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EQUIDIMENSIONAL SYMMETRIC ALGEBRAS AND
RESIDUAL INTERSECTIONS

MARK R. JOHNSON

Abstract. For a finitely generated module M , over a universally cate-

nary local ring, whose symmetric algebra is equidimensional, the ideals
generated by the rows of a minimal presentation matrix are shown to

have height at most µ(M) − rankM . Moreover, in the extremal case,
they are Cohen-Macaulay ideals if the symmetric algebra is Cohen-
Macaulay. Some applications are given to residual intersections of ideals.

1. Introduction

Let R be a Noetherian ring and let M be a finitely generated R-module. If

Rm
φ→ Rn →M → 0

is a presentation of M , then one may define the symmetric algebra S(M) of
M as

S(M) = R[T1, ..., Tn]/(`1, ..., `m),
where

[`1, ..., `m] = [T1, ..., Tn] · φ.
Thus the properties of S(M) are reflected in the presentation matrix φ of M .

The problem of determining when the symmetric algebra is a domain has
been extensively studied over the years. Although a great deal is known, one
does not have a definitive answer. In this paper, we consider the equidimen-
sionality and the constraint it places on the matrix φ. Our main result is the
following, which we state in the local case.

Theorem 1. Let R be a universally catenary local ring, let M be a finitely
generated R-module with presentation Rm

φ→ Rn → M → 0, and let J 6= R
be the ideal generated by a row of φ. If S(M) is equidimensional then ht J ≤
n− rankM .
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Here by the rank of a module M we mean

rankM = min{µ(Mp) | p is a minimal prime of R}.

Thus, for example, if R is a domain, then this is the usual (torsionfree) rank.
Note that the result is sharp, as can be seen by considering modules M

with projdim M ≤ 1. Such a module has a minimal presentation

0 −→ Rn−rankM φ→ Rn →M → 0,

and one may construct examples with the property that a row of φ forms part
of a system of parameters of R; hence ht J = µ(J) = n− rankM . (The fact
that µ(M)− rankM ≤ dim R, in the context of Theorem 1, can be seen using
[7]; see also the proof of Lemma 2 below.)

While this paper was being written, we learned that similar results have
been shown by Kwieciński [10] and very recently by Eisenbud, Huneke and
Ulrich. In our situation, Kwieciński gives the result that ht I1(φ) ≤ n(n −
rankM), which is an immediate consequence of the Theorem when R is reg-
ular. He proves this in case R is a regular domain which is finitely generated
over a field of characteristic zero; as one might expect from the additional
hypotheses, the method of proof is quite different from the current one, which
makes use of a deformation argument of [9, Proof of Lemma 3.2]. In an early
version, we stated the result only in the case for ideals, but the general case
is no different.

Before we turn to the proof of Theorem 1, we need a basic fact ensuring
that the symmetric algebra has the expected dimension.

Lemma 2. Let R be a Noetherian local ring and let M be a finitely gener-
ated R-module. If S(M) is equidimensional then dimS(M) = dimR+rankM .

Proof. By [7], for any minimal prime p of R, there exists a (unique) minimal
prime T (p) of S(M) lying over p, and of dimension

dim S(M)/T (p) = µ(Mp) + dim R/p.

But as S(M) is equidimensional we must have

dim S(M) = µ(Mp) + dim R/p

for any minimal prime p of R. It suffices to show that the minimum of
µ(Mp) occurs at a prime with dimR/p = dimR. But this is clear as the sum
µ(Mp) + dim R/p is independent of the minimal prime p. �

2. Proof of Theorem 1

We may assume that J is the ideal generated by the last row of φ. Write

S = S(M) = R[T1, ..., Tn]/(`1, ..., `m),
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where
[`1, ..., `m] = [T1, ..., Tn] · φ,

and let x = x1, ..., xn−1 be the images of T1, ..., Tn−1 in S. Set P = (mS, x) ∈
Spec(S(M)), where m denotes the maximal ideal of R. Then there are iso-
morphisms

SP /(x)SP ∼= (R[T ]/T · JR[T ])(m)

∼= (R[T ]/JR[T ])(m)

∼= (R/J)(T ),

where T = Tn. Now supposing that ht J > n− rankM , as S(M) is equidi-
mensional and catenary, we have that

dim SP = dim SP /(x)SP + ht(x)SP
≤ dim SP /(x)SP + n− 1
= dim (R/J)(T ) + n− 1
= dim R/J + n− 1
≤ dim R− ht J + n− 1
< dim R− (n− rankM) + n− 1
= dim R+ rankM − 1
= dim S − 1
= dim S − dim S/P

= dim SP .

This contradiction shows that htJ ≤ n− rankM . �

Theorem 3. With the notation as in Theorem 1, assume that S(M) is
Cohen-Macaulay and that ht J ≥ n− rankM . Then R/J is Cohen-Macaulay.

Proof. Theorem 1 implies that htJ = n− rankM . But now the string of
inequalities in the proof are all equalities. Thus ht(x)SP = n − 1. Since SP
is Cohen-Macaulay, it follows that x is an SP -sequence. Hence (R/J)(T ) ∼=
SP /(x)SP is Cohen-Macaulay, and thus, by faithfully flat descent, so is R/J.

�

We note that Theorem 3 also holds if one replaces “Cohen-Macaulay” by
“Gorenstein”. A similar remark holds for “complete intersection”, but this is a
less interesting condition for the symmetric algebra, as it means, at least if R is
regular, that projdim M ≤ 1 (see [13]). In this case the result would be clear:
trivially µ(J) ≤ # columns of φ = n− rankM ; thus if ht J ≥ n− rankM ,
then µ(J) = ht J , and hence J and R/J are complete intersections.
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We make one final note about the proof. This is the observation that we did
not need the full strength that S(M) is Cohen-Macaulay, but that a certain
localization has this property. We will make use of this remark in a moment.

3. Applications to residual intersections

In the case of ideals, the previous results can be conveniently described us-
ing the notion of residual intersection. We find it useful to give the translation
into this language.

Recall that a proper ideal J is said to be an s-residual intersection of I if
there are elements a1, ..., as in I such that J = (a1, ..., as) : I and ht J ≥ s.
If in addition ht I + J > s then J is called a geometric s-residual intersec-
tion. (To avoid trivial cases, one usually also assumes that s ≥ ht I, but we
will find it convenient here not to impose this convention.) To study upper
bounds on the heights of colon ideals one may often restrict attention to resid-
ual intersections. Actually, one would even like to know when an s-residual
intersection has the “expected height” s, and when it is Cohen-Macaulay (see
[6],[5],[8],[11]).

We set A = (a1, ..., as) and consider residual intersections J = A : I with
I/A cyclic. Such a J may obviously be chosen as a row of a matrix presenting
I. Hence Theorems 1 and 3 now yield the following result.

Corollary 4. Let R be a universally catenary local ring, let I be an R-
ideal with ht I > 0, and let J = A : I be an s-residual intersection of I with
I/A cyclic. If S(I) is equidimensional then ht J = s; if in addition Proj(S(I))
is Cohen-Macaulay then so is R/J .

Of course both conditions in the corollary are satisfied whenever S(I) is
Cohen-Macaulay. (How much weaker the conditions in the corollary are, how-
ever, is not so clear to the author.)

As an application, we now wish to give a residual intersection characteriza-
tion of the Cohen-Macaulayness of the Rees algebra, for ideals of linear type.
This may be viewed as a partial generalization of a result [3, Corollary 6.4]
on d-sequences.

Recall that an ideal I of a Noetherian ring is said to be of linear type
if the canonical epimorphism S(I) −→ R(I) to the Rees algebra R(I) =
⊕i≥0I

i ∼= R[It] is an isomorphism; in particular, this implies an isomorphism
SR/I(I/I2) ∼= grI(R) = ⊕i≥0I

i/Ii+1. For an ideal of linear type and positive
height in a local Cohen-Macaulay ring, it is known that the Cohen-Macaulay
property of R(I) is equivalent to that of grI(R) (see, for example, [1]). Thus
we may concentrate on the Cohen-Macaulayness of grI(R).

We will exploit a basic example (see [6, 4.3]), which shows that, in the case
of an ideal of linear type in a local Cohen-Macaulay ring, the extended Rees
algebra R[It, t−1] is defined by an ideal J in R[T1, ..., Tn, U ] which is a residual
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intersection of (I, U). More precisely, if n = µ(I), then one has J = A : (I, U),
where J is a geometric n-residual intersection and (I, U)/A is cyclic.

Theorem 5. Let R be a local Cohen-Macaulay ring and let I be an R-ideal
of linear type. Then the following are equivalent.

(a) grI(R) is Cohen-Macaulay;
(b) for any local Cohen-Macaulay faithfully flat extension R′ of R, and any

x ∈ R′ regular on grIR′(R′), every residual intersection J = A : (I, x) of (I, x)
in R′, with (I, x)/A cyclic, is Cohen-Macaulay.

Proof. Suppose first that (b) holds. Taking

R′ = R[T1, ..., Tn, U ](mR,T1,...,Tn,U)

and x = U , we have, as mentioned above, that R[It, t−1] ∼= R[T1, ..., Tn, U ]/J
is Cohen-Macaulay (as it is Cohen-Macaulay locally at its unique graded max-
imal ideal). Hence grI(R) ∼= R[It, t−1]/(t−1) is Cohen-Macaulay.

Conversely, suppose that grI(R) is Cohen-Macaulay. We will show that
gr(I,x)(R′) is Cohen-Macaulay. First, note that by the flatness of the mor-
phism R −→ R′, IR′ is still of linear type. Further, since R −→ T is a faith-
fully flat map of Cohen-Macaulay rings, it follows that by base change (after
localizing at the irrelevant maximal ideals) that grI(R) −→ grIR′(R′) has the
same property; in particular, grIR′(R′) is Cohen-Macaulay. Now (I, x) is still
of linear type [12, Proposition 2.5], and gr(I,x)(R′) ∼= grIR′(R′)/(x) grIR′(R′).
Hence gr(I,x)(R′) is Cohen-Macaulay, proving the claim. Thus we may con-
clude that R((I, x)) is Cohen-Macaulay. Now we may apply Corollary 4 to
(I, x) ⊂ R′ as SR′((I, x)) ∼= R((I, x)) is Cohen-Macaulay, to obtain the re-
quired result. �

We next consider the Gorenstein case. This partially generalizes [4, Theo-
rem 1.3].

Theorem 6. Let R be a local Gorenstein ring and let I be an R-ideal of
linear type. Then the following are equivalent.

(a) grI(R) is Gorenstein ;
(b) for any local Cohen-Macaulay faithfully flat extension R′ of R, and any

x ∈ R′ regular on grIR′(R′), every residual intersection J = A : (I, x) of (I, x)
in R′, with (I, x)/A cyclic, is Gorenstein.

Proof. If (b) holds then R[It, t−1] ∼= R[T1, ..., Tn, U ]/J is Gorenstein; hence
so is grI(R) ∼= R[It, t−1]/(t−1).

Conversely, suppose that grI(R) is Gorenstein. Then, as in the proof of
Theorem 5, it follows that gr(I,x)(R′) is Gorenstein. Hence, as is well-known,
the blow-up Proj(R((I, x)) is Gorenstein. Since (I, x) is of linear type, the
result now follows from the Gorenstein version of Corollary 4. �
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We now wish to give a partial extension of Corollary 4. As an s-residual
intersection in general can have height greater than s, obviously one cannot
simply drop the equidimensional assumption on the symmetric algebra. How-
ever, it turns out that if we know already that the residual intersection has
height s, and is unmixed (and geometric as well), then we may replace the as-
sumption that S(I) is Cohen-Macaulay with the Cohen-Macaulayness of the
Rees algebra. This is actually a partial generalization, because under these
extra hypotheses, the Cohen-Macaulayness of the symmetric algebra would
already imply that it is the Rees algebra ([2, 6.8]).

Proposition 7. Let R be a local Cohen-Macaulay ring, let I be an R-
ideal with ht I > 0, and let J = A : I be a geometric s-residual intersection of
I with I/A cyclic. Assume that J is unmixed and that ht J = s. If Proj(R(I))
is Cohen-Macaulay then so is R/J.

Proof. Write A = (f1, ..., fs), I = (f1, ..., fs+1), and choose a presentation

R(I) ∼= R[T1, ..., Ts+1]/Q,

where Q is the ideal generated by all forms F (T1, ..., Ts+1) vanishing on
f1, ..., fs+1. The proof will follow that of Theorem 1, once we show the claim
that

Q ⊂ (T1, ..., Ts, Ts+1J).
Indeed, as Ts+1J is contained in Q modulo (T1, ..., Ts), this containment would
imply that (Q,T1, ..., Ts) = (T1, ..., Ts, Ts+1J), giving the usual isomorphism
locally at P , modulo the sequence x.

To verify the claim, let F ∈ Q be a form of degree k ≥ 1. Then modulo
(T1, ..., Ts) we may write F ≡ aT ks+1 with a ∈ R. We must show that a ∈ J.
By evaluating, we see that afks+1 ∈ (f1, ..., fs); hence afk−1

s+1 ∈ (f1, ..., fs) :
(fs+1) = J. Now if a 6∈ J , then a 6∈ q for some p-primary component q of
J . But then, as afk−1

s+1 ∈ J ⊂ q, p would, in particular, contain fs+1, and
hence I + J. Thus, since J is geometric, we have ht p ≥ ht I + J > s, which
contradicts the unmixedness of J . This proves the claim.

Notice that (as in the original argument [9, 3.2]), since I has positive height,
R is equidimensional and dimR = dimR + 1. Furthermore, we have P =
(m,x) ∈ Proj(R(I)); in particular, the local ring SP is Cohen-Macaulay. The
result now follows exactly as in the proof of Theorems 1 and 3. �

The assumption that the blow-up Proj(R(I)) is Cohen-Macaulay holds of
course if R(I) is Cohen-Macaulay; more generally, it is well-known that the
blow-up is Cohen-Macaulay if the associated graded ring grI(R) is Cohen-
Macaulay.

We should point out again that Theorem 5 (as well as Corollary 4) holds
if we replace the condition “Cohen-Macaulay” by “Gorenstein” or “complete
intersection.” One should note, however, that it is false for “regular”; this is
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due to the fact that regularity is not preserved under specialization. If the
blow-up is smooth though, one can show, in some cases, that a sufficiently
general residual intersection is regular ([9, 4.1]).

We should also say that, of course, the proposition does not hold without
the assumption that J is unmixed; i.e., even if R(I) is Cohen-Macaulay, a
geometric s-residual intersection of height s need not be Cohen-Macaulay.
One way to construct such examples is to use again the result [6, 4.3], which
(more generally without the assumption of linear type) gives the so-called
extended symmetric algebra as a geometric n-residual intersection of height
n.
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