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PRODUCTS OF TOEPLITZ OPERATORS ON THE
BERGMAN SPACE

PATRICK AHERN AND ŽELJKO ČUČKOVIĆ

Abstract. We consider the problem of determining when the product

of two Bergman space Toeplitz operators is a Toeplitz operator. In
particular, in the case of the zero product TfTg = 0, we give some

conditions that guarantee only the trivial solution.

0. Introduction

In this paper D will denote the unit disc in the complex plane, L2 the
Lebesgue space with respect to the normalized Lebesgue measure dA = 1

πdxdy

on D, and B the subspace of L2 consisting of the holomorphic functions on
D. For a bounded function u on D we have the Toeplitz operator Tu : B → B
given by Tuf = P (uf), where P : L2 → B is the orthogonal projection. The
function u is called the symbol of Tu. It is easy to see that if Tu = 0 then
u = 0 almost everywhere (see Property 1 below). However, it is not known
whether TuTv = 0 implies u = 0 or v = 0. In fact, it is not known for which
bounded functions u and v there exists a bounded w with TuTv = Tw.

In this paper we will restrict ourselves to the case in which the symbols are
bounded harmonic functions in D. Actually, we assume slightly more, namely
that they are of the form f1 + f2 for some bounded holomorphic functions f1

and f2 in D. This is assumed just for convenience; without this assumption
the conclusion of Proposition 2 would be slightly weaker.

Assume as above that f = f1 + f2, g = g1 + g2 and h = h1 + h2 with fi,
gi and hi bounded and holomorphic. There are some obvious cases in which
TfTg = Th: If f and g are both holomorphic or both conjugate holomorphic,
then TfTg = Tfg. Also, if f or g is constant, then TfTg = Tfg. If any of
these four cases holds, we say that TfTg = Th in a trivial way. Otherwise we
say that TfTg = Th holds in a non-trivial way. We know of no example of
such harmonic symbols f , g and h such that TfTg = Th in a non-trivial way.
Our results are the following. In Proposition 1 we give a function-theoretic
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identity involving f , g and h that is equivalent to TfTg = Th. Next, using the
basic identity of Proposition 1, we give four necessary conditions on f , g and
h in order that TfTg = Th in a non-trivial way. The first two conditions say
that the symbols must be somewhat smooth and the last two conditions say
that they cannot be too smooth. In Proposition 2 we show that if TfTg = Th
in a non-trivial way, then f1 and g2 lie in the Zygmund class Λ∗. Using this
result, we then show that the function φ = fg−h has a continuous extension
to the closed disc and vanishes identically on the boundary. This implies,
trivially, that the Toeplitz operator Tφ is compact, but much more is true. In
Proposition 3 we show that Tφ lies in the Schatten class Sr for all r > 1

2 .
Next we turn to results that go somewhat in the other direction. In Propo-

sition 4 we show that if TfTg = Th in a non-trivial way, then f2 and g1 cannot
both be C1 up to the boundary. (In fact, we prove a slightly more general
result.) Finally, in Proposition 5 we show that if TfTg = 0 in a non-trivial
way then all of the functions fi, gi are cyclic vectors for the backward shift
in the Hardy space H2. This can be interpreted as saying that the functions
fi and gi cannot be too smooth, because it rules out polynomials and even
rational functions, which are known to be non-cyclic.

Notice that if TfTg = Th in a trivial way, then fg = h; in particular, fg
is harmonic. In Lemma 4.2 of [3] there is a characterization of all harmonic
functions f and g such that fg is harmonic. This characterization includes
the cases when f and g are holomorphic and when f and g are conjugate
holomorphic, and the case when at least one of f and g is constant, but there
are other cases as well, such as f = f1 + f2 and g = f1 − f2, where f1 and f2

are any bounded holomorphic functions. It is natural to try to find symbols
f , g and h of this type such that TfTg = Th in a non-trivial way. In the
corollary to Proposition 2 we show that this approach will not work. In fact,
we show that if TfTg = Th in a non-trivial way, then fg is not harmonic. Our
proof of this result uses the main result of [1]. It would be interesting to have
a more elementary proof of the corollary of Proposition 2.

Another operator that arises in the study of Toeplitz operators is the
Berezin transform, defined for any integrable function f on D by the formula

B(f)(z) = (1− |z|2)2

∫
D

f(ζ)
|1− zζ|4

dA(ζ).

We also have the kernel functions kw for each w ∈ D defined by kw(z) =
1/(1− zw)2.

We will also make use of the Hankel operator Hu : B → B⊥ defined by
Hu(v) = (I − P )(uv).

We now list some simple and well known properties of Toeplitz operators.

Properties. 1. If Tu = 0 then u = 0 almost everywhere.
2. If f is holomorphic, then TuTf = Tuf , and TfTu = Tfu for any u.
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3. T ∗u = Tu.
4. If f is holomorphic and not identically zero, then Tf is one-to-one.
5. If g ∈ B and w ∈ D then P (gkw) = g(w)kw.

A good reference for Properties 2–5 is Axler’s survey [2]. Property 1 does
not seem to have been stated explicitly in the literature, but it is very easy to
prove: If Tu = 0, then u is orthogonal to all polynomials (in z and z); hence
u = 0 almost everywhere, since such polynomials are dense in L2.

We conclude this section with the following simple lemma.

Lemma 1. Suppose that TfTg = Th in a non-trivial way, where f , g and h
are as above. Then g is not holomorphic and f is not conjugate holomorphic.

Proof. If g is holomorphic, then by Property 2, TfTg = Tfg = Th and hence
by Property 1, h = fg. If we take the Laplacian of both sides of this identity
and use the fact that h is harmonic then we see immediately that either g
is constant or f is holomorphic as well. If f is holomorphic then again by
Properties 2 and 1 we have fg = h, and this implies that either f is constant
or g is holomorphic. �

We note here that Lemma 1 says that if TfTg = Th in a non-trivial way,
then neither of the functions f1, g2 can be constant. We will use this fact in
what follows.

We end this introduction by mentioning the analog of the above problem
for the Hardy space H2. Brown and Halmos [5] have shown that, in the case
of Toeplitz operators on H2, TfTg = Th implies that either g is holomorphic
or f is conjugate holomorphic.

1. The basic identity

In this section we prove the identity on which our other results are based.

Proposition 1. Suppose that f , g and h are as above. Then the following
are equivalent:

(a) TfTg = Th;

f1(z)g1(z) + f2(z)g2(z) + f1(z)g2(z) +B(f2g1)(z)(b)

= h1(z) + h2(z) for z ∈ D;

f1(z)g1(z) + f2(w)g2(w) + f1(z)g2(w)(c)

+ (1− zw)2

∫
D

f2(ζ)g1(ζ)
(1− zζ)2(1− wζ)2

dA(ζ)

= h1(z) + h2(w) for all (z, w) ∈ D ×D.
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Proof. Clearly (c) implies (b). We will show first that (a) is equivalent
to (c), and then that (b) implies (c). We have TfTg = Th if and only if
TfTgkw = Thkw for all w ∈ D. Using Property 5 above we see that

Tgkw = P (g1kw + g2kw) = g1kw + g2(w)kw.

It then follows from another application of Property 5 that

TfTgkw = P ((f1 + f2)(g1kw + g2(w)kw))

= f1g1kw + g2(w)f1kw + g2(w)f2(w)kw + P (f2g1kw).

Since Thkw = h1kw +h2(w)kw, as above, we see that TfTg = Th if and only if

f1(z)g1(z) + f2(w)g2(w) + f1(z)g2(w) +
1

kw(z)
P (f2g1kw)(z)

= h1(z) + h2(w),

for all (z, w) ∈ D ×D. To complete the proof that (a) is equivalent to (c) it
suffices to observe that

1
kw(z)

P (f2g1kw)(z) = (1− zw)2

∫
D

f2(ζ)g1(ζ)
(1− zζ)2(1− wζ)2

dA(ζ).

To show that (b) implies (c), we consider the holomorphic function defined in
the bi-disc by the formula

F (z, w) = f1(z)g1(z) + f2(w)g2(w) + f1(z)g2(w)

+ (1− zw)2

∫
D

f2(ζ)g1(ζ)
(1− zζ)2(1− wζ)2

dA(ζ)− h1(z)− h2(w).

Assuming (b), F is identically zero on the set {(z, z) : z ∈ D}, and hence is
identically zero in D ×D. So F (z, w) ≡ 0, which is the statement (c). �

Next we record a corollary to Proposition 1 that will be used in the proof
of Proposition 4.

Corollary. If TfTg = Th in a non-trivial way, then f is not holomorphic
and g is not conjugate holomorphic.

Proof. If f were holomorphic then we would have f2 = C, where C is a
constant. Since the Berezin transform reproduces holomorphic functions, part
(b) of the proposition says that fg = h. As before, if we take the Laplacian
of this identity we see that either f is constant or g is holomorphic. The case
when g is conjugate holomorphic is similar. �
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2. Necessary conditions

Proposition 2. Suppose that TfTg = Th in a non-trivial way. Then we
have:

(i) f1 and g2 lie in the Zygmund class Λ∗.
(ii) φ = fg − h extends to a continuous function on D and is identically

zero on ∂D.

Proof. Since g2 is not constant, there is a k ≥ 1 such that g(k)
2 (0) 6= 0. Now,

differentiating the identity of part (c) of Proposition 1 k times with respect
to w, and letting w = 0, we obtain

f1(z)g(k)
2 (0) + C +

∫
D

S(z, ζ)
(1− zζ)2

f2(ζ)g1(ζ)dA(ζ) ≡ 0,

where

S(z, ζ) =
∂k

∂wk
(
1− zw
1− ζw

)2|w=0.

To evaluate S(z, ζ), we note that

(
1− zw
1− ζw

)2 = (1− zw)2
∑

(k + 1)(ζw)k.

Multiplying out and collecting terms we get

(
1− zw
1− ζw

)2 = 1 + (ζ − z)
∞∑
k=1

[k(ζ − z) + ζ + z]ζk−2wk.

From this we see that S(z, ζ) is ζ − z times a polynomial in ζ and z, and we
conclude that

f1(z) = A+
∫
D

P (z, ζ)(ζ − z)f2(ζ)g1(ζ)
(1− zζ)2

dA(ζ),

where P is a polynomial. If we differentiate this expression twice we obtain
the estimate

|f ′′1 (z)| ≤ C(
∫
D

|ζ − z|
|1− zζ|4

dA(ζ) +
∫
D

1
|1− zζ|3

dA(ζ)).

Here the constant C incorporates a bound for the sup norms of f2 and g1.
If we use the fact that |ζ − z| ≤ |1 − zζ| then standard estimates show that
|f ′′1 (z)| ≤ C/(1− |z|), and this in turn is equivalent to the statement that
f1 ∈ Λ∗ (see, for example, Theorem 5.3 of [6]). The proof that g2 ∈ Λ∗ is very
similar. This completes the proof of (i).

For the proof of (ii) we start with part (b) of Proposition 1:

f1g1 + f2g2 + f1g2 +B(f2g1) = h1 + h2.
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Since the Berezin transform reproduces harmonic functions, we can rewrite
this as

B(f2g1 + f1g1 + f2g2 − h1 − h2) = −f1g2,

or B(u) = −f1g2, where u denotes the function in the argument of the opera-
tor B. By part (i) of the proposition, the right hand side is continuous on D.
Since u is clearly in the algebra generated by the bounded harmonic functions
it follows that u itself has a continuous extension to D (see Corollary 3.11
of [3]). But fg − h = u + f1g2, so fg − h has a continuous extension to D.
To see that fg − h = 0 on ∂D we note that, since u is continuous on D, it
follows that B(u) = u on ∂D. But B(u)+f1g2 = 0 in D, and so by continuity
fg − h = u+ f1g2 = 0 on ∂D. This completes the proof. �

Corollary. If TfTg = Th in a non-trivial way, then fg is not harmonic.

Proof. Suppose that fg is harmonic. By Proposition 2 we have fg = h
almost everywhere on ∂D. Hence fg = h in D, since fg and h are harmonic.
A slight rewriting of part (b) of Proposition 1 gives

fg +B(f2g1)− f2g1 = h.

Since fg = h we obtain B(f2g1) = f2g1. The main result of [1] then implies
that f2g1 is harmonic, from which it easily follows that either f2 or g1 is
constant. That is, either f is holomorphic or g is conjugate holomorphic.
Applying the corollary to Proposition 1 completes the proof. �

Proposition 3. If TfTg = Th in a non-trivial way and φ = fg− h, then
we have:

(i) Tφ is in the Schatten class Sr for all r > 1
2 .

(ii)
∑

( 1
|Rk|

∫
Rk
|φ|2dA)r < ∞ for all r > 1

2 , where {Rk} is a partition
of D into hyperbolically equal-sized Carleson half-squares and |Rk|
denotes the area measure of Rk.

Proof. We will use the well known formula Tfg − TfTg = H∗
f
Hg, valid for

any bounded symbols f and g. In our case, Hg = Hg2
and Hf = Hf1

so that,
under the assumptions of Proposition 3, Tfg−h = H∗

f1
Hg2

. In [4] it was shown
that if F is holomorphic and 1 < p <∞ then HF ∈ Sp if and only if∫

D

|F ′(z)|p(1− |z|)p−2dA(z) <∞.

We have seen in the proof of Proposition 2 that if F = f1 or F = g2 then
|F ′′(z)| ≤ C/(1− |z|). This implies in a standard way that∫

D

|F ′(z)|p(1− |z|)p−2dA(z) <∞
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for all 1 < p <∞. This means that Hf1
and Hg2

are in Sp for all 1 < p <∞.
Hence the product H∗

f1
Hg2

is in Sr for all r > 1
2 .

In [8] there is a characterization of the non-negative symbols whose Toeplitz
operators lie in the Schatten classes. The main theorem of [8] says that if
ψ ≥ 0, then Tψ ∈ Sp if and only if∑

(
1
|Rk|

∫
Rk

ψdA)p <∞,

where {Rk} is partition of D into hyperbolically equal-sized Carleson half-
squares. Our symbol φ = fg − h is not necessarily non-negative, but we can
apply the theorem in the following way. Suppose u =

∑n
1 αiβi, where the αi

and the βi are bounded holomorphic functions. Then we have

Tφu =
∑

TαiTφTβi .

So Tφu ∈ Sr for all r > 1
2 for any such u. But we can take u = φ and conclude

that ∑
(

1
|Rk|

∫
Rk

|φ|2dA)r <∞,

for all r > 1
2 . �

Corollary. We have
∫
D
|φ(z)|2r

(1−|z|2)2 dA(z) <∞, for all r > 1
2 .

Proof. Fix 1/2 < r < 1. By Hölder’s inequality we have
∫
Rk
|φ|2rdA ≤

(
∫
Rk
|φ|2dA)r|Rk|1−r. This yields 1

|Rk|
∫
Rk
|φ|2rdA ≤ ( 1

|Rk|
∫
Rk
|φ|2dA)r. Now

for z ∈ Rk, (1− |z|2)2 is of the order of |Rk|. Using this fact and summing on
k, we arrive at the conclusion of the corollary. �

Proposition 4. Suppose that TfTg = Th in a non-trivial way. Then
there does not exist a subset E ⊂ ∂D of positive measure such that f ′2 and g′1
have continuous extensions to each point of E.

Proof. Suppose there is a set E ⊂ ∂D of positive measure such that f ′2
and g′1 have continuous extensions to each point of E. By condition (b) of
Proposition 1 we have

f1(z)g1(z) + f2(z)g2(z) + f1(z)g2(z) +B(f2g1)(z) = h(z).

Applying the invariant Laplacian to this equation and using the fact that the
invariant Laplacian commutes with the Berezin transform (see [7]), we obtain

(1− |z|2)2f ′1(z)g′2(z) + (1− |z|2)2

∫
D

(1− |ζ|2)2f
′
2(ζ)g′1(ζ)

|1− zζ|4
dA(ζ) ≡ 0.



120 PATRICK AHERN AND ŽELJKO ČUČKOVIĆ

Dividing by (1− |z|2)2 we get

f ′1(z)g′2(z) +
∫
D

(1− |ζ|2)2f
′
2(ζ)g′1(ζ)

|1− zζ|4
dA(ζ) ≡ 0.

Since we are assuming that TfTg = Th in a non-trivial way, it follows from
the corollary to Proposition 1 that neither f ′2 nor g′1 can be identically zero.
From this it follows that there is a subset of E of positive measure on which
neither f

′
2 nor g′1 vanishes. (What we are using here is a very special (and

easy) case of the theorem of Privalov that says that if a meromorphic function
in the unit disc has non tangential limit zero on a set of positive measure on
∂D then it is identically zero; see [9] or Theorem 1.9 of [10].) It follows that
there is a set of positive measure on which Re(f

′
2g
′
1) (or Im(f

′
2g
′
1)) is never

zero, and finally a set of positive measure on which this function is positive
(or negative) and, in fact, bounded away from zero. Let us suppose, say, that
there is a set of positive measure (which we will continue to call E) on which
u = Ref

′
2g
′
1 > ε > 0. Take a point eit ∈ E. Then there is a number η > 0

such that if |ζ − eit| < η then u(ζ) > ε. Then we have

Re
∫
D

(1− |ζ|2)2f
′
2(ζ)g′1(ζ)

|1− zζ|4
dA(ζ)

=
∫
|ζ−eit|<η

(1− |ζ|2)2u(ζ)
|1− zζ|4

dA(ζ) +
∫
|ζ−eit|>η

(1− |ζ|2)2u(ζ)
|1− zζ|4

dA(ζ)

Now let z → eit. Then the second integral stays bounded, but the first integral
is greater than

ε

∫
|ζ−eit|<η

(1− |ζ|2)2

|1− zζ|4
dA(ζ).

This integral is in turn equal to∫
D

(1− |ζ|2)2

|1− zζ|4
dA(ζ)−

∫
|ζ−eit|>η

(1− |ζ|2)2

|1− zζ|4
dA(ζ).

Again, the second integral stays bounded as z → eit and the first one goes
to ∞ like log(1/(1− |z|)) as |z| → 1. It now follows that |f ′1(z)g′2(z)| =
|f ′1(z)g′2(z)| ≥ |Re(f ′1(z)g′2(z))| → ∞ as z → eit. This means that the holo-
morphic function f ′1g

′
2 continuously takes on the value ∞ on a set of positive

measure on ∂D. This is impossible, because then the meromorphic function
1/(f ′1g

′
2) would take on the value zero on this set of positive measure and

hence be identically zero. �

Our final result deals with the “zero product” situation, i.e., the case when
TfTg = 0. For this to occur in the trivial way means that fg = 0 and hence
that either f or g is identically zero. Recall that a function f in the Hardy
space H2 is said to be non-cyclic for the backward shift if there is an inner
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function φ such that f is orthogonal to the subspace φH2 of H2. Otherwise f
is said to be cyclic for the backward shift. As is well known, f is orthogonal
to φH2 if and only if there is a function F ∈ H2 such that F (0) = 0 and such
that φf = F almost everywhere on ∂D.

Proposition 5. If TfTg = 0 in a non-trivial way, then f1, f2, g1, g2 are
all cyclic vectors for the backward shift.

Proof. If TfTg = 0 then, as we have seen above, fg extends continuously to
D and vanishes on ∂D. Since neither f nor g is identically zero, we conclude
that there is a set E ⊂ ∂D such that E has positive measure, ∂D − E has
positive measure and such that f = 0 almost everywhere on E and g = 0
almost everywhere on ∂D − E. If f1 were non cyclic for the backward shift,
there would exist an inner function φ and a function F ∈ H2 such that
φf1 = F almost everywhere on ∂D. Now f2 = −f1 almost everywhere on E
so we see that φf2 = −φf1 = −F almost everywhere on E. But this means
that φf2 = −F on all of ∂D. This in turn implies that φf1 = −φf2 on ∂D
and hence that f1 = −f2 on ∂D. This means that f = 0 on ∂D and hence
f = 0 in D, contrary to the assumptions. The same argument shows that
f2, g1 and g2 are also cyclic. �
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