LOCAL PROPERTIES OF POLYNOMIALS ON A BANACH SPACE

RICHARD M. ARON, YUN SUNG CHOI, SUNG GUEN KIM, AND MANUEL
MAESTRE

Abstract

We introduce the concept of a smooth point of order n of the closed unit ball of a Banach space E and characterize such points for $E=c_{0}, L_{p}(\mu)(1 \leq p \leq \infty)$, and $C(K)$. We show that every locally uniformly rotund multilinear form and homogeneous polynomial on a Banach space E is generated by locally uniformly rotund linear functionals on E. We also classify such points for $E=c_{0}, L_{p}(\mu)(1 \leq$ $p \leq \infty)$, and $C(K)$.

1. Introduction

This paper deals with smoothness and local uniform rotundity for n-homogeneous polynomials on a Banach space. The concept of smoothness is a linear one and we extend this notion to n-smoothness, in the context of n-homogeneous polynomials. In addition, we will study locally uniformly rotund points of the closed unit ball of the Banach space of n-homogeneous polynomials which, in a sense, is a dual notion to n-smoothness.

We recall that a point x_{0} in the unit sphere S_{E} of a Banach space E is said to be a smooth point of the closed unit ball B_{E} if there is a unique norming functional for x_{0}, that is, if there is a unique linear form $\phi_{0} \in E^{*}$ such that $\left\|\phi_{0}\right\|=1=\phi_{0}\left(x_{0}\right)$. The set of smooth points of B_{E} is denoted by $\operatorname{sm}(E)$. A dual notion to smoothness is rotundity: a point $x_{0} \in S_{E}$ is called a locally uniformly rotund point if the condition $\left\|x_{n}+x_{0}\right\| \rightarrow 2$, for a sequence (x_{n}) in the closed unit ball B_{E}, implies that $\left\|x_{n}-x_{0}\right\| \rightarrow 0$. The set of locally uniformly rotund points of B_{E} is denoted by lur B_{E}.

[^0]To describe the problems we will be investigating, we first need to recall some terminology and notation. Let $\mathcal{L}\left({ }^{n} E\right)$ denote the Banach space of scalarvalued continuous n-linear mappings on $E \times \cdots \times E$, endowed with the norm $\|A\|=\sup _{\left\|x_{i}\right\| \leq 1}\left|A\left(x_{1}, \ldots, x_{n}\right)\right|$, and let $\mathcal{P}\left({ }^{n} E\right)$ denote the Banach space of scalar-valued continuous n-homogeneous polynomials on E endowed with the norm $\|P\|=\sup _{\|x\| \leq 1}|P(x)|$. We refer the reader to $[4,11,14]$ for more details about polynomials on a Banach space. Given an n-homogeneous polynomial P, we denote the unique symmetric n-linear form associated to P by $\stackrel{\vee}{P}$.

A point $x_{0} \in S_{E}$ is called a smooth point of order n of B_{E} if there is a unique element $P \in \mathcal{P}\left({ }^{n} E\right)$ such that $\|P\|=1=P\left(x_{0}\right)$. We denote the set of all smooth points of order n of B_{E} by sm ${ }^{(n)}(E)$, noting that $\mathrm{sm}^{(1)}(E)$ coincides with $\operatorname{sm}(E)$; see [9, Chapters 1 and 2] and [10, Chapter 2]. On the other hand, $\mathcal{P}\left({ }^{n} E\right)$ is isometrically isomorphic with the dual space of $\tilde{\otimes}_{\pi_{s}}^{n, s} E$, which is the completed n-th symmetric tensor product of E with the projective s-tensor norm (see [12]). From this viewpoint we can say that the point $x_{0} \in S_{E}$ is a smooth point of order n of B_{E} if the n-symmetric tensor $x_{0} \otimes \cdots \otimes x_{0}$ is a smooth point of $B_{\tilde{\otimes}_{\pi_{s}}^{n, s} E}$. Since $\mathcal{P}\left({ }^{n} E\right) \equiv\left(\tilde{\otimes}_{\pi_{s}}^{n, s} E\right)^{*}$, the concept of a smooth point of order n of B_{E} is closely related to that of an LUR point of $B_{\mathcal{P}\left({ }^{n} E\right)}$ (see, e.g., Corollary 3.5 below).

Boyd and Ryan [3, Proposition 17] showed that if E is a real Banach space of dimension at least 2 , then for $n \geq 2$ the spaces $\tilde{\otimes}_{\pi_{s}}^{n, s} E$ and $\mathcal{P}\left({ }^{n} E\right)$ are neither smooth nor rotund. Extreme points and smooth points of $B_{\mathcal{P}\left({ }^{n} E\right)}$ were studied in $[5,6,7,8]$. Here, we will study smooth points of $B_{\tilde{\otimes}_{\pi_{s}}^{n, s}}$ and LUR points of $B_{\mathcal{P}\left({ }^{n} E\right)}$ and $B_{\mathcal{L}\left({ }^{n} E\right)}$ for classical Banach spaces E.

For use in the sequel, we now collect some results concerning smooth and locally uniformly rotund points. It is well-known (see [9, Examples 1.6], and $[13,26.5$ Examples $])$ that $\operatorname{sm}\left(L_{1}[0,1]\right)=\left\{f \in L_{1}[0,1]:\|f\|_{1}=1\right.$ and $f(x) \neq$ 0 a.e. $\}$, while $\operatorname{sm}\left(L_{p}[0,1]\right)=S_{L_{p}[0,1]}$ for $1<p<\infty$ and $\operatorname{sm}\left(L_{\infty}[0,1]\right)=\emptyset$. Also, $\operatorname{sm}\left(\ell_{p}\right)=S_{\ell_{p}}$ for $1<p<\infty, \operatorname{sm}\left(\ell_{1}\right)=\left\{\left(a_{i}\right) \in S_{\ell_{1}}: a_{i} \neq 0\right.$ for all $\left.i\right\}$, $\operatorname{sm}\left(\ell_{\infty}\right)=\left\{\left(\lambda_{i}\right) \in \ell_{\infty}\right.$: there exists i_{0} such that $\left|\lambda_{i_{0}}\right|=1>\sup \left\{\left|\lambda_{i}\right|\right.$ for $i \neq$ $\left.\left.i_{0}\right\}\right\}$, and $\operatorname{sm}\left(c_{0}\right)=\left\{\left(\lambda_{i}\right) \in c_{0}\right.$: there exists i_{0} such that $\left|\lambda_{i_{0}}\right|=1$ and $\left|\lambda_{i}\right|<$ 1 for $\left.i \neq i_{0}\right\}$. Further, if X is a locally compact Hausdorff space and we denote by $C_{0}(X)$ the Banach space of continuous functions on X vanishing at infinity, endowed with the supremum norm, then $\operatorname{sm}\left(C_{0}(X)\right)=\{f$: there exists a unique $x_{0} \in X$ satisfying $\left.\left|f\left(x_{0}\right)\right|=1=\|f\|_{\infty}\right\}$. Finally, lur $B_{C(K)}=\emptyset$ provided the compact set K has at least two points. Also, lur $B_{\ell_{p}}=S_{\ell_{p}}$ and $\operatorname{lur} B_{L_{p}[0,1]}=S_{L_{p}[0,1]}$ for $1<p<\infty$, because ℓ_{p} and $L_{p}[0,1]$ are uniformly convex.

In Section 2 we examine the set of smooth points of order n for all these spaces. In Section 3 we show that every locally uniformly rotund multilinear form and homogeneous polynomial on E is generated by locally uniformly rotund linear functionals, and we characterize such points for these spaces.

2. Smooth points of high order

An easy observation is that if $x \in S_{E}$ is a norming point of a non-finite type polynomial $P \in \mathcal{P}\left({ }^{n} E\right)$, i.e. $P \notin \otimes^{n, s} E^{*}$, then x is not a smooth point of order n. Moreover, we can see that $\operatorname{sm}^{(n)}(E) \subset \operatorname{sm}^{(k)}(E)$ for $1 \leq k \leq n$. In fact, if $x_{0} \in S_{E}$ is not a smooth point of order k, then there is $Q \in \mathcal{P}\left({ }^{k} E\right), Q \neq \phi_{0}^{k}$, such that $1=Q(x)=\|Q\|$, where $\phi_{0} \in E^{*}$ is such that $1=\left\|\phi_{0}\right\|=\phi_{0}\left(x_{0}\right)$. Hence $\phi_{0}^{n}=\phi_{0}^{n-k} \phi_{0}^{k} \neq \phi_{0}^{n-k} Q$, and so x_{0} is not a smooth point of order n.

For a real Banach space E of dimension at least 2, we get $\operatorname{sm}^{(2)}(E)=\emptyset$. Indeed, given $x_{0} \in S_{E}$, let $\phi_{0} \in E^{*}$ and $P_{0}=\phi_{0}^{2} \in \mathcal{P}\left({ }^{2} E\right)$ be as above. Next choose $\eta \in E^{*}$ so that $\|\eta\|=1$ and $\eta\left(x_{0}\right)=0$. Define $Q \in \mathcal{P}\left({ }^{2} E\right)$ by $Q(x)=$ $\left(\phi_{0}(x)\right)^{2}-(\eta(x))^{2}$. Then $P_{0} \neq Q$ and $\left\|P_{0}\right\|=\|Q\|=1=P_{0}\left(x_{0}\right)=Q\left(x_{0}\right)$. Hence x_{0} is not a smooth point of order 2. Consequently, all Banach spaces in this section will be assumed to be over \mathbb{C}.

Let K be a compact Hausdorff space and let Z be a closed subset of K. We denote by $C_{Z}(K)$ the Banach space of all continuous functions on K that vanish on Z, endowed with the supremum norm. It is well-known that any closed ideal of $C(K)$ is of this form.

Theorem 2.1. (i) Let K be a compact Hausdorff space and let Z be a closed subset of K. Then for all $n, \operatorname{sm}^{(n)}\left(C_{Z}(K)\right)=\{f$: there exists a unique $x_{0} \in K$ satisfying $\left.\left|f\left(x_{0}\right)\right|=1=\|f\|_{\infty}\right\}$.
(ii) If X is a locally compact space, then for all $n, \mathrm{sm}^{(n)}\left(C_{0}(X)\right)=\{f$: there exists a unique $x_{0} \in X$ satisfying $\left.\left|f\left(x_{0}\right)\right|=1=\|f\|_{\infty}\right\}$.

Proof. (i) Given $x \in K$, let δ_{x} be the evaluation functional at x. Let $f \in$ $S_{C_{Z}(K)}$ and suppose that there exist distinct points x_{1} and x_{2} in K satisfying $\left|f\left(x_{1}\right)\right|=\left|f\left(x_{2}\right)\right|=1$. For each positive integer $n, P_{j}=\frac{1}{f\left(x_{j}\right)^{n}}\left(\delta_{x_{j}}\right)^{n}(j=$ 1,2) are distinct continuous n-homogeneous polynomials with norm one on $C_{Z}(K)$ such that $P_{j}(f)=1$ for $j=1,2$. Hence f is not a smooth point of order n. Conversely, let $f_{0} \in C_{Z}(K)$ be a function such that there exists a unique $x_{0} \in K$ with $\left\|f_{0}\right\|_{\infty}=1=\left|f_{0}\left(x_{0}\right)\right|$. To complete the proof it is enough to show that if $f_{0}\left(x_{0}\right)=1$ and if $P \in \mathcal{P}\left({ }^{n} C_{Z}(K)\right)$ satisfies $\|P\|=1=P\left(f_{0}\right)$, then $P=\left(\delta_{x_{0}}\right)^{n}$.

Let \mathcal{E} be the family of open neighborhoods U of x_{0} with $U \neq K$. For each $U \in \mathcal{E}$ there exists $s_{U}: K \rightarrow[0,1]$, continuous on K, satisfying

$$
s_{U}(x)= \begin{cases}1 & \text { if } x=x_{0} \\ 0 & \text { if } x \in K \backslash U\end{cases}
$$

Next we can find $t_{U}: K \rightarrow[0,1]$, continuous on K, such that

$$
t_{U}(x)= \begin{cases}1 & \text { if } x \in s_{U}^{-1}([0,1 / 4]) \\ 0 & \text { if } x \in s_{U}^{-1}([1 / 2,1])\end{cases}
$$

The functions $g_{1 U}=\frac{t_{U}}{s_{U}+t_{U}}$ and $g_{2 U}=\frac{s_{U}}{s_{U}+t_{U}}$ are continuous on K and satisfy $g_{1 U}+g_{2 U} \equiv 1$. For each $U \in \mathcal{E}$, we define $G_{U}: C_{Z}(K) \rightarrow \mathbb{C}$ by $G_{U}(f)=P\left(f g_{1 U}+f_{0} g_{2 U}\right)$ for $f \in C_{Z}(K)$. Since the map $\phi: C_{Z}(K) \rightarrow$ $C_{Z}(K)$ defined by $\phi(f)=f g_{1 U}+f_{0} g_{2 U}$ is affine, $G_{U}=P \circ \phi$ is a continuous polynomial of degree n on $C_{Z}(K)$. Moreover,

$$
\begin{aligned}
G_{U}(f) & =\sum_{k=0}^{n}\binom{n}{k} \stackrel{\vee}{P}\left(\left(f g_{1 U}\right)^{(k)},\left(f_{0} g_{2 U}\right)^{(n-k)}\right) \\
& =P\left(f g_{1 U}\right)+\sum_{k=1}^{n-1}\binom{n}{k} \stackrel{\vee}{P}\left(\left(f g_{1 U}\right)^{(k)},\left(f_{0} g_{2 U}\right)^{(n-k)}\right)+P\left(f_{0} g_{2 U}\right)
\end{aligned}
$$

If $\|f\|_{\infty} \leq 1$, then

$$
\left|G_{U}(f)\right| \leq\|P\|\left\|f g_{1 U}+f_{0} g_{2 U}\right\|_{\infty}^{n} \leq\|P\| \max \left\{\|f\|_{\infty},\left\|f_{0}\right\|_{\infty}\right\}^{n} \leq 1
$$

Since $G_{U}\left(f_{0}\right)=P\left(f_{0} g_{1 U}+f_{0} g_{2 U}\right)=P\left(f_{0}\right)=1$, we have $\max \left\{\left|G_{U}(f)\right|\right.$: $\left.\|f\|_{\infty} \leq 1\right\}=1$. Now consider the continuous function $h_{U}: K \rightarrow[0,1]$, given by

$$
h_{U}(x)= \begin{cases}0 & \text { if } x \in s_{U}^{-1}([7 / 8,1]) \\ 1 & \text { if } x \in s_{U}^{-1}([0,3 / 4])\end{cases}
$$

If $g_{1 U}(x)>0$, then $s_{U}(x)<1 / 2<3 / 4$, and so $h_{U}(x)=1$. As a consequence, $h_{U} g_{1 U}=g_{1 U}$ and therefore $G_{U}\left(f_{0} h_{U}\right)=P\left(f_{0} h_{U} g_{1 U}+f_{0} g_{2 U}\right)=P\left(f_{0}\right)=1$. Note that $\left\|f_{0} h_{U}\right\|_{\infty}<1$. By the maximum modulus theorem G_{U} is a constant polynomial on $C_{Z}(K)$. Hence, for $1 \leq k \leq n$, all k-homogeneous polynomials in the above representation of the polynomial G_{U} must be 0 . In particular,

$$
\begin{equation*}
P\left(f g_{1 U}+f_{0} g_{2 U}\right)=P\left(f_{0} g_{2 U}\right)=G_{U}(0)=1 \text { and } P\left(f g_{1 U}\right)=0 \tag{1}
\end{equation*}
$$

for all $f \in C_{Z}(K)$. For each $f \in C_{Z}(K)$ and $U \in \mathcal{E}$ define $f_{U}=f g_{1 U}+$ $f\left(x_{0}\right) f_{0} g_{2 U}$. Since $f_{U}(x)-f(x)=0$ for all $x \in K \backslash U$ and all $U \in \mathcal{E}$, it is easy to check that the net $\left(f_{U}\right)_{U \in \mathcal{E}}$ is $\|\cdot\|_{\infty}$-convergent to f. If $f\left(x_{0}\right)=0$, then (1) and the definition of f_{U} imply that $P(f)=0=\left(\delta_{x_{0}}\right)^{m}(f)$. If $f\left(x_{0}\right) \neq 0$, then it follows from (1) that $P\left(f_{U}\right)=f\left(x_{0}\right)^{m} P\left(\frac{1}{f\left(x_{0}\right)} f g_{1 U}+f_{0} g_{2 U}\right)=f\left(x_{0}\right)^{m}=$ $\left(\delta_{x_{0}}\right)^{m}(f)$. Hence $P(f)=\delta_{x_{0}}^{m}(f)$ for all $f \in C_{Z}(K)$.
(ii) Let X be a locally compact set. If we denote its Alexandroff compactification by \tilde{X}, then $C_{0}(X)=C_{\{\infty\}}(\tilde{X})$, and the conclusion follows from (1).

Corollary 2.2. For every positive integer n,

$$
\begin{aligned}
\operatorname{sm}^{(n)}\left(c_{0}\right)= & \left\{\left(\lambda_{i}\right) \in c_{0}: \text { there exists } i_{0}\right. \text { such that } \\
& \left.\left|\lambda_{i_{0}}\right|=1 \text { and }\left|\lambda_{i}\right|<1 \text { for } i \neq i_{0}\right\} \\
\operatorname{sm}^{(n)}\left(\ell_{\infty}\right)=\{ & \left\{\left(\lambda_{i}\right) \in \ell_{\infty}: \text { there exists } i_{0}\right. \text { such that } \\
& \left.\left|\lambda_{i_{0}}\right|=1>\sup \left\{\left|\lambda_{i}\right| \text { for } i \neq i_{0}\right\}\right\}
\end{aligned}
$$

Proof. Since $c_{0}=C_{0}(\mathbb{N})$, where \mathbb{N} is endowed with the discrete topology, and $\ell_{\infty}=C(\beta \mathbb{N})$, where $\beta \mathbb{N}$ denotes the Stone-C̆ech compactification of \mathbb{N}, the result is immediate from Theorem 2.1. Note also that the results are very well-known for the case $n=1$ (see, e.g., [9, Example 1.6.b)]), and Theorem 2.1 implies that the sets of smooth points of any order coincide for these spaces.

We now turn our attention to $\operatorname{sm}^{(n)}\left(\ell_{p}\right)$ for $1 \leq p<\infty$.
REmARK. In general, if x_{0} is a norm one element of ℓ_{p} such that some coordinate of x_{0} equals 0 , then x_{0} is not contained in $\operatorname{sm}^{(n)}\left(\ell_{p}\right)$ for $n \geq p$. Indeed, suppose that x_{0} is 0 in the $j^{\text {th }}$ coordinate and let $\phi \in\left(\ell_{p}\right)^{*}$ be a norm one functional such that $\phi\left(x_{0}\right)=1$. Note that ϕ itself must be 0 in the $j^{\text {th }}$ coordinate. Then for any $n \geq p$, the n-homogeneous polynomial $P(x)=[\phi(x)]^{n}+\left(x_{j}\right)^{n}$ is such that $P\left(x_{0}\right)=1=\|P\|=\phi^{n}\left(x_{0}\right)$. Therefore, since P and ϕ^{n} are different, x_{0} is not a smooth point of order n of $B_{\ell_{p}}$.

Theorem 2.3. Let $1 \leq p<\infty$ and $n \geq 2$ be a positive integer. Then

$$
\operatorname{sm}^{(n)}\left(\ell_{p}\right)= \begin{cases}\left\{\lambda e_{j}:|\lambda|=1, j \in \mathbb{N}\right\} & \text { if } 2 \leq n<p \\ \emptyset & \text { if } p \leq n\end{cases}
$$

and if $k \geq 2$ is a positive integer, then

$$
\operatorname{sm}^{(n)}\left(\ell_{p}^{k}\right)= \begin{cases}\left\{\lambda e_{j}:|\lambda|=1,1 \leq j \leq k\right\} & \text { if } 2 \leq n<p \\ \emptyset & \text { if } p \leq n\end{cases}
$$

In our proof (which will be given only for ℓ_{p}), we will examine the three cases $p=1,1<p \leq 2$ and $2<p<\infty$ separately.

Step 1: $p=1$. We need to prove that $\mathrm{sm}^{(2)}\left(\ell_{1}\right)=\emptyset$. Let $a, b, c \in \mathbb{R},|a|<$ $1,|b|<1$ and $2<|c| \leq 4$ and $P(x, y)=a x^{2}+b y^{2}+c x y \in \mathcal{P}\left({ }^{2} \ell_{1}^{2}\right)$. We make use of a result in [8, Theorem 2.4] that

$$
\|P\|=1 \text { if and only if } 4|c|-c^{2}=4(|a+b|-a b)
$$

Since $\operatorname{sm}\left(\ell_{1}\right)=\left\{\left(a_{i}\right) \in S_{\ell_{1}}: a_{i} \neq 0\right.$ for all $\left.i\right\}$, it is enough to show that $\operatorname{sm}^{(2)}\left(\ell_{1}\right)$ does not contain any point $a=\left(a_{i}\right) \in S_{\ell_{1}}$ such that $a_{i} \neq 0$ for all i. Choose a positive integer i_{0} so that $0<\left|a_{i_{0}}\right|<1 / 2$. Set $c=2 /\left(1-\left|a_{i_{0}}\right|\right)$ and define

$$
P(x)=\left(c-\frac{c^{2}}{4}\right)\left(\sum_{i \neq i_{0}} \operatorname{sgn}\left(a_{i}\right) x_{i}\right)^{2}+c x_{i_{0}}\left(\sum_{i \neq i_{0}} \operatorname{sgn}\left(a_{i} a_{i_{0}}\right) x_{i}\right)
$$

for $x=\left(x_{i}\right) \in \ell_{1}$, where $\operatorname{sgn}(d)=|d| / d$ if $d \neq 0$ and 1 if $d=0$. Since

$$
\begin{aligned}
\|P\| & \leq \sup _{\|x\| \leq 1}\left(c-\frac{c^{2}}{4}\right)\left(\sum_{i \neq i_{0}}\left|x_{i}\right|\right)^{2}+c\left|x_{i_{0}}\right|\left(\sum_{i \neq i_{0}}\left|x_{i}\right|\right) \\
& =\sup _{|\alpha|+|\beta| \leq 1}\left(c-\frac{c^{2}}{4}\right)|\alpha|^{2}+c|\alpha \| \beta|=1
\end{aligned}
$$

and $P(a)=1$, we have $\|P\|=1$.
On the other hand, the functional $\phi_{0} \in\left(\ell_{1}\right)^{*}$ with $\left\|\phi_{0}\right\|=1=\phi_{0}(a)$ has the property that all its coordinates have modulus 1 . Since every coefficient of the monomial expansion of $Q=\phi_{0}^{2}$ has modulus 1 or $2, P$ and Q are distinct polynomials. Hence x_{0} is not a smooth point of order 2 .

Step 2: $1<p \leq 2$. We need the following lemma.
LEMMA 2.4. Let $1<p \leq 2$. Given $\left(z_{0}, w_{0}\right) \in \ell_{p}^{2}$ with $\left\|\left(z_{0}, w_{0}\right)\right\|_{p}=1$ and $2^{-1 / p} \leq\left|z_{0}\right|<1$, there exist $b>0$ and $c \geq 0$ (with $c=0$ if and only if $\left.\left|z_{0}\right|=2^{-1 / p}\right)$ such that

$$
P(z, w)=b\left(\left(\frac{\left|z_{0}\right|}{z_{0}}\right)^{2} c z^{2}+\frac{\left|z_{0}\right|}{z_{0}} \frac{\left|w_{0}\right|}{w_{0}} z w\right)
$$

satisfies $\|P\|=1=P\left(z_{0}, w_{0}\right)$.
Proof. Given $c \geq 0$, consider the polynomial $Q_{c}(z, w)=c z^{2}+z w$. Letting $f_{c}(x)=c x^{2}+x\left(1-x^{p}\right)^{1 / p}$, it is immediate that $\left\|Q_{c}\right\|=\max \left\{f_{c}(x): 2^{-1 / p} \leq\right.$ $x \leq 1\}$. We denote $\left(\left|z_{0}\right|,\left|w_{0}\right|\right)=\left(x_{0}, y_{0}\right)$. For the case where $x_{0}=2^{-1 / p}$ we set $c=0$ and easily check that $\left\|Q_{0}\right\|=Q_{0}\left(2^{-1 / p}, 2^{-1 / p}\right)$. Taking $b=1 /\left\|Q_{0}\right\|$, we have $\|P\|=1=P\left(z_{0}, w_{0}\right)$.

For the case where $2^{-1 / p}<x_{0}<1$ we first claim that for any $c>0$ there exists a unique $u_{c} \in\left(2^{-1 / p}, 1\right)$ such that

$$
f_{c}^{\prime}(x) \begin{cases}>0 & \text { if } 2^{-1 / p} \leq x<u_{c} \\ =0 & \text { if } x=u_{c} \\ <0 & \text { if } u_{c}<x<1\end{cases}
$$

To show this, we observe that on the interval $\left(2^{-1 / p}, 1\right)$, the functions $x^{p-1},(1-$ $\left.x^{p}\right)^{(1 / p)-2},\left(2 x^{p}-1\right)$, and $\left(1-x^{p}\right)^{(1 / p)-1}$ are positive and strictly increasing. Consequently, a computation shows that $f_{c}^{\prime \prime}$ is continuous and strictly decreasing to $-\infty$ on $\left[2^{-1 / p}, 1\right)$. Now, if $f_{c}^{\prime \prime}\left(2^{-1 / p}\right) \leq 0$, then f^{\prime} is strictly decreasing on the interval. Since $f_{c}^{\prime}\left(2^{-1 / p}\right)>0$ and $\lim _{x \rightarrow 1} f_{c}^{\prime}(x)=-\infty$, the claim follows. On the other hand, if $f_{c}^{\prime \prime}\left(2^{-1 / p}\right)>0$, then there is a unique $v_{c} \in\left(2^{-1 / p}, 1\right)$ such that $f_{c}^{\prime \prime}(x)>0$ for $2^{-1 / p} \leq x<v_{c}, f_{c}^{\prime \prime}\left(v_{c}\right)=0$, and $f_{c}^{\prime \prime}(x)<0$ for $v_{c}<x<1$. As above, the claim follows.

Taking $c_{0}=\left(1-x_{0}^{p}\right)^{(1 / p)-1}\left(2 x_{0}^{p}-1\right) /\left(2 x_{0}\right)$, we have that $f_{c_{0}}^{\prime}\left(x_{0}\right)=0$ and $c_{0}>0$, and so $x_{0}=u_{c_{0}}$ by the claim. This implies that $\left\|Q_{c_{0}}\right\|=f_{c_{0}}\left(x_{0}\right)=$ $Q_{c_{0}}\left(x_{0}, y_{0}\right)>0$. Letting $b=1 /\left\|Q_{c_{0}}\right\|$ and $c=c_{0}$, we have $\|P\|=1=$ $P\left(z_{0}, w_{0}\right)$, as required.

Lemma 2.4 allows us to prove that if $1<p \leq 2$ then $\mathrm{sm}^{(2)}\left(\ell_{p}\right)=\emptyset$. Indeed, given $a=\left(a_{n}\right)_{n=1}^{\infty} \in \ell_{p}$ with $\left\|\left(a_{n}\right)\right\|=1$, we will show that a is not contained in $\mathrm{sm}^{(2)}\left(\ell_{p}\right)$. By the Remark preceding the Theorem, we may assume that $a_{n} \neq 0$ for all n. Let $Q(x)=\phi(x)^{2}$, where $\phi \in\left(\ell_{p}\right)^{*}$ and $\|\phi\|=1=\phi(a)$. Given $x=\left(x_{1}, x_{2}, \cdots\right) \in \ell_{p}$, we put $x=x_{1} e_{1}+x^{\prime}$ with $x^{\prime}=\left(0, x_{2}, x_{3}, \cdots\right)$. Let $z_{0}=a_{1}$ and $w_{0}=\left\|a^{\prime}\right\|_{p}$. Clearly $\left|z_{0}\right|^{p}+w_{0}^{p}=\|a\|_{p}^{p}=1$. Assume first that $2^{-1 / p} \leq\left|z_{0}\right|<1$. By Lemma 2.4 there exist real numbers $b>0$ and $c \geq 0$ such that the polynomial R defined by

$$
R(z, w)=b\left(\left(\frac{\left|z_{0}\right|}{z_{0}}\right)^{2} c z^{2}+\frac{\left|z_{0}\right|}{z_{0}} z w\right)
$$

satisfies $\|R\|=1=R\left(z_{0}, w_{0}\right)$. Let $\theta \in\left(\ell_{p}\right)^{*}$ be of norm one such that $\theta\left(a^{\prime}\right)=\left\|a^{\prime}\right\|_{p}=w_{0}$. Define $P \in \mathcal{P}\left({ }^{2} \ell_{p}\right)$ by $P(x)=R\left(x_{1}, \theta\left(x^{\prime}\right)\right)$. Clearly $\|P\|=1=P(a)$, but $P \neq Q$ because $P\left(e_{2}\right)=0 \neq Q\left(e_{2}\right)$. Therefore a is not a smooth point of order 2 of $B_{\ell_{p}}$. If $2^{-1 / p} \leq\left|w_{0}\right|<1$, we can apply a similar argument to $\left(w_{0}, z_{0}\right)$.

Step 3: $2<p<\infty$. Given $n \in \mathbb{N}$, let $r_{1}(t)$ and $r_{2}(t)$ be distinct generalized Rademacher functions associated with n-th roots of unity, as described in [1]. Given two vectors v_{1}, v_{2} of a complex Banach space E and $P \in \mathcal{P}\left({ }^{m} E\right)$, we have

$$
P\left(v_{1}\right)+P\left(v_{2}\right)=\int_{0}^{1} P\left(r_{1}(u) v_{1}+r_{2}(u) v_{2}\right) d u .
$$

Moreover, taking $\beta_{1}, \beta_{2} \in \mathbb{C}$ such that $\left|\beta_{1}\right|=\left|\beta_{2}\right|=1, \beta_{1}^{m} P\left(v_{1}\right)=\left|P\left(v_{1}\right)\right|$ and $\beta_{2}^{m} P\left(v_{2}\right)=\left|P\left(v_{2}\right)\right|$, we have

$$
\left|P\left(v_{1}\right)\right|+\left|P\left(v_{2}\right)\right|=\int_{0}^{1} P\left(\beta_{1} r_{1}(u) v_{1}+\beta_{2} r_{2}(u) v_{2}\right) d u
$$

(For details see [11, Lemma 1.57].) Again we need a lemma.
Lemma 2.5. Let n be a positive integer with $n<p$.
(a) Let $P: \ell_{p}^{2} \rightarrow \mathbb{C}$ be an n-homogeneous polynomial of the form $P(z, w)=$ $z^{n}+b w^{n}$ with $b \geq 0$. Then $\|P\|=1$ if and only if $b=0$.
(b) Let $P(z, w)$ be an n-homogeneous polynomial on ℓ_{p}^{2}. If $\|P\|=1=$ $P(1,0)$, then $P(z, w)=z^{n}$.

Proof. (a) Applying Lagrange multipliers to find the maximum of $P(s, t)$ on the compact set $K=\left\{(s, t) \in \mathbb{R}^{2}: s \geq 0, t \geq 0, s^{p}+t^{p} \leq 1\right\}$, we get $\|P\|=\left(1+b^{\frac{p}{p-n}}\right)^{\frac{p-n}{p}}$. Hence $\|P\|=1$ if and only if $b=0$.
(b) We write $P(z, w)=a_{0} z^{n}+a_{1} z^{n-1} w+\ldots+a_{n-1} z w^{n-1}+a_{n} w^{n}$. Clearly $a_{0}=1$. First we prove that $a_{n}=0$. To do this we define the polynomial R by $R(z, w)=z^{n}+\left|a_{n}\right| w^{n}$. By the remark preceding this lemma, given $(z, w) \in \mathbb{C}^{2}$, there exist β_{1} and β_{2} in \mathbb{C} such that $\left|\beta_{1}\right|=\left|\beta_{2}\right|=1$ and

$$
\begin{aligned}
|R(z, w)| & \leq|z|^{n}+\left|a_{n}\right||w|^{n}=|P(z, 0)|+|P(0, w)| \\
& =\int_{0}^{1} P\left(\beta_{1} r_{1}(u)(z, 0)+\beta_{2} r_{2}(u)(0, w)\right) d u \\
& =\int_{0}^{1} P\left(\left(\beta_{1} r_{1}(u) z, \beta_{2} r_{2}(u) w\right)\right) d u
\end{aligned}
$$

Since $\left\|\left(\beta_{1} r_{1}(u) z, \beta_{2} r_{2}(u) w\right)\right\|_{p}=\|(z, w)\|_{p}$ for all (z, w), we get $\|R\| \leq\|P\|=$ 1. Since $R(1,0)=1, a_{n}=0$ by part (a).

Now, to apply induction, take $0 \leq k \leq n-2$ and assume that $a_{n}=$ $a_{n-1}=\cdots=a_{n-k}=0$. We define $\tilde{P}(z, w)=z^{n-k-1}+a_{1} z^{n-k-2} w+\cdots+$ $a_{n-k-1} w^{n-k-1}$ and $\tilde{R}(z, w)=z^{n-k-1}+\left|a_{n-k-1}\right| w^{n-k-1}$. Given $(z, w) \in \mathbb{C}^{2}$ with $|z|^{p}+|w|^{p}=1$, there exist $\gamma_{1}, \gamma_{2} \in \mathbb{C}$ with $\left|\gamma_{1}\right|=\left|\gamma_{2}\right|=1$ such that

$$
\begin{aligned}
|z|^{n-k-1}+\left|a_{n-k-1}\right||w|^{n-k-1} & =|\tilde{P}(z, 0)|+|\tilde{P}(0, w)| \\
& =\int_{0}^{1} \tilde{P}\left(\left(\gamma_{1} r_{1}(u) z, \gamma_{2} r_{2}(u) w\right)\right) d u
\end{aligned}
$$

Since

$$
\begin{aligned}
\left|z^{n}+\left|a_{n-k-1}\right| w^{n-k-1} z^{k+1}\right| & \leq \int_{0}^{1}|z|^{k+1} \tilde{P}\left(\left(\gamma_{1} r_{1}(u) z, \gamma_{2} r_{2}(u) w\right)\right) d u \\
& \leq \int_{0}^{1}\left|\left(\gamma_{1} r_{1}(u) z\right)^{k+1} \tilde{P}\left(\left(\gamma_{1} r_{1}(u) z, \gamma_{2} r_{2}(u) w\right)\right)\right| d u \\
& =\int_{0}^{1}\left|P\left(\left(\gamma_{1} r_{1}(u) z, \gamma_{2} r_{2}(u) w\right)\right)\right| d u \leq\|P\|=1
\end{aligned}
$$

the polynomial $Q(z, w)=z^{n}+\left|a_{n-k-1}\right| w^{n-k-1} z^{k+1}$ has norm one. If $\left|a_{n-k-1}\right|$ ≥ 1, then

$$
1=\|Q\| \geq Q\left(2^{-1 / p}, 2^{-1 / p}\right) \geq 2^{1-n / p}>1
$$

which is a contradiction. Hence $\left|a_{n-k-1}\right|<1$. Taking

$$
z_{0}=\frac{1}{\left(1+\left|a_{n-k-1}\right|^{p /(p-n)}\right)^{1 / p}}, \quad w_{0}=\frac{\left|a_{n-k-1}\right|^{1 /(p-n)}}{\left(1+\left|a_{n-k-1}\right|^{p /(p-n)}\right)^{1 / p}}
$$

we have

$$
1=\|Q\| \geq Q\left(z_{0}, w_{0}\right) \geq\left(1+\left|a_{n-k-1}\right|^{p /(p-n)}\right)^{(p-n) / p}
$$

Hence $a_{n-k-1}=0$, which completes the proof of the lemma.

We can now complete the proof of Theorem 2.3. We need to check that if $2<p<\infty$, then

$$
\operatorname{sm}^{(n)}\left(\ell_{p}\right)= \begin{cases}\left\{\lambda e_{j}:|\lambda|=1, j \in \mathbb{N}\right\} & \text { if } 2 \leq n<p \\ \emptyset & \text { if } p \leq n\end{cases}
$$

First, we discuss the subcase $2 \leq n<p$. Given $a=\left(a_{i}\right) \in S_{\ell_{p}}$, define

$$
P(x)=\sum_{i}\left(\operatorname{sgn}\left(a_{i}\right)\right)^{p} a_{i}^{p-n} x_{i}^{n}
$$

for $x=\left(x_{i}\right) \in \ell_{p}$, where the values of $\left(\operatorname{sgn}\left(a_{i}\right)\right)^{p}$ and a_{i}^{p-n} are taken for the principal branch of $\log z$. Then $P(a)=\|a\|_{p}^{p}=1$ and by Hölder's inequality we get

$$
\|P\| \leq \sup _{\|x\|_{p} \leq 1}\left(\sum_{i}\left|a_{i}\right|^{p}\right)^{(p-n) / p}\|x\|_{p}^{n} \leq 1
$$

hence $\|P\|=1=P(a)$.
Let us consider the case where there are $i \neq j$ such that $a_{i} \neq 0 \neq a_{j}$. As usual, let $\phi_{0} \in\left(\ell_{p}\right)^{*}$ be the norm one functional which attains its norm at x_{0}. Since ϕ_{0} has nonzero $i^{t h}$ and $j^{t h}$ coordinates, all coefficients of $x_{i}^{k} x_{j}^{n-k}, k=$ $1, \cdots, n$, in the monomial expansion of ϕ_{0}^{n} must be nonzero. Hence P and ϕ_{0}^{2} are distinct polynomials and a is not a smooth point of order n.

Suppose that there is only one i such that $a_{i} \neq 0$. Without loss of generality, we may assume $a=e_{1}$, so that the corresponding norm-attaining polynomial is given by $P(x)=x_{1}^{n}$. Suppose that $Q \in \mathcal{P}\left({ }^{n} \ell_{p}\right)$ satisfies $\|Q\|=1=Q\left(e_{1}\right)$. Using the same notation as in the proof of Step 2 of Theorem 2.3, we have

$$
Q(x)=Q\left(x_{1} e_{1}+x^{\prime}\right)=x_{1}^{n}+\sum_{k=1}^{n}\binom{n}{k} x_{1}^{n-k} \stackrel{\vee}{Q}\left(e_{1}^{(n-k)}, x^{\prime(k)}\right)
$$

where $\stackrel{\vee}{Q}$ is the symmetric multilinear form associated to Q. For each $k=$ $1, \cdots, n$, let $Q_{k}(x)=\stackrel{\vee}{Q}\left(e_{1}^{(n-k)}, x^{\prime(k)}\right) \in \mathcal{P}\left({ }^{k} \ell_{p}\right)$. We claim that $Q_{k}=0$ for each $k, k=1, \cdots, n$. Otherwise, there is $y^{\prime},\left\|y^{\prime}\right\|_{p}=1$, with its first coordinate zero such that $Q_{j}\left(y^{\prime}\right) \neq 0$, for some $j, 1 \leq j \leq n$. Define $R(z, w)=$ $Q\left(z e_{1}+w y^{\prime}\right)$ for all $(z, w) \in \mathbb{C}^{2}$. Since $\left\|z e_{1}+w y^{\prime}\right\|_{p}=\|(z, w)\|_{p}$, we have $\|R\| \leq\|Q\|=1$ and $R(1,0)=1$. By Lemma 2.5(b), $R(z, w)=z^{n}$. Hence $\stackrel{\vee}{Q}\left(e_{1}^{(n-k)}, y^{\prime(k)}\right)=Q_{k}\left(y^{\prime}\right)=0$ for all $k, 1 \leq k \leq n$, which is a contradiction. Therefore, for $2 \leq n<p, \operatorname{sm}^{(n)}\left(\ell_{p}\right)=\left\{\lambda e_{j}:|\lambda|=1, j \in \mathbb{N}\right\}$.

It remains to show that $\operatorname{sm}^{(n)}\left(\ell_{p}\right)=\emptyset$ for $2<p \leq n$. To this end, it is enough to prove that e_{1} is not a smooth point of order n, because $\operatorname{sm}^{(2)}\left(\ell_{p}\right)=$ $\left\{\lambda e_{j}:|\lambda|=1, j \in \mathbb{N}\right\}$. This follows immediately from the remark preceding the statement of the theorem.

THEOREM 2.6. We have $\operatorname{sm}^{(n)}\left(L_{p}[0,1]\right)=\emptyset$ for $1 \leq p \leq \infty$ and $n \geq 2$.

Proof. It is enough to show that no function $f \in L_{p}[0,1]$ of norm one is contained in $\operatorname{sm}^{(2)}\left(L_{p}[0,1]\right)$. Note that there is nothing to prove if $p=\infty$, since $\operatorname{sm}\left(L_{\infty}[0,1]\right)=\emptyset$.

We begin by proving the case where $p=1$. Choose a measurable subset D of $[0,1]$ so that

$$
0<\int_{D}|f(x)| d x<1 / 2
$$

Let $c=2 /\left(1-\int_{D}|f(x)| d x\right)$. Clearly $2<c<4$. Choose $\varphi \in L_{1}[0,1]^{*}=$ $L_{\infty}[0,1]$ so that $\|\varphi\|=1=\varphi(f)$. Define $P, Q \in \mathcal{P}\left({ }^{2} L_{1}[0,1]\right)$ by

$$
P(h)=\left(c-\frac{c^{2}}{4}\right)\left[\varphi\left(h \cdot \chi_{D}\right)\right]^{2}+c \varphi\left(h \cdot \chi_{D}\right) \varphi\left(h \cdot \chi_{[0,1] \backslash D}\right),
$$

and $Q(h)=[\varphi(h)]^{2}$. As in Step 1 of the proof of Theorem 2.3 we have that $\|P\|=1=P(f)$. Clearly $\|Q\|=1=Q(f)$ and $P \neq Q$, because $P\left(f \cdot \chi_{[0,1] \backslash D}\right)=0 \neq Q\left(f \cdot \chi_{[0,1] \backslash D}\right)$. Hence $\operatorname{sm}^{(2)}\left(L_{1}[0,1]\right)=\emptyset$.

Now we consider the case where $1<p \leq 2$. Let $D \subset[0,1]$ be a measurable set with $2^{-1 / p} \leq\left(\int_{D}|f(x)|^{p} d x\right)^{1 / p}<1$, and let $z_{0}=\left(\int_{D}|f(x)|^{p} d x\right)^{1 / p}$, $w_{0}=\left(\int_{[0,1] \backslash D}|f(x)|^{p} d x\right)^{1 / p}$. Clearly $2^{-1 / p} \leq z_{0}<1$, and $\left\|\left(z_{0}, w_{0}\right)\right\|_{p}=1$. By Lemma 2.4, there exist real numbers $b>0$ and $c \geq 0$ such that $R(z, w)=$ $b\left(c z^{2}+z w\right) \in \mathcal{P}\left({ }^{2} \ell_{p}^{2}\right)$ satisfies $\|R\|=R\left(z_{0}, w_{0}\right)=1$. Consider $\varphi \in L_{p}(D)^{*}$ and $\phi \in L_{p}([0,1] \backslash D)^{*}$ with $\|\varphi\|=\|\phi\|=1$ and

$$
\varphi\left(f \cdot \chi_{D}\right)=\left\|f \cdot \chi_{D}\right\|_{p} \text { and } \phi\left(f \cdot \chi_{[0,1] \backslash D}\right)=\left\|f \cdot \chi_{[0,1] \backslash D}\right\|_{p}
$$

Define $P \in \mathcal{P}\left({ }^{2} L_{p}[0,1]\right)$ by $P(h)=R\left(\varphi\left(h \chi_{D}\right), \phi\left(h \chi_{[0,1] \backslash D}\right)\right)$, for all $h \in$ $L_{p}([0,1])$. Clearly $\|P\|=1=P(f)$. Let $\eta \in L_{p}[0,1]^{*}$ with $\|\eta\|=1=$ $\eta(f)$. Define $Q(h)=[\eta(h)]^{2}$ for all $h \in L_{p}[0,1]$. Then $\|Q\|=1=Q(f)$. In order to show that $Q \neq P$, we consider the two dimensional subspace $Y=\left\{z f \chi_{D}+w f \chi_{[0,1] \backslash D}: z, w \in \mathbb{C}\right\}$. If $P=Q$ on Y, then b must be zero, which is a contradiction. Therefore $\operatorname{sm}^{(2)}\left(L_{p}[0,1]\right)=\emptyset$.

Finally we prove the result when $2<p<\infty$. Let $g(x)=\operatorname{sgn}(f(x))$. Define $P \in \mathcal{P}\left({ }^{2} L_{p}[0,1]\right)$ by $P(h)=\int_{[0,1]}(g(x))^{p}(f(x))^{p-2}(h(x))^{2} d x$. Then

$$
\begin{aligned}
\|P\| & \leq \sup _{\|h\|_{p}=1} \int|f(x)|^{p-2}|h(x)|^{2} d x \\
& \leq \sup _{\|h\|_{p}=1}\left(\int|f(x)|^{p} d x\right)^{\frac{p-2}{p}}\left(\int|h(x)|^{p} d x\right)^{\frac{2}{p}}=1
\end{aligned}
$$

and $P(f)=1$; hence $\|P\|=1$. Let $\varphi \in L_{p}[0,1]^{*}$ such that $\|\varphi\|=1=$ $\varphi(f)$. Define $Q \in \mathcal{P}\left({ }^{2} L_{p}[0,1]\right)$ by $Q(h)=[\varphi(f)]^{2}$. In fact, we have $Q(h)=$ $\left(\int(g(x))^{p}(f(x))^{p-1} h(x) d x\right)^{2}$. We can see that $\|Q\|=1=Q(f)$ and $P \neq Q$.

Indeed, let D be a measurable subset of $[0,1]$ and $\left\|f \cdot \chi_{D}\right\|_{p}=1 / 2$. Define

$$
h(x)= \begin{cases}f(x) & \text { if } x \in D \\ -f(x) & \text { if } x \in[0,1] \backslash D\end{cases}
$$

Then $P(h)=1$, but $Q(h)=0$. Hence $\operatorname{sm}^{(2)}\left(L_{p}[0,1]\right)=\emptyset$.

3. LUR polynomials and multilinear forms.

In this section, the Banach space E may be assumed to be either real or complex. For $n, m \in \mathbb{N}, A \in \mathcal{L}\left({ }^{n} E\right)$ and $B \in \mathcal{L}\left({ }^{m} E\right)$ define

$$
A \cdot B\left(x_{1}, \ldots, x_{n+m}\right)=A\left(x_{1}, \ldots, x_{n}\right) B\left(x_{n+1}, \ldots, x_{n+m}\right)
$$

where $x_{1}, \ldots, x_{n+m} \in E$. It is obvious that $A \cdot B \in \mathcal{L}\left({ }^{n+m} E\right)$ and that $\|A \cdot B\|=\|A\|\|B\|$. We first show that the multilinear forms and homogeneous polynomials on E which are locally uniformly rotund are generated by locally uniformly rotund linear functionals. To do so we need the following lemma, which is easy to check.

Lemma 3.1. Let m and n be positive integers, $A \in S_{\mathcal{L}\left({ }^{n} E\right)}$ and $B \in$ $S_{\mathcal{L}\left({ }^{m} E\right)}$. If $A \cdot B \in \operatorname{lur} B_{\mathcal{L}\left({ }^{n+m} E\right)}$, then $A \in \operatorname{lur} B_{\mathcal{L}\left({ }^{n} E\right)}$ and $B \in \operatorname{lur} B_{\mathcal{L}\left({ }^{m} E\right)}$.

Proposition 3.2. If $A \in \operatorname{lur} B_{\mathcal{L}\left({ }^{m} E\right)}$ for a positive integer m, then $A=$ $\prod_{k=1}^{m} f_{k}$ for some $f_{k} \in \operatorname{lur} B_{E^{*}}$.

Proof. Let $\left\{\left(x_{1 j}, \ldots, x_{m j}\right)\right\}_{j=1}^{\infty}$ in E^{m} be such that $\left\|x_{1 j}\right\|=\cdots=\left\|x_{m j}\right\|=$ 1 for all j and $\lim _{j} A\left(x_{1 j}, \ldots, x_{m j}\right)=1$. Let $\left\{f_{k j}\right\}$ be a sequence in $B_{E^{*}}$ such that $\left\|f_{k j}\right\|=f_{k j}\left(x_{k j}\right)=1$ for $j \in \mathbb{N}$ and $k=1, \ldots, m$. Clearly $\lim _{j}\left\|A+\prod_{k=1}^{m} f_{k j}\right\|=2$. Since $A \in \operatorname{lur} B_{\mathcal{L}\left({ }^{m} E\right)}$, we get $A\left(x_{1}, \ldots, x_{m}\right)=$ $\lim _{j} \prod_{k=1}^{m} f_{k j}\left(x_{k}\right)$ for any $x_{1}, \ldots, x_{m} \in E$. Since the set $\left\{f_{k j}: j=1,2, \cdots\right\}$ is relatively weak-star compact for each $k, k=1, \cdots, m$, there are f_{1}, \ldots, f_{m} in $B_{E^{*}}$ and a subnet $\left\{\left(f_{1 j_{\beta}}, \ldots, f_{m j_{\beta}}\right)\right\}$, such that $f_{k}(x)=\lim _{j_{\beta}} f_{k j_{\beta}}(x)$ for each $k, k=1, \ldots, m$, and each $x \in E$. Hence $A\left(x_{1}, \ldots, x_{m}\right)=\prod_{k=1}^{m} f_{k}\left(x_{k}\right)$ for any $x_{1}, \ldots, x_{m} \in E$. Since $A \in \operatorname{lur} B_{\mathcal{L}\left({ }^{m} E\right)}$, it follows from Lemma 3.1 that each $f_{k} \in \operatorname{lur} B_{E^{*}}$.

Lemma 3.3. Let m and n be positive integers and let $P \in \mathcal{P}\left({ }^{m} E\right)$. If $\left.P^{n+1} \in \operatorname{lur} B_{\mathcal{P}((n+1) m} E\right)$, then $P^{n} \in \operatorname{lur} B_{\mathcal{P}\left({ }^{(n m} E\right)}$.

Proof. Let $\left\{Q_{j}\right\}$ be a sequence in $B_{\mathcal{P}\left({ }^{n m} E\right)}$ such that $\lim _{j}\left\|Q_{j}+P^{n}\right\|=2$. It is easy to see that see that $\lim _{j}\left\|P Q_{j}+P^{n+1}\right\|=2$. Therefore $\| P\left(Q_{j}-\right.$ $\left.P^{n}\right)\|=\| P Q_{j}-P^{n+1} \| \rightarrow 0$. The proof follows by an application of the fact ([2, Theorem 3 and Proposition 9]) that given $r, s \in \mathbb{N}$ there exists an $M_{r, s}>0$ such that for all $P_{1} \in \mathcal{P}\left({ }^{r} E\right)$ and $P_{2} \in \mathcal{P}\left({ }^{s} E\right)$, we have $\left\|P_{1} P_{2}\right\| \geq$ $M_{r, s}\left\|P_{1}\right\|\left\|P_{2}\right\|$.

Proposition 3.4. If $P \in \operatorname{lur} B_{\mathcal{P}\left({ }^{m} E\right)}$ for a positive integer m, then $P=$ f^{m} for some $f \in \operatorname{lur} B_{E^{*}}$.

Proof. Let $\left\{x_{j}\right\}$ be a sequence in B_{E} such that $\left\|x_{j}\right\|=1$ and $\lim _{j} P\left(x_{j}\right)=$ 1. Let $\left\{f_{j}\right\}$ be a sequence in $B_{E^{*}}$ such that $\left\|f_{j}\right\|=f_{j}\left(x_{j}\right)=1$. Clearly $\lim _{j}\left\|P+f_{j}^{m}\right\|=2$ so that $P(x)=\lim _{j} f_{j}^{m}(x)$ for all $x \in E$, since P is locally uniformly rotund. Since $\left\{f_{j}\right\}_{j=1}^{\infty}$ is relatively weak-star compact, there are $f \in E^{*}$ and a subnet $\left\{f_{j_{\beta}}\right\}$ such that $f(x)=\lim _{\beta} f_{j_{\beta}}(x)$ for all $x \in E$. Clearly $P=f^{m}$. Since $P \in \operatorname{lur} B_{\mathcal{P}\left({ }^{m} E\right)}$, Lemma 3.3 implies that $f \in \operatorname{lur} B_{E^{*}}$.

Corollary 3.5. Let E be a reflexive Banach space and let m be a positive integer. If $P \in \operatorname{lur} B_{\mathcal{P}\left({ }^{m} E\right)}$, then P is norm attaining at some $x_{0} \in \operatorname{sm}^{(m)}(E)$.

Proof. If $P \in \operatorname{lur} B_{\mathcal{P}\left({ }^{m} E\right)}$, then $P=f^{m}$ for some $f \in \operatorname{lur} B_{E^{*}}$ by Proposition 3.4. Since E is reflexive, f and P are norm attaining at some $x_{0} \in S_{E}$. If x_{0} were not a smooth point of order m of B_{E}, then there would exist $Q \in \mathcal{P}\left({ }^{m} E\right)$ such that $P \neq Q$ and $\|Q\|=1=Q\left(x_{0}\right)$. This would imply that P is not in lur $B_{\mathcal{P}\left({ }^{m} E\right)}$, which is a contradiction.

We observe that none of the converses of 3.2, 3.4 and 3.5 hold in general.
Corollary 3.6. (1) Let E be any of the following spaces: $c_{0}, \ell_{1}, \ell_{\infty}$, $L_{p}[0,1], 1 \leq p \leq \infty ; \ell_{\infty}^{k}, \ell_{1}^{k}$ for $k \geq 2 ; C(K)$ for any compact set K with at least two points. Then lur $B_{\mathcal{L}\left({ }^{m} E\right)}=\emptyset$ and $\operatorname{lur} B_{\mathcal{P}\left({ }^{m} E\right)}=\emptyset$ for each positive integer $m \geq 2$.
(2) If E is a real reflexive Banach space of dimension greater than or equal to 2, then lur $B_{\mathcal{P}\left({ }^{m} E\right)}=\emptyset$ for each positive integer $m \geq 2$.

Proof. Almost everything follows from 3.2, 3.4, 3.5, and the remarks in the Introduction. The case $L_{p}[0,1], 1<p<\infty$, follows from 3.5 and 2.6. For the sake of completeness we prove that $\operatorname{lur} B_{C(K)^{*}}=\emptyset$. First we note that $\lambda \delta_{t}$ is not a locally uniformly rotund point of $B_{C(K)^{*}}$ for $t \in K$ and $\lambda \in \mathbb{C},|\lambda|=1$. Indeed, choose $t^{\prime} \in K$ distinct from t and apply the Tietze extension theorem to conclude $\left\|\lambda \delta_{t}+\delta_{t^{\prime}}\right\|=2$, but $\lambda \delta_{t} \neq \delta_{t^{\prime}}$. Suppose that $\varphi \in S_{C(K)^{*}}$ is not of the form $\lambda \delta_{t}$ for any $t \in K$ and $\lambda \in \mathbb{C},|\lambda|=1$. Choose a sequence $\left(f_{j}\right), f_{j} \in S_{C(K)}$, such that $\varphi\left(f_{j}\right) \rightarrow 1$. For each j choose $t_{j} \in K$ and $\lambda_{j} \in \mathbb{C},\left|\lambda_{j}\right|=1$, so that $\lambda_{j} f_{j}\left(t_{j}\right)=1$. Clearly $\left\|\varphi+\lambda_{j} \delta_{t_{j}}\right\| \rightarrow 2$ as $j \rightarrow \infty$, but $\left(\lambda_{j} \delta_{t_{j}}\right)$ does not converge to φ. Otherwise, letting $\lambda \in \mathbb{C}$ and $t \in K$ be limit points of $\left(\lambda_{j}\right)$ and $\left(t_{j}\right)$ respectively, it would follow that $\varphi=\lambda \delta_{t}$, which is a contradiction.

ThEOREM 3.7. Let $1<p<\infty$ and $m \geq 2$ and $k \geq 2$ be positive integers. For the complex Banach spaces ℓ_{p} and ℓ_{p}^{k},

$$
\operatorname{lur} B_{\mathcal{P}\left({ }^{m} \ell_{p}\right)}= \begin{cases}\left\{\lambda x_{j}^{m}:|\lambda|=1, j \in \mathbb{N}\right\} & \text { if } 2 \leq m<p \\ \emptyset & \text { if } p \leq m\end{cases}
$$

and

$$
\operatorname{lur} B_{\mathcal{P}\left({ }^{m} \ell_{p}^{k}\right)}= \begin{cases}\left\{\lambda x_{j}^{m}:|\lambda|=1,1 \leq j \leq k\right\} & \text { if } 2 \leq m<p, \\ \emptyset & \text { if } p \leq m .\end{cases}
$$

Proof. We give the proof only for ℓ_{p}. From Theorem 2.3 and Corollary 3.5 the only part to prove is that for $2 \leq m<p$, lur $B_{\mathcal{P}\left({ }^{m} \ell_{p}\right)}=\left\{\lambda x_{j}^{m}:|\lambda|=\right.$ $1, j \in \mathbb{N}\}$. Applying Theorem 2.3 and Corollary 3.5 again, it is enough to show that $x_{1}^{m} \in \operatorname{lur} B_{\mathcal{P}\left({ }^{m} \ell_{p}\right)}$. Assume that there exists a sequence $\left(P_{h}\right)_{h=1}^{\infty} \in$ $\mathcal{P}\left({ }^{m} \ell_{p}\right),\left\|P_{h}\right\|=1$, such that $\lim _{h \rightarrow \infty}\left\|x_{1}^{m}+P_{h}\right\|=2$.

We claim that the sequence (P_{h}) converges to x_{1}^{m} in $\mathcal{P}\left({ }^{m} \ell_{p}\right)$. To show this we will use the same notation as in the proof of Theorem 2.3, obtaining for a polynomial $P \in \mathcal{P}\left({ }^{m} \ell_{p}\right)$ the representation

$$
P(x)=P\left(x_{1} e_{1}+x^{\prime}\right)=\sum_{k=0}^{m}\binom{m}{k} x_{1}^{m-k} \stackrel{\vee}{P}\left(e_{1}^{(m-k)}, x^{\prime(k)}\right) .
$$

Passing to a subsequence, we can choose a sequence $\left(c_{h} e_{1}+d_{h}\right) \in S_{\ell_{p}}$ so that $c_{h} \in \mathbb{C}$, the first coordinate of $d_{h} \in \ell_{p}$ is zero and $\left|c_{h}^{m}+P_{h}\left(c_{h} e_{1}+d_{h}\right)\right|>2-1 / h$. Now we consider the sequence $\left(R_{h}\right) \subset \mathcal{P}\left({ }^{2} \ell_{p}^{2}\right)$ defined by

$$
R_{h}(s, t)=\left\{\begin{array}{lr}
P_{h}\left(s e_{1}+t \frac{d_{h}}{\left\|d_{h}\right\|_{p}}\right)=\sum_{k=0}^{m}\binom{m}{k} s^{m-k} t^{k} \stackrel{\vee}{P}\left(e_{1}^{(m-k)}, \frac{d_{h}}{\left\|d_{h}\right\|_{p}}{ }^{(k)}\right) \\
P_{h}\left(s e_{1}\right)=s^{m} P_{h}\left(e_{1}\right) & \text { if } d_{h} \neq 0,
\end{array}\right.
$$

Since $\left\|s e_{1}+t \frac{d_{h}}{\left\|d_{h}\right\|_{p}}\right\|_{p}=\|(s, t)\|_{p}$ for all $(s, t) \in \mathbb{C}^{2}$ and $d_{h} \neq 0$, we can see that $\left\|R_{h}\right\| \leq\left\|P_{h}\right\|=1$. Thus a subsequence of $\left(R_{h}\right)$, again denoted by $\left(R_{h}\right)$, converges to R in the finite dimensional Banach space $\mathcal{P}\left({ }^{m} \ell_{p}^{2}\right)$. Since

$$
\begin{aligned}
2-\frac{1}{h} & <\left|c_{h}^{m}+P_{h}\left(c_{h} e_{1}+d_{h}\right)\right|=\left|c_{h}^{m}+R_{h}\left(c_{h},\left\|d_{h}\right\|_{p}\right)\right| \\
& \leq\left\|s^{m}+R_{h}\right\| \leq\left\|s^{m}\right\|+\left\|R_{h}\right\| \leq 2
\end{aligned}
$$

for all h, we have $\|R\| \leq 1$ and $\left\|s^{m}+R\right\|=2$. Hence $\|R\|=1=R(1,0)$. By Lemma 2.5 (b), $R(s, t)=s^{m}$. Since (R_{h}) converges to R in $\mathcal{P}\left({ }^{m} \ell_{p}^{2}\right)$, we get $\lim _{h \rightarrow \infty} P_{h}\left(e_{1}\right)=1$. Fix $k, 1 \leq k \leq m$, and define $Q_{h} \in \mathcal{P}\left({ }^{k} \ell_{p}\right)$ by

$$
Q_{h}(x)=\stackrel{\vee}{P}_{h}\left(e_{1}^{(m-k)}, x^{\prime(k)}\right) .
$$

Then the sequence (Q_{h}) of k-homogeneous polynomials on ℓ_{p} converges to 0 in $\mathcal{P}\left({ }^{k} \ell_{p}\right)$, which implies that the sequence $\left(P_{h}\right)$ converges to x_{1}^{m} in $\mathcal{P}\left({ }^{m} \ell_{p}\right)$. Indeed, if it did not converge to 0 , then there would be a number $\delta>0$ and, passing to a subsequence, a sequence $\left(y_{h}^{\prime}\right),\left\|y_{h}^{\prime}\right\|=1$, with its first coordinate zero, such that $Q_{h}\left(y_{h}^{\prime}\right)>\left\|Q_{h}\right\| / 2>\delta / 2$. Define $\tilde{R}_{h}(s, t)=P_{h}\left(s e_{1}+t y_{h}^{\prime}\right)$ for all $(s, t) \in \mathbb{C}^{2}$. Clearly $\left\|\tilde{R}_{h}\right\| \leq\left\|P_{h}\right\|=1$. Thus a subsequence (\tilde{R}_{h}) converges to \tilde{R} in $\mathcal{P}\left({ }^{k} \ell_{p}^{2}\right)$, which implies that $\tilde{R}(1,0)=\lim _{h \rightarrow \infty} P_{h}\left(e_{1}\right)=1$.

By Lemma 2.5 (b), $\tilde{R}(s, t)=s^{m}$. Since the coefficient of $s^{m-k} t^{k}$ in the monomial expansion of $\tilde{R}_{h}(s, t)$ is $Q_{h}\left(y_{h}^{\prime}\right)$, the sequence $\left(Q_{h}\left(y_{h}^{\prime}\right)\right)$ converges to 0 , which is a contradiction.

Let $\mathcal{P}(E)$ denote the normed space of scalar-valued continuous polynomials on E endowed with norm $\|P\|=\sup _{\|x\| \leq 1}|P(x)|$. The space $\mathcal{P}(E)$ is not a Banach space, but it is worth observing that the balls of both it and its completion $\mathcal{A}\left(B_{E}\right)$ (the algebra of uniformly continuous holomorphic functions on the interior of B_{E}) contain no locally uniformly rotund points. In fact, let P be a continuous polynomial of degree k and $\|P\|=1$. Then there is a sequence $\left(x_{n}\right)$ in S_{E} such that $\left|P\left(x_{n}\right)\right| \rightarrow 1$ as $n \rightarrow \infty$. By the Hahn-Banach theorem there is a sequence $\left(\varphi_{n}\right)$ in $S_{E^{*}}$ such that $\varphi_{n}\left(x_{n}\right)=1$ for all n. Let m be a positive integer greater than k. It is clear that $\left\|P+\frac{P\left(x_{n}\right)}{\left|P\left(x_{n}\right)\right|}\left(\varphi_{n}\right)^{m}\right\| \rightarrow$ 2. However, $\left\|P-\frac{P\left(x_{n}\right)}{\left|P\left(x_{n}\right)\right|} \varphi_{n}^{m}\right\|$ does not converge to 0 . Otherwise, $P(x)=$ $\lim _{n} \frac{P\left(x_{n}\right)}{\left|P\left(x_{n}\right)\right|}\left(\varphi_{n}\right)^{m}(x)$ for each $x \in E$. By the Banach-Steinhaus theorem for polynomials (see [4]) P must be an m-homogeneous polynomial, which is a contradiction. The proof for $\mathcal{A}\left(B_{E}\right)$ follows easily.

Acknowledgements. This paper was completed while the second and the fourth authors were Visiting Professors in the Department of Mathematical Sciences at Kent State University during the 1998-99 academic year. Both authors express their thanks to this Department for its hospitality.

References

[1] R.M. Aron and J. Globevnik, Analytic functions on c_{0}, Rev. Mat. (Madrid) 2 (1989), 27-34.
[2] C. Benítez, Y. Sarantopoulos and A. Tonge, Lower bounds for norms of products of polynomials, Math. Proc. Cambridge Philos. Soc. 124 (1998), 395-408.
[3] C. Boyd and R. Ryan, Geometric theory of spaces of integral polynomials and symmetric tensor products, J. Funct. Anal. 179 (2001), 18-42.
[4] S.B. Chae, Holomorphy and Calculus in Normed Spaces, Marcel Dekker, New York, 1985.
[5] Y.S. Choi and S.G. Kim, The unit ball of $\mathcal{P}\left({ }^{2} \ell_{2}^{2}\right)$, Arch. Math. 71 (1998), 472-480.
[6] , Smooth points of the unit ball of the space $\mathcal{P}\left({ }^{2} \ell_{1}\right)$, Results Math. 36 (1999), 26-33.
[7] , Extreme polynomials on c_{0}, Indian J. Pure Appl. Math. 29 (1998), 983-989.
[8] Y.S. Choi, H. Ki and S.G. Kim, Extreme polynomials and multilinear forms on ℓ_{1}, J. Math. Anal. Appl. 228 (1998), 467-482.
[9] R. Deville, G. Godefroy and V. Zizler, Smoothness and renorming in Banach spaces, Pitman Monogr. Survey Pure Appl. Math., vol. 64, Longman, Harlow, 1993.
[10] J. Diestel, Geometry of Banach Spaces - Selected Topics, Lecture Notes in Math., vol. 485, Springer-Verlag, New York, 1975.
[11] S. Dineen, Complex analysis on infinite-dimensional spaces, Springer Monogr. in Math., Springer-Verlag, London, 1999.
[12] K. Floret, Natural norms on symmetric tensor products of normed spaces, Note Mat. 17 (1997), 153-188.
[13] G. Köthe, Topological Vector Spaces I, Springer-Verlag, New York, 1969.
[14] J. Mujica, Complex Analysis in Banach Spaces, vol. 120, North-Holland Math. Stud., Amsterdam, 1986.

Richard M. Aron, Department of Mathematical Sciences, Kent State University, Kent, OH 44240

E-mail address: aron@mcs.kent.edu
Yun Sung Choi, Department of Mathematics, POSTECH, Pohang 790-784, Korea
E-mail address: mathchoi@euclid.postech.ac.kr
Sung Guen Kim, Department of Mathematics, Kyungpook National University, TaEgu 702-701, Korea

E-mail address: sgk317@bh.knu.ac.kr
Manuel Maestre, Departamento de Análisis Matemático, Facultad de MatemÁticas, Universitat de Valencia, Doctor Moliner 50, 46100 Valencia, Spain

E-mail address: maestre@uv.es

[^0]: Received June 7, 1999.
 2000 Mathematics Subject Classification. 46B20, 46E15.
 The second author wishes to acknowledge the financial support of the Korea Research Foundation made in the program of 1998-001-D00065. The third author wishes to acknowledge the financial support of the Korea Research Foundation made in the program KRF-2000-015-DP0012. The fourth author was supported by DGESIC pr. no. P.B.96-0758 and grant PR 1997-0186.

