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DUNFORD-PETTIS AND DIEUDONNÉ POLYNOMIALS ON
BANACH SPACES

MAITE FERNÁNDEZ-UNZUETA

Abstract. We introduce two classes of m-homogeneous polynomials

defined on Banach spaces, which extend the classes of Dunford-Pettis
and Dieudonné linear operators. These extensions allow us to prove

that several characterization theorems related to the Dunford-Pettis,
Schur, and reciprocal Dunford-Pettis properties, are also valid in the
more general case of homogeneous polynomials of any degree m ∈ N.

1. Introduction

There are several generalizations of Dunford-Pettis and Dieudonné opera-
tors to the polynomial context in the literature (see, e.g., [2], [5], [10], [13],
[17], [20], [21]). Even though linear operators are homogeneous polynomials,
these extensions show some important differences between the linear and non-
linear case, such as the fact that not every compact polynomial is completely
continuous.

The generalization that we introduce here is based on the general behav-
ior of m-homogeneous polynomials with respect to the polynomial and weak
topologies. We describe this behavior in Theorem 2.2. A consequence of this
result is that every m-homogeneous polynomial transforms sequences which
are Cauchy in the m-polynomial topology (the τm-Cauchy sequences) into
weak Cauchy sequences. Thus we define Dunford-Pettis and Dieudonné poly-
nomials as those polynomials which transform τm-Cauchy sequences into norm
and weak convergent sequences, respectively. This natural character of the
extension allows us to prove that some well known results concerning the
classes of Dunford-Pettis and Dieudonné operators are special cases of more
general results about homogeneous polynomials. We prove in Theorem 2.10
a diagram of inclusion relations that is valid for all Banach spaces and which,
in particular, shows that a compact polynomial is always Dunford-Pettis. We
also give several characterizations of the polynomial Dunford-Pettis property
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(Theorem 3.2), the Schur property (Theorem 3.5), the polynomial reciprocal
Dunford-Pettis property (Proposition 3.13), and we prove some related results.

Throughout this work, E and F will denote Banach spaces over K = C

or K = R, E∗ the topological dual space of E, and BE the unit ball. For
m ∈ N, we will denote by L(mE;F ) the Banach space of all continuous m-
linear operators from Em = E× m. . . ×E into F . This space is canonically
isomorphic to the space of linear operators L(⊗̂mπ E;F ), where ⊗̂mπ E is the
m-fold tensor product endowed with the projective topology.

A map P : E → F is an m-homogeneous polynomial if it is the restriction
to the diagonal elements (x, . . . , x) ∈ E× m. . . ×E of a continuous m-linear
map T ∈ L(mE;F ); the map is unique, if it is required to be symmetric. The
Banach space of m-homogeneous polynomials from E to F (resp. K), with the
sup norm on the unit ball of E will be denoted by P(mE;F ) (resp. P(mE)).

The closed linear span of the set {x⊗ m... ⊗x, x ∈ E} is a complemented
subspace of the projective m-fold tensor product ⊗̂mπ E. We denote this
subspace by ⊗̂ms,πE, and the polynomial θm ∈ P(mE, ⊗̂ms,πE) defined by
θm(x) = x⊗ m... ⊗x will be called the canonical m-homogeneous polynomial
on E.

For P ∈ P(mE,F ), P̂ ∈ L(⊗̂ms,πE,F ) will denote the linear operator such
that P (x) = P̂ ◦ θm(x) for every x ∈ E. The adjoint operator P ∗ ∈
L(F ∗,P(mE)) of P is the continuous linear operator such that P ∗(f∗) =
f∗ ◦ P , for every f∗ ∈ F ∗.

2. Dunford-Pettis and Dieudonné polynomials

Let E be a Banach space and let m ∈ N. We denote by Eτm the space E
endowed with the initial topology induced by the family of m-homogeneous
polynomials P(mE). The weak topology corresponds to the case m = 1 and
will be denoted, as usual, by Ew. The collection of sets of the form

Ux0 = {x ∈ E : |pi(x)− pi(x0)| < εi, 0 < εi, pi ∈ P(mE), i = 1, . . . , n}
is a basis of neighborhoods of the point x0 ∈ Eτm . We will say that the
sequence (xn) ⊂ E is τm-Cauchy, if for every increasing sequence of natural
numbers (nj) and all p ∈ P(mE), limj,k |p(xnj )− p(xnk)| = 0.

Remark 2.1. A sequence (xn) ⊂ E is τm-Cauchy (resp. τm-convergent to
x ∈ E) if and only if (θm(xn))n is weak Cauchy (resp. weakly convergent to
θm(x)) in ⊗̂ms,πE.

Theorem 2.2. Let E and F be Banach spaces, let m ∈ N and let P :
E → F be a transformation such that there exists an m-linear map T from
E× m. . . ×E to F with P (x) = T (x, . . . , x) for x ∈ E. Then we have:

(1) P is continuous (i.e., P ∈ P(mE,F )) if and only if P is a continuous
map from Eτm to Fw.
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(2) Every bounded linear operator T ∈ L(E,F ) is a continuous map from
Eτm to Fτm .

Proof. We first prove (1). If the polynomial P is continuous, its associated
linear operator P̂ ∈ L(⊗̂ms,πE,F ) is also continuous. Hence P̂ is continuous
from (⊗̂ms,πE)w to Fw. Now, the polynomial θm : Eτm → (⊗̂ms,πE)w is con-
tinuous because the τm topology on E is the topology induced by the family
{f∗ ◦ θm : f∗ ∈ (⊗̂ms,πE)∗}. Therefore P = P̂ ◦ θm is continuous from Eτm
to Fw. To obtain the converse direction, note that the norm on E defines
a topology that is stronger than the τm-topology. Thus, whenever an m-
homogeneous map P is (τm − w) continuous, it is also (‖ · ‖-w) continuous.
Hence it is enough to prove that the set P (BE) is bounded in Fw. Consider a
weak neighborhood U of 0 in F . By the ‖ · ‖−w continuity of P , there exists
δ > 0 for which P (δBE) ⊂ U . Then, P (BE) = δ−mP (δBE) ⊂ δ−mU . This
proves that P (BE) is a bounded set in Fw and, consequently, also a bounded
set in F‖·‖.

To prove (2) we must construct, for each x0 ∈ E and each neighborhood
V of T (x0) of the form

V = {y ∈ F : |pi(y)− pi(T (x0))| < εi, pi ∈ P(mF ), i = 1, . . . , n},
a τm-neighborhood U of x0 such that T (U) ⊂ V . In order to do so, consider
the bounded linear operator T (m) := T⊗ m. . . ⊗T ∈ L(⊗̂ms,πE, ⊗̂

m
s,πF ) and the

weak neighborhood

Ṽ = {z ∈ ⊗̂ms,πF : |p̂i(z)− p̂i(θm(T (x0)))| < εi, i = 1, . . . , n}

of T (m)(θm(x0)) = θm(T (x0)), where p̂i denotes the linear operator associated
with the polynomial pi. Observe that y ∈ V if and only if θm(y) ∈ Ṽ . Since
T (m) is continuous, the set

{w ∈ ⊗̂ms,πE : T (m)(w) ∈ Ṽ }

is a weak open subset of ⊗̂ms,πE, which contains θm(x0). Thus, there exists a
basic weak neighborhood of θm(x0),

Ũ = {w ∈ ⊗̂ms,πE : |q̂j(w)− q̂j(θm(x0))| < δj , q̂j ∈ (⊗̂ms,πE)∗, j = 1, . . . , k},

such that T (m)(Ũ) ⊂ Ṽ . To complete the proof, it is enough to observe that
the subset

U = {x ∈ E; |qj(x)− qj(x0)| < δj , j = 1, . . . , k},
where qj is the polynomial determined by q̂j , is a τm neighborhood of x0

satisfying T (U) ⊂ V . �

Corollary 2.3. Let E and F be Banach spaces and let m ∈ N. Then,
every m-homogeneous polynomial P ∈ P(mE,F ) transforms τm-Cauchy se-
quences in E into weakly Cauchy sequences in F .
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By virtue of this corollary, we define the extension of Dunford-Pettis and
Dieudonné linear operators to the m-homogeneous case as follows:

Definition 2.4. Let E and F be Banach spaces and let m ∈ N. An m-
homogeneous polynomial P ∈ P(mE,F ) is a Dunford-Pettis polynomial (resp.
a Dieudonné polynomial) if it transforms τm-Cauchy sequences in E into norm
convergent (resp. weakly convergent) sequences in F . We denote this class by
PDP (mE,F ) (resp. PD(mE,F )).

Remark 2.5. Equivalently, one may define Dunford-Pettis (resp. Dieu-
donné) polynomials as follows: Consider a polynomial P ∈ P(mE,F ); it is
Dunford-Pettis (resp. Dieudonné) if for every subset A ⊂ E for which every
sequence (xn)n ⊂ A contains a τm-Cauchy subsequence, P (A) is a relatively
compact (resp. weakly compact) set in F .

Remark 2.6. Every polynomial P ∈ P(mE,F ) for which the associated
linear operator P̂ ∈ L(⊗̂ms,πE,F ) is Dunford-Pettis, is a Dunford-Pettis poly-
nomial. On the other hand, there are examples showing that in general the
two classes are different: every polynomial in P(m`m, F ) is Dunford-Pettis (see
Section 3.9 below), but clearly not every linear operator T ∈ L(⊗̂ms,π`m, F )
is Dunford-Pettis. An analogous remark holds for Dieudonné polynomials; in
this case we take the James’ space constructed from the `p norm, Jp, as an
example of a space for which every m-homogeneous polynomial is Dieudonné
(for m ≥ p), but not every operator in L(⊗̂ms,πJp, F ) is Dieudonné (see the
Appendix).

Dunford-Pettis polynomials also have a characterization in terms of the
adjoint operator. We shall say that a subset A ⊂ P(mE) is in the class
Lm(P(mE)) if every τm-Cauchy sequence (xn) in E satisfies

(1) lim
k,n→∞

sup{|q(xk)− q(xn)|; q ∈ A} = 0.

Lemma 2.7. A polynomial P ∈ P(mE,F ) is a Dunford-Pettis polynomial
if and only if its adjoint operator P ∗ ∈ L(F ∗,P(mE)), defined by P ∗(f∗) =
f∗ ◦ P , has the property that the subset P ∗(BF∗) is in the class Lm(P(mE)).

Proof. Consider a τm-Cauchy sequence (xn)n ⊂ E. The result follows
easily from the chain of equations

lim
k,n→∞

‖P (xk)− P (xn)‖ = lim
k,n→∞

sup
f∗∈BF∗

{|f∗(P (xk))− f∗(P (xn))|}

= lim
k,n→∞

sup
q∈P∗(BF∗ )

{|q(xk)− q(xn)|}

�
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We now consider the relation between the class of Dunford-Pettis polynomi-
als introduced above and the class of polynomials called completely continuous
in [6] and [13] (or weakly sequentially continuous in [2] and [16]). For E, F and
m as before, we denote this class by Pcc(mE,F ); we will refer to it as the class
of completely continuous polynomials. Recall that the elements in this class
are those polynomials that transform weak Cauchy sequences of E into norm
convergent sequences of F (or, equivalently, weakly convergent sequences into
norm convergent sequences; see [2, Theorem 2.3]) .

Theorem 2.8. Let E be a Banach space and let m ∈ N. For every Ba-
nach space F , the relation Pcc(mE,F ) ⊂ PDP (mE,F ) holds. Moreover, both
classes coincide for every Banach space F if and only if every polynomial
p ∈ P(mE) is completely continuous.

Proof. Let (xn)n be a τm-Cauchy sequence in E. By [5, Proposition 3.6],
there exists a weak Cauchy subsequence (xnj )j . By its very definition, for
every polynomial P ∈ Pcc(mE,F ) the sequence (P (xnj ))j is norm convergent.
In view of Remark 2.5, this shows that P is Dunford-Pettis. If both classes
coincide for all Banach spaces F , then, in particular, Pcc(mE) = PDP (mE).
Since we always have P(mE) = PDP (mE) (see 2.12 below), it follows that
every scalar polynomial p ∈ P(mE) is completely continuous. Finally, suppose
that every m-homogeneous scalar polynomial is completely continuous. In [6]
it was shown that this is equivalent to saying that every weak Cauchy sequence
in E is a τm-Cauchy sequence. Hence every Dunford-Pettis polynomial is
completely continuous. �

Remark 2.9. In [13] the authors defined the class of weakly completely
continuous polynomials (Pwcc), i.e., those polynomials that take the weak
Cauchy sequences into weakly convergent sequences, as a generalization of
the class of Dieudonné operators. It is possible to prove that the relation
Pwcc(mE,F ) ⊂ PD(mE,F ) always holds, and that both classes coincide for
all F if and only if every m-homogeneous scalar polynomial is (weakly) com-
pletely continuous.

Recall that a polynomial P ∈ P(mE,F ) is compact (resp. weakly compact)
if it transforms every bounded subset of E into a relatively compact (resp. rel-
atively weakly compact) subset of F . We denote the class of such polynomials
by Pco (resp. Pwc). We say that a polynomial P is unconditionally converg-
ing if it transforms the sequences of partial sums of weakly unconditionally
Cauchy series in E into norm convergent series (see [11]), and we denote the
class of such polynomials by Puc. We now establish relationships among these
classes of polynomials that hold for all Banach spaces. Observe that these are
analogous to the relations that hold in the linear case.
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Theorem 2.10. Let E and F be Banach spaces and let m ∈ N be fixed.
Then the following inclusion relations hold:

Pco(mE,F )
⊂ Pwc(mE,F ) ⊂

⊂ PDP(mE,F ) ⊂
PD(mE,F ) ⊂ Puc(mE,F ) ⊂ P(mE,F )

Proof. The only relation that it is not immediate from the definitions is
the one that asserts that every Dieudonné polynomial is unconditionally con-
verging. Fix a Dieudonné m-homogeneous polynomial and consider a weakly
unconditionally Cauchy series in E. The corresponding sequence of partial
sums is a τm-Cauchy sequence (see [11]), so its image under the Dieudonné
polynomial is a weakly convergent sequence in F . This is enough for a poly-
nomial to be unconditionally converging (see [11] again). �

Proposition 2.11. For fixed E, F and m, each class in Theorem 2.10
defines a closed subspace of P(mE,F ), and each class is preserved by compo-
sition (on both sides) with bounded linear operators.

Proof. The proof of this result is clear. It suffices to remark that lin-
ear operators transform τm-Cauchy sequences into τm-Cauchy sequences (see
Theorem 2.2). �

2.12. Remarks and examples. (1) The classes in Theorem 2.10 are
different, in the sense that for each inclusion it is possible to find E and F
for which the inclusion is strict. Even more, the example can be taken as
the canonical polynomial defined on a suitable space. Consider m ∈ N and
θm ∈ P(mE, ⊗̂ms,πE). If E = `p, p > m, then the polynomial θm is weakly
compact but not compact. This polynomial is a Dieudonné polynomial, but
not a Dunford-Pettis polynomial. If E = `p, p ≤ m, then θm is a Dunford-
Pettis polynomial (see 3.9 below), but clearly is not compact. The case E = `1
provides an example of a Dieudonné non-weakly compact polynomial (see 3.17
below). Just as the identity map on the James’ space J is unconditionally
converging but not Dieudonné, the canonical polynomial defined on Jp, p >
m, is unconditionally converging (because the space contains no copies of
c0; see [11]) but it is not Dieudonné. The summing basis is a τm-Cauchy
sequence whose image does not converge in the weak topology of ⊗̂ms,πJp (see
the Appendix). Finally, the canonical polynomial defined on E = c0 is not
unconditionally converging.

(2) If F is finite dimensional, then for every Banach space E, Pco(mE,F ) =
P(mE,F ). In particular, all of the classes in Theorem 2.10 coincide. Observe
that this is not the case for the completely continuous polynomials (see The-
orem 2.8 above) as the example p ∈ P(m`m), p((ai)) =

∑∞
i ami shows. The

polynomial p is compact (its range is contained in the finite dimensional space
K), but it is not completely continuous.
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(3) If F is a Schur space (i.e., the weak Cauchy and the norm convergent se-
quences coincide on F ), then for every Banach space E one has PDP (mE,F ) =
P(mE,F ).

(4) The space E has the property that for every Banach space F , Pco(mE,F )
= P(mE,F ) holds if and only if E is finite dimensional.

3. Polynomial properties

In this section, we prove that some characterizations of linear properties
involving Dunford-Pettis or Dieudonné operators remain valid in the more
general case of m-homogeneous polynomials, regardless of the value of m ∈ N.
Proofs of the corresponding results in the linear case (which will be used freely)
can be found in [4]. The first result deals with the so-called Dunford-Pettis
property:

Definition 3.1. A Banach space E has the m-Dunford-Pettis (or m-DP)
property if, for every Banach space F , every weakly compact polynomial in
P(mE,F ) is Dunford-Pettis.

Several different forms of the polynomial Dunford-Pettis property, depend-
ing on the definition of the class of Dunford-Pettis polynomials one works
with, have been studied in the literature (see, for instance, [3], [7], [10], [17]
[20], [21]). In [17] there is a unifying approach depending on different types
of sequential convergence. The m-DP property involves Cauchy sequences
instead of convergent sequences in a non-linear topology. Nevertheless, the
proof of the following result is similar to those in [7] or [17], so we will only
sketch the argument.

Recall that a subset A ⊂ E is a Dunford-Pettis set if for every weakly null
sequence (x∗n)n ⊂ E∗, limn→∞ sup{|x∗n(a)| : a ∈ A} = 0. Also recall that
a subset of a Dunford-Pettis set is Dunford-Pettis, and that every Dunford-
Pettis set on a Banach space E contains a τm-Cauchy sequence. (This is a
direct consequence of Proposition 2.2 and Theorem 3.1 of [7].)

Theorem 3.2. Let E be a Banach space and let k,m ∈ N. The following
conditions are equivalent:

(a) E has the m-Dunford-Pettis property.
(b) For every Banach space F , every weakly compact polynomial P ∈
P(kE,F ) transforms τm-Cauchy sequences of E into relatively com-
pact sets of F .

(c) Every weakly compact polynomial P ∈ P(kE, c0) transforms τm-
Cauchy sequences of E into relatively compact sets of c0.

(d) Every τm-Cauchy sequence in E defines a Dunford-Pettis set on E.

Proof. We will use the following characterization of Dunford-Pettis sets,
which is a consequence of [5, Proposition 3.1] and [7, Theorem 3.1]:
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A ⊂ E is a Dunford-Pettis set if and only if, for some (all) k ∈ N, and
every weakly compact polynomial P ∈ P(kE,F ) (resp. F = c0), P (A) is a
relatively compact set in F (resp. c0.)

To prove the implication (d) ⇒ (b), let (xn) be a τm-Cauchy sequence in
E. By hypothesis, (xn) defines a Dunford-Pettis set, so every weakly compact
polynomial P ∈ P(kE,F ) takes (xn) into a relatively compact set. Conversely,
assume that (b) holds and consider a τm-Cauchy sequence in E. For every F
and every weakly compact polynomial P ∈ P(mE,F ), (P (xn))n is a relatively
compact set in F . The above characterization of Dunford-Pettis sets then
ensures that (xn) is a Dunford-Pettis set. Hence (b) and (d) are equivalent.
The same argument shows the equivalence of (d) with (a) or (c). �

Remark 3.3. In the case k = m, by Corollary 2.3, conditions (b) and
(c) say that a weakly compact polynomial transforms a τm-Cauchy sequence
into a norm convergent sequence. If k 6= m it might be necessary to take
subsequences, as the following example shows. Consider the identity operator
on `2 (a space with the 2-DP property, see 3.9 below) and fix x 6= 0. Then
the sequence ((−1)nx)n is τ2-convergent to x (and hence τ2-Cauchy), but it
is not norm convergent.

Remark 3.4. A finite sum of spaces with the m-DP property also has
the m-DP property. This follows from the characterization of the property in
terms of linear operators (the second and third conditions of Theorem 3.2 for
k = 1).

In the following theorem we characterize in several ways those Banach
spaces on which all m-homogeneous polynomials are Dunford-Pettis.

Theorem 3.5. For a Banach space E and k,m ∈ N, the following condi-
tions are equivalent:

(a) For every Banach space F , every polynomial P ∈ P(mE,F ) is a
Dunford-Pettis polynomial.

(b) Every τm-Cauchy sequence in E contains a norm convergent subse-
quence.

(c) For every Banach space F , every polynomial P ∈ P(kE,F ) trans-
forms the τm-Cauchy sequences of E into relatively compact sets in
F .

(d) If A is a bounded subset of P(mE), then A is in the class Lm(P(mE)).

Proof. We first prove that (c) implies (b). Consider the canonical poly-
nomial θk from E to ⊗̂ks,πE and a τm-Cauchy sequence (xn) in E. We are
going to show that (xn) has a norm convergent subsequence. By assumption
(c), (θk(xn))n has a norm convergent subsequence. From [7, Theorem 3.1] it
follows that (xn)n has a norm convergent subsequence. The implication (a)
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⇒ (b) can be proved in the same manner, with θm in place of θk. That (b)
implies both (a) and (c) follows from the norm continuity of P ∈ P(kE,F ).

Assume now that E satisfies condition (d) and consider an element P ∈
P(mE,F ). By hypothesis, the subset P ∗(BF∗) is in the class Lm(P(mE)),
so P is a Dunford-Pettis polynomial (by Lemma 2.7), and we obtain (a). To
prove the converse implication, (a) ⇒ (d), we construct, for each bounded
subset of P(mE), an m-homogeneous polynomial as follows. For a bounded
subset A ⊂ P(mE), consider the Banach space B(A) of bounded continuous
functions defined on A, with the sup norm, and the polynomial

P : E −→ B(A)
x 7−→ P (x)(q) := q(x).

Then P is in P(mE,B(A)). Condition (a) ensures that P is Dunford-Pettis,
so P ∗(BB(A)∗) is a set in the class Lm(P(mE)). For every q ∈ A, define
x∗q ∈ (B(A))∗ by x∗q(f) = f(q), for all f ∈ B(A). Then P ∗(x∗q) = q, so A
is contained in the image of a bounded subset of (B(A))∗, and thus is in the
class Lm(P(mE)). �

Definition 3.6. A Banach space E which satisfies any of the conditions
in Theorem 3.5 is called an m-Schur space.

From Theorem 2.10 and part (a) of Theorem 3.5, it is clear that every
m-Schur space has the m-Dunford-Pettis property. However, the converse is
not true. For each m ∈ N, the space c0⊕ `m is an example of a non-Dunford-
Pettis space, which has the m-Dunford-Pettis property but is not m-Schur
because the canonical basis of c0 on the space is polynomially null (and thus,
in particular, τm-Cauchy) but is not norm null. In fact, the condition on a
space under which both properties are equivalent is the same as in the linear
case; it is not a ‘polynomial type’ property:

Proposition 3.7. Let m ∈ N and let E be a Banach space with the m-
Dunford-Pettis property. The following conditions are equivalent:

(1) E is an m-Schur space.
(2) Every Dunford-Pettis set in E is relatively compact.

Proof. We mentioned above that every Dunford-Pettis set contains a τm-
Cauchy sequence. Hence, if the Banach space is m-Schur, every Dunford-
Pettis set contains a norm convergent sequence. This proves the implication
(1)⇒ (2). Conversely, let (xn)n be a τm-Cauchy sequence in E. By part (d) of
Theorem 3.2, (xn) defines a Dunford-Pettis set which, under assumption (2),
is a relatively compact set, i.e., E satisfies condition (b) in Theorem 3.5. �

In [14] the authors studied conditions under which, for a Banach space E,
every polynomial P ∈ P(mE, c0) is completely continuous for some m ∈ N.
They proved that this is the case if and only if every linear bounded operator
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T ∈ L(E, c0) is completely continuous. In particular, this property does not
depend on m. We will see that the situation is quite different if the above
condition on the Banach space is replaced by requiring that every polynomial
P ∈ P(mE, c0) is Dunford-Pettis. Indeed, we shall show that E = `m is an
example of a space which satisfies this property for polynomials of degree m,
but not for polynomials of degree k < m. Recall that a set A ⊂ E is said to
be limited if for every weak∗-null sequence (x∗n)n in E∗, limn→∞ sup{|x∗n(a)| :
a ∈ A} = 0 (see, e.g., [8]). We then have the following result:

Proposition 3.8. Let E be a Banach space and let k,m ∈ N. The fol-
lowing conditions are equivalent:

(a) Every polynomial P ∈ P(mE, c0) is a Dunford-Pettis polynomial.
(b) Every polynomial P ∈ P(kE, c0) transforms τm-Cauchy sequences in

E into relatively compact sets in c0.
(c) Every τm-Cauchy sequence in E defines a limited set on E.

The proof is similar to that of Theorem 3.2, once one observes that, as a
consequence of [5, Proposition 3.1] and [7, Theorem 3.1], the limited sets may
be characterized as follows:

A ⊂ E is limited if and only if for some (all) k ∈ N and every polynomial
P ∈ P(kE, c0), P (A) is a relatively compact set in c0.

It is clear that an m-Schur space satisfies P(mE, co) = PDP (mE, c0); in
particular, this holds for the space E = `m. However, P ((ai)i) = (aki )i defines
an element in P(k`m, co) which is not Dunford-Pettis if k < m. Hence the
property characterized in Proposition 3.8 certainly depends on m.

The spaces E for which P(mE, co) = PDP (mE, c0) include the Grothendieck
spaces with the m-DP property, such as the space `m ⊕ `∞.

Remarks and examples 3.9. (1) For 1 < p < ∞, the space `p has the
m-Schur (or m-DP) property if and only if m ≥ p (see [9, Theorem 6.3]). Since
in the non-reflexive James’ space Jp every normalized weakly null sequence
contains a subsequence that generates a complemented subspace isomorphic
to `p, this space inherits the above properties from `p; namely, it is m-Schur
(and has the m-DP property) if and only if p ≤ m (see the Appendix).

As mentioned above, there exist several different polynomial extensions of
the Dunford-Pettis and Schur properties in the literature. Nevertheless, it is
sometimes possible to prove, mutatis mutandis, the same kind of results for
these extensions. This is the case in the following examples.

(2) A Banach space with the Dunford-Pettis property has the m-DP prop-
erty for all m ∈ N. To prove this result, we use the characterization (d) in
Theorem 3.2. Consider a τm-Cauchy sequence (xn) in E. By [5, Proposition
3.6], this sequence has a weak Cauchy subsequence. Now, the Dunford-Pettis
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property on E asserts that this subsequence defines a Dunford-Pettis set. Ar-
guing similarly with each subsequence of (xn), one concludes that the sequence
itself is a Dunford-Pettis set.

If a Banach space E has the Dunford-Pettis property, every scalar polyno-
mial is weakly sequentially continuous (see [20, Corollary 3]). By Proposition
2.8, the completely continuous and Dunford-Pettis classes of polynomials co-
incide for all m ∈ N. Thus, in this case, the result coincides with that in [21,
Corollary 2.2].

(3) As a consequence of Theorem 3.2 we saw that the m-DP property is
preserved by finite sums. From condition (c) of Theorem 3.5 it follows that the
m-Schur property is also preserved by finite sums. In fact, using an argument
similar to that of [3, Proposition 2.5], one can show that the m-DP and m-
Schur properties are preserved by `p sums, for 1 ≤ p ≤ m, and that the m-DP
property is also preserved by c0-sums.

(4) If K is a compact set and E is an m-Schur space, the space C(K,E) has
the m-DP property. The proof is analogous to that of [3, Proposition 2.6].

The reciprocal Dunford-Pettis property and the Dieudonné property were
introduced by A. Grothendieck in [15]. We now introduce an extension to the
m-homogeneous case, following the general scheme of Theorem 2.10.

Definition 3.10. Let E be a Banach space and let m ∈ N. We say that
E has the m-reciprocal Dunford-Pettis property (resp. m-Dieudonné property)
if for every Banach space F , every Dunford-Pettis polynomial (resp. every
Dieudonné polynomial) P ∈ P(mE,F ) is weakly compact. We shall denote
these properties by m-RDP and m-D, respectively.

From Theorem 2.10, it follows that a Banach space with the m-D property
also has the m-RDP property.

Proposition 3.11. Let E be a Banach space such that ⊗̂ms,πE contains
no copies of `1. Then E has the m-D and m-RDP properties.

Proof. By the remark above, it is enough to prove that E has the m-D prop-
erty. Consider a Dieudonné polynomial P ∈ P(mE,F ) and a bounded subset
A ⊂ E. By Rosenthal’s `1-Theorem, if ⊗̂ms,πE contains no copies of `1, each
sequence (xn) ⊂ A is such that (θm(xn)) ⊂ ⊗̂ms,πE contains a weak Cauchy
subsequence. This means that (xn) contains a τm-Cauchy subsequence (xnk)
(see Remark 2.1). Since P is Dieudonné, (P (xnk)) is a weakly convergent
sequence in F . Thus P is a weakly compact polynomial. �

Proposition 3.12. The m-reciprocal Dunford-Pettis property (resp. the
m-Dieudonné property) on a Banach space E is preserved in every quotient
space of E.
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Proof. Let π : E → F be a quotient map and P ∈ P(mF,G) be a Dunford-
Pettis polynomial. As we saw in Proposition 2.11, P ◦ π ∈ P(mE,G) defines
a Dunford-Pettis polynomial and thus a weakly compact polynomial. The
set P (π(BE)) is a relatively weakly compact set in G. From the surjectivity
of π, it follows that P (BF ) is also a relatively weakly compact set of G, so
P is a weakly compact polynomial. An analogous proof can be given in the
m-Dieudonné case. �

Proposition 3.13. For a Banach space E and m ∈ N, the following
conditions are equivalent:

(1) E has the m-reciprocal Dunford-Pettis property.
(2) Every subset A in the class Lm(P(mE)) is relatively weakly compact.

Proof. Let P ∈ PDP (mE,F ). By Lemma 2.7, the subset P ∗(BF∗) is in the
class Lm(P(mE)). Thus, if one assumes (2), this set is a relatively weakly
compact set. This proves that P is a weakly compact polynomial. For the
proof of the converse implication we consider, for each subset A in the class
Lm(P(mE)), the polynomial P ∈ P(mE,B(A)) constructed in the proof of
Theorem 3.5. The polynomial P is a Dunford-Pettis polynomial. To see this,
note that for a τm-Cauchy sequence (xn) in E one has

‖P (xn)− P (xk)‖ = sup{|(P (xn)− P (xk))(q)|; q ∈ A}
= sup{|q(xn)− q(xk)|; q ∈ A}.

Since A belongs to the class Lm(P(mE)), this set satisfies equation (1) (pre-
ceding Lemma 2.7). This means that (P (xn)) is a norm convergent sequence.
Hence, P is Dunford-Pettis. The hypothesis on the space asserts that P is
also a weakly compact polynomial, so its adjoint operator P ∗ transforms the
bounded subsets of F ∗ into relatively weakly compact subsets of P(mE). To
complete the proof, it suffices to note that the subset A is the image under
P ∗ of a bounded set in F ∗. �

Proposition 3.14. Let m > 1 and let E be a Banach space with the
m-reciprocal Dunford-Pettis property (resp. the m-Dieudonné property) for
m > 1. Then we have:

(1) E does not contain a subspace isomorphic to `1.
(2) For 1 ≤ k ≤ m the Banach space ⊗̂ks,πE has the reciprocal Dunford-

Pettis property (resp. the Dieudonné property).

Proof. To prove (1), note that ⊗̂ms,πE contains a complemented copy of `1
whenever E contains a copy of `1 (see [7, Corollary 3.11]). If this is the case,
the projection operator determines, by its values on the diagonal set, a non-
compact polynomial P ∈ P(mE, `1). Recall that, since `1 is a Schur space,
every weakly compact polynomial with values in `1 is compact and every
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m-homogeneous polynomial is Dunford-Pettis (see 2.12 above). Then P is
a Dunford-Pettis polynomial which is not weakly compact. Thus, the space
cannot have the m-RDP property, and hence cannot have the m-D property
either.

To prove (2) it is enough to establish the result for k = m, because ⊗̂ks,πE
is a complemented subspace of ⊗̂ms,πE. Let T ∈ L(⊗̂ms,πE,F ) be a Dunford-
Pettis operator. By Remark 2.6, the associated polynomial is Dunford-Pettis.
The m-RDP property implies that it is weakly compact, which means that T
is a weakly compact operator. The m-D case is analogous. �

The following theorem generalizes an important and non-trivial result (see
[4]), which corresponds to the case m = 1 of our result. The theorem charac-
terizes the containment of `1 in a space in terms of the Dunford-Pettis oper-
ators defined on it. The presence of `1 in the symmetric tensor product of a
space can also be obtained from its Dunford-Pettis polynomials. Except for
the equivalence with the fifth condition, the following result has been proved
in [7, Theorem 3.8]. The equivalence (3)⇔(5) can be proved in the same way
as Proposition 3.13, by changing ‘weakly compact polynomial’ to ‘compact
polynomial’ and ‘relatively weakly compact set’ to ‘relatively compact set’.

Theorem 3.15. Let E be a Banach space and let m ∈ N. The following
conditions are equivalent:

(1) The space ⊗̂ms,πE contains no copy of `1.
(2) Every bounded sequence in E contains a τm-Cauchy subsequence.
(3) For every Banach space F , every Dunford-Pettis polynomial in P ∈
P(mE,F ) is compact.

(4) Every Dunford-Pettis polynomial P ∈ P(mE, c0) is compact.
(5) Every set in the class Lm(P(mE)) is a relatively compact set of P(mE).

It follows from this result that in the case when ⊗̂ms,πE does not contain
a copy of `1, a polynomial P ∈ P(mE,F ) is Dunford-Pettis if and only if
its associated linear operator P̂ ∈ L(⊗̂ms,πE,F ) is Dunford-Pettis, since both
classes coincide with the corresponding compact subclasses. (Recall that in
Remark 2.6 we proved that this is not generally true).

We next observe that whenever an infinite dimensional Banach space is
m-Schur, the space ⊗̂ms,πE contains a copy of `1. Otherwise, by the previous
theorem, every Dunford-Pettis polynomial P ∈ PDP (mE,F ) would be com-
pact. Since, by the m-Schur property, every m-homogeneous polynomial is
Dunford-Pettis (Theorem 3.5), it follows that every m-homogeneous polyno-
mial is compact. Thus, E must be finite dimensional (see 2.12 above).

Corollary 3.16. A Banach space E with the m-Schur property and the
m-RDP property is a finite dimensional space.
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Proof. Let E be an infinite dimensional Banach space. If E has them-Schur
property then the space ⊗̂ms,πE contains a copy of `1 and everym-homogeneous
polynomial is Dunford-Pettis. If E also has the m-RDP property, then every
m-homogeneous polynomial is weakly compact, which means that ⊗̂ms,πE is a
reflexive space (see [22]). But this contradicts the fact that ⊗̂ms,πE contains a
copy of `1. �

3.17. Final remarks. (1) We have seen in several examples, that many
linear properties can be viewed as the case m = 1 of more general properties
for m-homogeneous polynomials. Indeed, several of our proofs are suitable
adaptations of the classical proofs in the linear case. Reasoning in the same
way, it is not difficult to prove the following results.

(a) If E is a Banach space with the m-RDP property and F is a Schur
space, then P(mE,F ) = Pco(mE,F ).

(b) The dual E∗ of a Banach space E is a Schur space if and only if for
some (all) m ∈ N, the space ⊗̂ms,πE contains no copies of `1 and E has
the m-DP property (see [7]).

(c) Consider a Banach space E with the Approximation Property (see
[18]). Every m-homogeneous polynomial defined on this space is
Dieudonné if and only if τm defines a complete topology on E. In
particular, for every space F one has P(m`1, F ) = PD(m`1, F ).

(d) If every unconditionally converging m-homogeneous polynomial de-
fined on a Banach space E is weakly compact, then E has the m-D
and m-RDP properties. In particular, the space c0 has the m-D and
m-RDP properties for all m ∈ N (see [11]).

(2) The properties m-DP, m-Schur, m-RDP and m-D studied here, are
preserved in complemented subspaces. This result follows from the fact that
those classes of polynomials which determine such properties are stable under
composition with bounded operators (see Proposition 2.11).

(3) Since the τm topology on a space is not linear if m > 1, it is not easy
to determine whether a Dunford-Pettis polynomial (resp. Dieudonné) can be
defined as a polynomial which transforms the τm-convergent sequences into
norm (resp. weak) convergent sequences. This is true, for example, for the
m-homogeneous polynomials in `p for p > m, where the τm-Cauchy and the
τm-convergent sequences coincide.

A Λ-space was defined in [9] as a Banach space in which the sequences that
are τm-null for all m ∈ N, are norm null. Accordingly, we define a Λ-Schur
space as a Banach space in which the sequences that are τm-Cauchy for all
m ∈ N, are norm convergent. A Λ-Schur space is always a Λ-space. The
following property (P), introduced in [1], makes these two notions equivalent:

A Banach space E is said to have property (P) if, whenever (uj) and (vj) are
two bounded sequences in E such that for every n ≥ 1 and every p ∈ P(nE),
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|p(uj)− p(vj)| → 0, it follows that |q(uj − vj)| → 0 for every m ≥ 1 and every
q ∈ P(mE).

Let E be a Λ-space with Property (P). To show that E is also Λ-Schur,
consider a sequence (xn) which is τm-Cauchy for all m ∈ N. Property (P)
ensures that, for every pair of subsequences (xnj ) and (xkj ), the sequence
(xnj − xkj ) is τm-null, for all m. Thus, this sequence is a norm null sequence
(because E is a Λ-space), and hence (xn) is norm convergent.

Appendix. On the Jp space

We give here the definition and main properties of the space Jp that we
have used above. For 1 < p < ∞, Jp is the Banach space of real sequences
x = (ai)i such that limi→∞ ai = 0 and

‖x‖ = sup
(1

2

n∑
i=0

|api+1 − api |p
)1/p

<∞,

where a0 = 0 and the sup is taken over all choices of n and all positive integers
0 = p0 < p1 < . . . < pn.

The proofs of the following properties are, almost word for word, identical
to the proofs for the corresponding properties on the James space J (i.e., the
case p = 2 of Jp).

(1) The unit vector basis (ei)i of Jp is shrinking and the summing basis
(ξn)n (where ξn =

∑n
i=1 ei ) defines a weak Cauchy sequence which

is not weakly convergent (see [19]; for p = 2, see [12, 2.a.2]).
(2) For j = 1, 2, . . . let yj =

∑qj
n=pj

αnen be a block basic sequence of (ei)i.
If pj+1−qj > 1 then [yj ]j is complemented in Jp. If, in addition, (yj)j
is seminormalized, then it is equivalent to the unit vector basis of `p
(for p = 2 see [12, 2.d.2]).

(3) Every seminormalized weakly null sequence on Jp contains a subse-
quence that generates a complemented subspace and which is equiv-
alent to the unit basis of `p.

Property (3) follows from (2) and from the fact that, in a space with basis,
every such sequence contains a subsequence equivalent to a block basic se-
quence (see [18, 1.a.12]). One can take the block basis to satisfy the condition
pj+1 − qj > 1 of (2), and such that if it generates a complemented subspace,
so does the subsequence.

Proposition. All polynomials p ∈ P(mJp) are weakly sequentially con-
tinuous if and only if m < p. If m ≥ p the space Jp has the m-Schur (and
m-DP) properties.

Proof. Consider first the case when m < p and let (xn)n be a sequence
that converges weakly but not in norm to x. By property (3) above, there
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exists a subsequence such that (xnj − x)j is equivalent to the unit basis of
`p and such that this sequence generates a complemented subspace. Then,
for every p ∈ P(kJp), 1 ≤ k ≤ m, we have limj p(xnj − x) = 0, and hence
limj p(xnj ) = p(x). Since this argument can be applied to each subsequence
of (xn)n, the entire sequence converges to x in Eτm .

Now consider the case when m ≥ p and let (xn) be an τm-Cauchy sequence.
The sequence (xn) has a weak Cauchy subsequence. If it does not converge in
norm, there exist two subsequences such that (xnj −xkj )j is equivalent to the
unit basis of `p and generates a complemented subspace F . But this yields a
contradiction to the fact that in F the sequence (xnj − xkj )j must be norm
null, since F ' `p is an m-Schur space. �

In Remark (1) of 2.12 we used the fact that the sequence (ξn)n is τm-Cauchy
in Jp if m < p, but (θm(ξn))n has no weakly convergent subsequences: The
first of these two assertions follows from the proposition above, since (ξn)n
is weak Cauchy. To prove the second, assume that (θm(ξn))n has a weakly
convergent subsequence (θm(ξnj ))j . Then the subsequence (ξnj )j has itself a
weakly convergent sequence in Jp (see [5, Proposition 3.6]). However, this is
false.
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