ∈ ρ(Pp), then from the proof of (a) one sees
easily that P−1 = u ∈Mp. Conversely, since f = Pp(F−1(P−1f̂)) for f ∈ Hp

and since g = F−1(P−1F(Ppg)) for g ∈ D(Pp), we deduce from P−1 ∈ Mp

that 0 ∈ ρ(Pp). �

As for the spectral mapping property of Pp (i.e., P (Rn) = σ(Pp)), we
assume that P is coercive. Then P (Rn) = P (Rn). When ρ(Pp) = ∅, Theorem
3.1(a) implies that the spectral mapping property for Pp holds if and only if
P (Rn) = C. When ρ(Pp) 6= ∅, we have the following theorem.

Theorem 3.2. Let P be an r-coercive polynomial of degree m. Suppose
one of the following conditions is satisfied:

(a) ρ(Pp) 6= ∅.
(b) np(m− r) ≤ r. In particular, P is elliptic.
(c) There exists s ∈ [1− r/np, 1] such that∣∣∣∣DαP (ξ)

P (ξ)

∣∣∣∣ = O(|ξ|−s|α|) (|ξ| → ∞) for 0 < |α| ≤ [np] + 1.(3.1)

Then σ(Pp) = P (Rn).

Proof. We first note that if P is r-coercive, then (3.1) is satisfied with
s = r + 1 −m (see [19, p. 67]), and so (b) implies (c). If (c) is satisfied, we
may assume P (Rn) 6= C. Otherwise, the spectral mapping property follows
from Theorem 3.1(a) immediately. Let λ 6∈ P (Rn). Since

|Dα(λ− P (ξ))−1| = O(|ξ|−s|α|−r) (|ξ| → ∞) for |α| ≤ [np] + 1,

we have (λ − P )−1 ∈ Mp by Lemma 2.2(b), which implies (a) by Theorem
3.1(b).

When (a) is satisfied, our proof is similar to the proof of Theorem 4.3 of
Chapter 11 in [19]. Set Q = (λ−P )k, where k = np(m−r)/r and λ 6∈ P (Rn).
Then Q−1 ∈ Mp, and so 0 ∈ ρ(Qp). Also, (λ − Pp)kφ = Qpφ for φ ∈ Sc.
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Since (a) implies the closedness of (λ− Pp)k, (λ− Pp)k is an extension of Qp
by Theorem 2.3(c). Thus

R(λ− Pp) ⊃ R((λ− Pp)k) ⊃ R(Qp) = Hp.

On the other hand, if (λ− Pp)kf = 0, then

0 = 〈(λ− Pp)kf, φ〉 = 〈f, (λ− P (−D))kφ〉 for φ ∈ S.

Since λ 6∈ P (Rn) = P (−Rn), for every ψ ∈ S there exists φ ∈ S such that
ψ = (λ− P (−D))kφ. Consequently f = 0, and thus

ker(λ− Pp) ⊂ ker((λ− Pp)k) = {0}.

So we obtain that λ ∈ ρ(Pp). Thus σ(Pp) ⊂ P (Rn). The claim follows now
from Theorem 3.1(a). �

Condition (3.1) can be relaxed to

(3.2)

∣∣∣∣∣Dk
jP (ξ)
P (ξ)

∣∣∣∣∣ = O(|ξ|−sk) (|ξ| → ∞) for 1 ≤ j ≤ n and 0 < k ≤ [np] + 1,

since the same is true for the corresponding condition in Lemma 2.2(b) (see
[14, p. 314]). Moreover, for s ∈ (0, 1], a polynomial P is called s-hypoelliptic
if it satisfies (3.1) for all α ∈ Nn

0 .
We now turn to the essential spectrum of Pp, which is defined by

σe(Pp) = ∩{σ(Pp +Qp); Qp is a compact linear operator on Hp}.

Clearly σe(Pp) is a closed set. Similarly to Theorem 4.4 of Chapter 1 in [19]
we obtain the following result.

Lemma 3.3. If there exists a sequence {fk} ⊂ D(Pp) such that ‖fk‖Hp →
δ > 0, (λ − Pp)fk → 0, and {fk} has no convergent subsequence, then λ ∈
σe(Pp).

The following lemma is motivated by Lemma 2 in [12]. We now choose ϕ ∈
S in the definition of Hp such that ϕ̂(0) 6= 0 and suppϕ ⊂ {x ∈ Rn; |x| ≤ 1}.

Lemma 3.4. Let 0 6= ψ ∈ Sc, ξ ∈ Rn, and fk,ξ = k−n/pψ( ·k )eiξ· for
k ∈ N. Then:

(a) fk,ξ ∈ Sc for sufficiently large k.
(b) limk→∞ ‖fk,ξ‖Hp = δ > 0, where

δ =

{
‖ψ‖Lp supt>0 |ϕ̂(tξ)| if ξ 6= 0,
‖ψ‖Hp if ξ = 0.

(c) {fk,ξ}k∈N has no convergent subsequence in Hp.
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Proof. (a) Clearly fk,ξ ∈ S. Since f̂k,ξ = kn−n/pψ̂(k · −kξ) and −kξ 6∈
supp ψ̂ for sufficiently large k, it follows that fk,ξ ∈ Sc.

(b) If ξ = 0, it is obvious that ‖fk,0‖Hp = ‖ψ‖Hp > 0 for k ∈ N, as desired.
If ξ 6= 0, we have by (a) and the definition of Hp that for sufficiently large k,

0 ≤ ‖fk,ξ‖pHp −
∫

Rn

sup
t≤
√
k

|(ϕt ∗ fk,ξ)(x)|pdx ≤
∫

Rn

sup
t>
√
k

|(ϕt ∗ fk,ξ)(x)|pdx.

Copying the proof of (3) in [12] yields that

lim
k→∞

∫
Rn

sup
t>
√
k

|(ϕt ∗ fk,ξ)(x)|pdx = 0,

so it suffices to show

lim
k→∞

∫
Rn

sup
t≤
√
k

|(ϕt ∗ fk,ξ)(x)|pdx = {‖ψ‖Lp sup
t>0
|ϕ̂(tξ)|}p.

Again, copying the proof of (5) in [12] we obtain

lim
k→∞

∫
Rn

sup
t≤
√
k

|(ϕt ∗ fk,ξ)(x)− k−n/pψ(xk )(ϕt ∗ eiξ·)(x)|pdx = 0.

But ϕt ∗ eiξ· = eiξ·ϕ̂(tξ), so we obtain∫
Rn

sup
t≤
√
k

|k−n/pψ(xk )(ϕt ∗ eiξ·)(x)|pdx =
∫

Rn

k−n|ψ(xk )|pdx{ sup
t≤
√
k

|ϕ̂(tξ)|}p

= {‖ψ‖Lp sup
t≤
√
k

|ϕ̂(tξ)|}p.

The claim thus follows. Moreover, since ϕ̂(0) 6= 0, we have supt>0 |ϕ̂(tξ)| > 0.
(c) Since L∞ ↪→ S ′ and ‖fk,ξ‖L∞ = k−n/p‖ψ‖L∞ , we have fk,ξ → 0 in S ′.

If {fk,ξ}k∈N has convergent subsequence in Hp, then we may assume without
loss of generality that fk,ξ → f in Hp. This implies that fk,ξ → f in S ′, and
thus f = 0. But by (b) ‖f‖Hp = δ > 0, which yields a contradiction. �

We are now in a position to prove the result on the essential spectrum of
Pp.

Theorem 3.5. σe(Pp) = σ(Pp).

Proof. If λ ∈ P (Rn), then λ = P (ξ) for some ξ ∈ Rn. Let fk,ξ be given as
in Lemma 3.4. For sufficiently large k, we have by Leibniz’s formula

(λ− Pp)fk,ξ = (P (ξ)− P (D))fk,ξ =
∑

0<|α|≤m

1
α!
k−|α|P (α)(ξ)fαk,ξ,
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where m = deg(P ) and fαk,ξ = k−n/p(Dαψ)( ·k )eiξ·. Since ψ ∈ Sc implies
Dβψ ∈ Sc, limk→∞ ‖fαk,ξ‖Hp exists for |α| ≤ m. Thus

‖(λ− Pp)fk,ξ‖pHp ≤
∑

0<|α|≤m

(|P (α)(ξ)|/α!)pk−|α|/p‖fαk,ξ‖
p
Hp → 0 (k →∞).

It follows now from Lemma 3.3 that λ ∈ σe(Pp), and therefore P (Rn) ⊂
σe(Pp) by the closedness of σe(Pp).

If λ ∈ σ(Pp)\P (Rn), then for each ψ ∈ Sc, f := F−1((λ−P )−1ψ̂) ∈ D(Pp)
and (λ − Pp)f = ψ. This means that Sc ⊂ R(λ − Pp). Since λ ∈ σ(Pp), the
inequality

‖f‖Hp ≤M‖(λ− Pp)f‖Hp for f ∈ D(Pp)(3.3)

cannot hold. Therefore there exists a sequence {fk} ⊂ D(Pp) such that
‖fk‖Hp = 1 and (λ − Pp)fk → 0 in Hp. We note that {fk} has no con-
vergent subsequence. Otherwise, the closedness of Pp would imply that λ is
an eigenvalue of Pp, which contradicts Theorem 3.6(a) below. The desired
result follows now from Lemma 3.3. �

For the point spectrum (i.e., the set of eigenvalues) and the resolvent of Pp
we have the following result:

Theorem 3.6.

(a) Pp has no eigenvalues.
(b) Pp has no compact resolvents.

Proof. (a) If (λ−Pp)f = 0 for some λ ∈ C and f ∈ D(Pp), then (λ−P )f̂ =
0. Since f̂ ∈ C(Rn) (cf. [21, p. 128]) and since {x ∈ Rn; P (x) = λ} has zero
Lebesgue measure (cf. [3, p. 429]), we get f̂ = 0, and thus f = 0, as desired.

(b) Let λ ∈ ρ(Pp). Choose φ ∈ C∞c such that φ(ξ) = 1 for |ξ| ≤ 1. Then

Tpf : = F−1(φf̂) = (λ− Pp)−1F−1((λ− P )φf̂) for f ∈ Hp.

If (λ − Pp)−1 is a compact operator on Hp, so is Tp. By Lemma 3.4, {fk,0}
is a bounded subset in Hp and has no convergent subsequence. But a simple
computation leads to Tpfk,0 = fk,0 for sufficiently large k, which yields a
contradiction. �

We let σa(Pp) denote the approximate point spectrum of Pp, σc(Pp) the
continuous spectrum of Pp, and σr(Pp) the residual spectrum of Pp. In view
of Theorem 3.6(a), these are defined as follows:

σa(Pp) = {λ ∈ C; R(λ− Pp) is not closed in Hp} ,

σc(Pp) =
{
λ ∈ C; R(λ− Pp) 6= Hp and R(λ− Pp) = Hp

}
,

σr(Pp) =
{
λ ∈ C; R(λ− Pp) 6= Hp

}
.
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Theorem 3.7.

(a) σa(Pp) = σ(Pp).
(b) σc(Pp) = σ(Pp) \ P (Rn \ {0}).
(c) σr(Pp) = P (Rn \ {0}).

Proof. We divide the proof of this theorem into several steps.
Step 1: P (Rn) ⊂ σa(Pp). If λ ∈ P (Rn), then λ = P (ξ) for some ξ ∈ Rn.

From the proof of Theorem 3.5 there exists a sequence {fk,ξ} ⊂ Sc such that
‖fk,ξ‖Hp → δ(> 0) and (λ− Pp)fk,ξ → 0. This shows that (3.3) cannot hold
for f ∈ Sc. By Theorem 2.3(c), R(λ−Pp) is not a closed subspace in Hp, i.e.,
λ ∈ σa(Pp).

Step 2: σ(Pp)\P (Rn \{0}) ⊂ σa(Pp)∩σc(Pp). If λ ∈ σ(Pp)\P (Rn), then
Sc ⊂ R(λ − Pp) (see the proof of Theorem 3.5), and so λ ∈ σa(Pp) ∩ σc(Pp).
If λ ∈ P (Rn) \ P (Rn \ {0}), then P (0) = λ 6= P (ξ) for all ξ 6= 0. Following
the proof of Theorem 3.5 we find that the assertion Sc ⊂ R(λ − Pp) is still
true, and so λ ∈ σc(Pp).

Step 3: P (Rn \{0}) ⊂ σr(Pp). If λ ∈ P (Rn \{0}), then λ = P (ξ) for some
ξ 6= 0. We first consider the case p = 1. Let eξ(x) = e−iξ·x for x ∈ Rn. Then
a simple computation yields that P (−D)eξ = λeξ. Also, eξ ∈ BMO = (H1)∗,
where BMO denotes the space of functions of bounded mean oscillation on
Rn. Consequently,

0 = 〈(λ− P (−D))eξ, φ〉 = 〈eξ, (λ− P1)φ〉 for φ ∈ C∞c ∩H1.(3.4)

Since C∞c ∩H1 is a core of P1 (see Theorem 2.3(c)), and since eξ (ξ 6= 0) is
not a null element in BMO, it follows that R(λ− P1) 6= H1, i.e., λ ∈ σr(P1).
In the case 0 < p < 1, we note that eξ ∈ Λ̃n/p−n = (Hp)∗, where Λ̃s (s > 0)
is the homogeneous Hölder space on Rn (see [14, p. 271] for the definition),
and that (3.4) (with 1 replaced by p) still holds. Hence the claim follows from
Theorem 2.3(c). �

4. The spectrum of PDOs in Lp (p > 1)

We first note that Lemma 2.2(b) and (c) also holds for p > 1 (cf. [14], [7]).
In [6] Theorem 2.3(b) is shown to hold for p > 1 aside from the critical case.
Theorems 3.1 and 3.2 also remain true for p > 1 (cf. [19]), but the critical
case of Theorem 3.2 is not treated in [19] (see also [1]).

The following theorem collects some results for the case p > 1,

Theorem 4.1. Let p > 1 in assertions (a)–(d).
(a) If P is r-coercive and satisfies (3.2) with 1 ≥ s ≥ 1 − r/np, then

σ(Pp) = P (Rn).
(b) σe(Pp) = σa(Pp) = σ(Pp).
(c) Pp has no compact resolvents.
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(d) σ(Pp) \ P (Rn) ⊂ σc(Pp). Consequently, σr(Pp) ⊂ P (Rn).
(e) If p ∈ (1, 2], then Pp has no eigenvalues. Consequently, σc(Pq) =

σ(Pq) and σr(Pq) = ∅, where 1
q + 1

p = 1.

Proof. (a) Since Lemma 2.2(b) and (c) are true for p > 1, copying the proof
of Theorem 3.2(c) leads to the claim.

(b) The assertion that P (Rn) ⊂ σe(Pp) ∩ σa(Pp) can be found in [19,
p. 63,293], while the assertion that σ(Pp) \ P (Rn) ⊂ σe(Pp) ∩ σa(Pp) can be
proved in the same way as in the proofs of Theorems 3.5 and 3.7(a) since
every eigenvalue must be in P (Rn).

(c) and (d) can be shown by copying the proofs of Theorems 3.6(b) and
Theorem 3.7, respectively.

(e) If p ∈ (1, 2], the assertion that Pp has no eigenvalues is established in
the proof of Theorem 4.1 of Chapter 11 in [19]. Since σr(Pq) is exactly the
set of all eigenvalues of Pp, the remaining assertions follow. �

In the sequel, we will study the eigenvalues of Pp (p > 2). Denote by m(·)
the Lebesgue measure on Rn, and by Kδ the set {x ∈ Rn; dist(x,K) ≤ δ},
where K ⊂ Rn.

Lemma 4.2. Let K be a compact subset in Rn, and let m(K) = 0. Suppose
there exists a constant M > 0 such that m(Kδ) ≤ Mδ for δ ∈ (0, 1]. If
supp f̂ ⊂ K for some f ∈ Lp (2 < p < 2n

n−1 ), then f = 0.

Proof. Choose ϕ ∈ C∞c such that ϕ̂(0) = 1 and suppϕ ⊂ B1. Set ψδ =
χKδ ∗ ϕδ/2 for δ ∈ (0, 1], where χKδ is the characteristic function of Kδ. By
Bernstein’s theorem (see [20]) it follows that for δ ∈ (0, 1]

‖ψ̂δ‖L1 ≤M‖ψδ‖1−n/2jL2

∑
|α|=j

‖Dαψδ‖n/2jL2

≤M(‖χKδ‖L2 · ‖ϕ‖L1)1−n/2j
∑
|α|=j

(‖χKδ‖L2 · ( 2
δ )j‖Dαϕ‖L1)n/2j

≤Mδ(1−n)/2,

where j = [n/2] + 1 and M denotes a generic constant independent of δ.
Consequently, for fixed φ ∈ S,

‖F(ψδF−1φ)‖L1 ≤ ‖ψ̂δ‖L1‖φ‖L1 ≤Mδ(1−n)/2.

Also,

‖F(ψδF−1φ)‖L2 ≤ ‖ψ̂δ‖L2‖φ‖L1 ≤M‖ψδ‖L2 ≤Mδ1/2.
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Thus by Hölder’s inequality

‖F(ψδF−1φ)‖qLq ≤ ‖F(ψδF−1φ)‖2−qL1 ‖F(ψδF−1φ)‖2q−2
L2

≤Mδ(qn+q−2n)/2,

where 1
q + 1

p = 1, and so qn + q − 2n > 0. From this we obtain that F((1 −
ψδ)F−1φ)→ φ as δ → 0 in Lq. Since (1−ψδ)F−1φ ∈ SK := {ψ ∈ S; suppψ ⊂
Rn \K}, the set {ψ̂; ψ ∈ SK} is dense in Lq. Now, by the assumption on f ,
〈f, ψ̂〉 = 〈f̂ , ψ〉 = 0 for all ψ ∈ SK , and therefore f = 0. �

We are now in a position to treat the eigenvalues of Pp for p ∈ (2, 2n
n−1 ).

Theorem 4.3. Let 2 < p < 2n
n−1 . Then Pp has no eigenvalues.

Proof. Suppose λ is an eigenvalue of Pp associated with eigenfunction f 6=
0; without loss of generality we may assume that λ = 0. Since P f̂ = F(Ppf) =
0, supp f̂ ⊂ N := {ξ ∈ Rn; P (ξ) = 0}. Choose ϕ ∈ C∞c such that ϕf̂ 6= 0.
Then g := F−1(ϕf̂) ∈ Lp, g 6= 0, and supp ĝ ⊂ N ∩ suppϕ. Also, in view of
the fact that

N = {ξ ∈ Rn; ReP (ξ) = 0} ∩ {ξ ∈ Rn; ImP (ξ) = 0},

we may assume that P is a polynomial with real coefficients, and thusN is cov-
ered by a finite number of (n−1)-dimensional submanifolds {ξ ∈ Rn; DαP (ξ)
= 0, ∇DαP (ξ) 6= 0}. We claim that m((N ∩ suppϕ)δ) ≤ Mδ for δ ∈ (0, 1].
In fact, for fixed x ∈ N ∩ suppϕ, there exists a neighborhood U of x and
a diffeomorphism Φ : U → Φ(U) such that Φ(U) ⊂ {0} × Rn−1. Choose a
bounded neighborhood U∗ of x and δ′ ∈ (0, 1] such that U∗δ ⊂ U for δ ∈ (0, δ′],
and put JΦ = sup{|Jacobi(Φ(x))|; x ∈ U∗δ′}. Then

m(U∗δ ) ≤ JΦ−1m(Φ(U∗δ )) ≤ JΦ−1m((Φ(U∗))JΦδ) ≤M1δ for δ ∈ (0, δ′],

which implies that m(U∗δ ) ≤ M2δ for δ ∈ (0, 1]. The claim follows thus from
the compactness of N ∩ suppϕ. Finally, noting that m(N) = 0 we obtain by
Lemma 4.2 that g = 0, which yields a contradiction. �

The following example shows that the bound 2n
n−1 in Theorem 4.3 is best

possible.

Example 4.4. For n ≥ 2 and s > 0 define δs ∈ S ′ by

〈δs, φ〉 =
∫
|x|=s

φ(x)dσ(x) for φ ∈ S,

where dσ denotes the measure on the sphere |x| = s. Then (cf. [5, p. 198])

(F−1δs)(y) = (s/2π)n/2|y|1−n/2J−1+n/2(s|y|) for y ∈ Rn,
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where Jγ denotes the Bessel function of order γ. It is known (see, e.g., [21,
p. 338]) that

|J−1+n/2(s|y|)| ≤Ms|y|−1/2 for |y| ≥ 1,

and thus F−1δs ∈ Lp for p > 2n
n−1 . Since

〈F−1((| · |2 − s2)δs), φ〉 = 〈δs, (| · |2 − s2)F−1φ〉 = 0 for φ ∈ S,
we obtain

(−∆p − s2)F−1δs = F−1((| · |2 − s2)δs) = 0 for p >
2n
n− 1

,

where −∆p denotes the operator Pp with P (ξ) = |ξ|2. This means that s2

is an eigenvalue of −∆p (p > 2n
n−1 , n ≥ 2), and F−1δs is the corresponding

eigenfunction. Moreover, we remark that for every p > 0, σ(−∆p) = [0,∞)
by Theorem 3.2(b) and Theorem 4.1(a), and that 0 ∈ σc(−∆p) by Theorems
3.7(b) and 4.1(d).

If K is an (n − 1)-dimensional plane of Rn, corresponding to Lemma 4.2
we have

Lemma 4.5. Let K be an (n−1)-dimensional plane of Rn. If supp f̂ ⊂ K
for some f ∈ Lp (p > 2), then f = 0.

Proof. Since the assertion is invariant under affine transformations, we may
assume without loss of generality that supp f̂ ⊂ {0}×Rn−1. This implies that
supp(F−1f) ⊂ {0} ×Rn−1. Choose ψ ∈ C∞c (R) such that suppψ ⊂ [−1, 1]
and ψ(t) = 1 for t ∈ [−1/2, 1/2], and set

ψε(x) = ψ(x1/ε) for x = (x1, · · · , xn) ∈ Rn and ε > 0.

Let 1
q + 1

p = 1 and r ∈ (1, q). Then ψε ∈Mr and for φ ∈ S,

‖F−1(ψεφ̂)‖Lr ≤ ‖ψε‖Mr‖φ‖Lr = ‖ψ1‖Mr‖φ‖Lr (ε > 0).

Also, by Lebesgue’s dominated convergence theorem one sees

‖F−1(ψεφ̂)‖L2 = (2π)−n/2‖ψεφ̂‖L2 → 0 (ε→ 0).

It follows thus from Hölder’s inequality that

‖F−1(ψεφ̂)‖qLq ≤ ‖F
−1(ψεφ̂)‖r

2−q
2−r
Lr ‖F−1(ψεφ̂)‖2

q−r
2−r
L2 → 0 (ε→ 0).

Now, the rest of the proof follows the proof of Lemma 4.2. �

Similarly to Theorem 4.3, by Lemma 4.5 we can deduce the following result,
in which we note that if λ is an eigenvalue of Pp, then λ ∈ P (Rn).

Theorem 4.6. Let λ ∈ P (Rn), and let {ξ ∈ Rn; P (ξ) = λ} be covered
by a finite number of (n − 1)-dimensional planes of Rn. Then λ is not an
eigenvalue of Pp for all p > 2.
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Proof. If λ is an eigenvalue of Pp associated with eigenfunction f 6= 0, then
there exist (n− 1)-dimensional planes {Kj}kj=1 such that

supp f̂ ⊂ {ξ ∈ Rn; P (ξ) = λ} ⊂
⋃

1≤j≤k

Kj .

When supp f̂ ∩Kj 6= ∅ for some j, we may choose ϕ ∈ C∞c such that ϕf̂ 6= 0
and suppϕ ⊂ Kj . Then 0 6= F−1(ϕf̂) ∈ Lp and supp(ϕf̂) ⊂ Kj , which con-
tradicts Lemma 4.5. This means that f = 0, which contradicts the assumption
again. �

Consider the polynomial

P (ξ) = iξ1 + (ξ2
2 + · · ·+ ξ2

n)l for ξ ∈ Rn and l ∈ N.

In particular, when l = 1, P (D) is the heat operator. Clearly, for every
λ ∈ P (Rn), {ξ ∈ Rn; P (ξ) = λ} is contained in an (n−1)-dimensional plane.
Thus, by Theorem 4.6, Pp has no eigenvalues for all p > 2. Again, by Theorem
4.6, all one-order PDOs have no eigenvalues in Lp (p > 2). Moreover, by
Theorem 4.3 all ordinary differential operators have no eigenvalues in Lp(R)
(p > 2).

5. Examples

In this section we will give some examples in Hp (p > 0).

Example 5.1. Consider the polynomial

P (ξ) = (1 + ξ2
1)(1 + (ξ1 − ξk2 )2) for k ∈ N.

It is known that P is 2-coercive (see [1, p. 36]). We claim that P also satisfies
(3.2) with s = 1−k

k . Indeed, it is easy to check that |Dj
1P (ξ)/P (ξ)| ≤ 24

(j ≥ 1), and that

Dj
2P (ξ) =

{
(−i)j(1 + ξ2

1)ξk−j2

(
(2k)!

(2k−j)!ξ
k
2 − 2k!

(k−j)!ξ1

)
for 1 ≤ j ≤ k,

(−i)j (2k)!
(2k−j)! (1 + ξ2

1)ξ2k−j
2 for k + 1 ≤ j ≤ 2k.

If |ξk2 | ≥ 2|ξ1|, then for j ≥ 1 we have∣∣∣∣∣Dj
2P (ξ)
P (ξ)

∣∣∣∣∣ ≤M,

where M denotes a generic constant independent of ξ. If |ξk2 | < 2|ξ1|, then∣∣∣∣D2P (ξ)
P (ξ)

∣∣∣∣ ≤M |ξ|1−1/k and

∣∣∣∣∣Dj
2P (ξ)
P (ξ)

∣∣∣∣∣ ≤M |ξ|2−j/k (j ≥ 2).

Combining these estimates yields the claim. Thus by Theorems 3.2(c) and
4.1(a) we obtain that σ(Pp) = P (R2) = [1,∞) for p ≥ 4k−2

4k−1 and k ∈ N. In
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particular, this is true for p > 1 and k ∈ N, which shows that the correspond-
ing results in [1] (see also [15]) are incorrect. More precisely, if p > 1 and
| 12 −

1
p | ≥

1
4 + 1

k , Albrecht and Ricker [1] claimed that σ(Pp) = C for k ≥ 5,
based on a result due to Ruiz (see [16], [17], [18]). This is an oversight. In
fact, the polynomial considered by Ruiz is as follows:

Q(ξ) = (1 + ξ2
1)(1 + (ξ2 − ξk1 )2) for k ∈ N.

We can show as above that Q is 2
k -coercive and satisfies (3.2) with s = 1−k

k .
Again, by Theorems 3.2(c) and 4.1(a), Qp satisfies the spectral mapping prop-
erty if | 12 −

1
p | ≤

1
2k−1 . Note that the bounds 2

k and 1−k
k are best possible for

Q, but not for Qp in the case k ≥ 4. In fact, when k ≥ 4, Qp satisfies the
spectral mapping property if and only if | 12 −

1
p | <

1
4 + 1

k (see [16], [17], [18]).

We next give an example in which σ(Pp) = C for 0 < p ≤ 1. We first need
the following proposition.

Proposition 5.2. Let 0 < p < q ≤ 2. Then σ(Pq) ⊂ σ(Pp).

Proof. By Theorem 3.1(b) it is sufficient to show that Mp ⊂Mq. Indeed,
for u ∈ Mp we have u ∈ M2. It follows thus by Theorem B in [13] and by
interpolation between p and 2 (cf. [2], [22]) that u ∈Mq. �

Example 5.3. For the polynomial

P (ξ) = ξ2
1 − (ξ2

2 + ξ2
3 + ξ2

4 + i)2

it is known that P is 1-coercive and satisfies (3.1) with s = −1/2 (see [19,
p. 295]). Then, by Theorems 3.2(c) and 4.1(a), σ(Pp) = P (R4) for p ∈ [ 3

2 , 3].
On the other hand, Iha and Schubert [9] proved that σ(Pp) = C for p ∈ (1, 8

7 ).
By Proposition 5.2 we obtain that σ(Pp) = C for p ∈ (0, 1]. Note that, in
view of Iha and Schubert’s result (see [9, p. 224]), P cannot be chosen in the
form ξ2

1 − (ξ2
2 + ξ2

3 + i)2 as in [19, p. 295], [6, p. 620,622,625], [1, p. 35], and
[15, p. 243]. We now turn to the factors of P , for example,

R(ξ) := ξ1 − ξ2
2 − ξ2

3 − ξ2
4 − i.

Set

uz(ξ) = (ξ1 − ξ2
2 − ξ2

3 − ξ2
4 − z)−1 for z ∈ C \R.

For p > 1 and p 6= 2, Kenig and Tomas [10], [11] showed that u−i 6∈ Mp. Thus
it is not hard to deduce by Theorem 1.13 in [7] that uz 6∈ Mp for z ∈ C\R. By
Theorem 4.1 of Chapter 4 in [19] it follows that {λ ∈ C; Imλ 6= −1} ⊂ σ(Rp).
Since σ(Rp) is closed, σ(Rp) = C. Combining this with Proposition 5.2 yields
that σ(Rp) = C for p > 0 (p 6= 2). Noting that R(R4) = {λ ∈ C; Imλ = −1},
one sees that Rp does not satisfy the spectral mapping property for p > 0
(p 6= 2).
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Example 5.4. Let Q = PP∗, where P is given as in Example 5.3 and
P∗(ξ) = 1 + |ξ|2 for ξ ∈ R4. Since P is 1-coercive and satisfies (3.1) with
s = −1/2, it is not hard to see that Q is 3-coercive and also satisfies (3.1)
with s = −1/2. It follows thus from Theorems 3.2(c) and 4.1(a) that σ(Qp) =
Q(R4) for p ≥ 1. We claim now that σ(Qp) = C for p ∈ ( 1

2 ,
8
13 ). If σ(Qq) 6= C

for some q ∈ ( 1
2 ,

8
13 ), Theorem 3.2(a) leads to σ(Qq) = Q(R4). In view of

0 6∈ Q(R4) we obtain by Theorem 3.1(b) that Q−1 ∈ Mq. Define uz =
P−1P

(1−3z)/2
∗ for 0 ≤ Re z ≤ 1. Since P is 1-coercive, we have uit ∈M2 and

‖uit‖M2 = ‖uit‖L∞ ≤ ‖P−1P
1/2
∗ ‖L∞ <∞ for t ∈ R.

On the other hand, by induction on |α| we get

|DαP∗(ξ)it| ≤Mα(1 + |t|)|α||ξ|−|α| for ξ 6= 0, α ∈ Nn
0 and t ∈ R.

It follows thus from a generalization of Mihlin’s multiplier theorem (see [2])
that u1+it ∈Mq and

‖u1+it‖Mq ≤ ‖Q−1‖Mq‖P
−3it/2
∗ ‖Mq ≤M(1 + |t|)4( 1

q−
1
2 ) for t ∈ R.

Using the complex interpolation theorem (cf. [2]) we obtain that P−1 =
u1/3 ∈ Mq′ , where 1

q′ = 1−θ
2 + θ

q with θ = 1
3 . Since 1

2 < q < 8
13 , we have

1 < q′ < 8
7 , which contradicts a result of Iha and Schubert [9]. By the claim

and Proposition 5.2 we see that σ(Qp) = C for p ∈ (0, 8
13 ). But Q(R4) 6= C,

and so Qp satisfies the spectral mapping property for p ≥ 1, but not for
p ∈ (0, 8

13 ).

Example 5.5. For given e = (e1, · · · , en) ∈ Nn, set |α/e| =
∑n
k=1 αk/ek

for α = (α1, · · · , αn) ∈ Nn
0 . If P (ξ) :=

∑
|α/e|≤1 aαξ

α (ξ ∈ Rn) is semi-
elliptic, i.e.,

∑
|α/e|=1 aαξ

α 6= 0 for ξ 6= 0, then P is an r-coercive polynomial
of degree m, where r = min{ek} and m = max{ek}. Also, P is r

m -hypoelliptic.
Thus, by Theorems 3.2(c) and 4.1(a), σ(Pp) = P (Rn) if np ≤ rm/(m − r).
When np < rm/(m− r) and p > 1, the assertion is shown in [19, p. 71].

We conclude the paper with two questions. It is well known that all PDOs
satisfy the spectral mapping property in L2 (cf., e.g., [19]). Based on Examples
5.3 and 5.4, we ask the following

Question 1. Suppose Pp does not satisfy the spectral mapping property
for some p > 0 (p 6= 2). Is it true that σ(Pp) = C?

In Example 5, one sees that for any p0 > 0 there exists a semi-elliptic
polynomial P such that Pp satisfies the spectral mapping property for all
p > p0 (p 6= 2). Combining Theorem 3.2(b) with this leads naturally to the
following
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Question 2. Suppose Pp satisfies the spectral mapping property for all
p > 0. Is P elliptic?
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