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SIMPLICITY OF THE REDUCED C∗-ALGEBRAS OF
CERTAIN COXETER GROUPS

GERO FENDLER

Abstract. Let (G,S) be a finitely generated Coxeter group such that
the Coxeter system is indecomposable and the canonical bilinear form

is indefinite but non-degenerate. We show that the reduced C∗-algebra
of G is simple with unique normalised trace.

For an arbitrary finitely generated Coxeter group we prove the va-
lidity of a Haagerup inequality: There exist constants C > 0 and
Λ ∈ N such that, for any function f ∈ l2(G) supported on elements

of length n with respect to the generating set S and for all h ∈ l2(G),

‖ f ∗ h ‖ ≤ C(n+ 1)
3
2 Λ‖ f ‖.

1. Introduction

For a discrete group G we denote by l2(G) the Hilbert space of all square
summable complex functions on G and by B(l2(G)) the von Neumann algebra
of all bounded operators on l2(G).

The group G acts on l2(G) by the left regular representation:

λ(g)f(h) = f(g−1h), g, h ∈ G, f ∈ l2(G).

The reduced (or (left) regular) C∗-algebra C∗r (G) of G is the operator norm
closure of the linear span of the set of operators {λ(g) : g ∈ G}. We often
think of its elements as certain l2 functions on G. The natural normalised
trace on this algebra is then just the evaluation of a function at the group
identity.

When G is a non-abelian free group on two generators, Powers [23] showed
that C∗r (G) is a simple C∗ algebra, that is, it contains no non-trivial twosided
ideals. This result has since been generalised by several authors to various
groups and extended to (reduced) cross products; see [1], [2], [3], [6], [14], [17],
[22].
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On the other hand, when G is an amenable group (or contains amenable
normal subgroups), then the kernel of the trivial representation (or the rep-
resentation induced from the trivial representation of an amenable normal
subgroup) is a non-trivial twosided ideal in C∗r (G). These facts suggest that
the question of the simplicity of C∗r (G) is related to the Tits alternative for lin-
ear groups (i.e., that a linear group either is amenable or contains non-abelian
free subgroups).

In this note we consider finitely generated Coxeter groups, for which de
la Harpe [15] gave an elaboration on the Tits alternative. We show that
a finitely generated infinite Coxeter group either contains a normal solvable
(even nilpotent) subgroup or has a simple reduced C∗-algebra.

For the geometric representation σ of a Coxeter group (G,S), with #S <
∞, on E = R

S we adopt the usual notation of [9]. Assume that (G,S) is
indecomposable. The canonical σ(G)-invariant bilinear form B can be strictly
positive definite, positive semidefinite, or strictly indefinite. In these three
cases, the group is, respectively, finite, an affine Coxeter group and hence
amenable, or non-amenable [15]. In the last case B may be degenerate. The
orthogonal E0 of E for B then is fixed pointwise by all σ(g), g ∈ G, and the
kernel of the representation σ̂ : G→ Gl(Ê) induced on the quotient Ê = E/E0

is a non-trivial nilpotent normal subgroup. (By choosing an appropriate basis
for E it is easily seen to be mapped by σ into a group of unipotent matrices.)

If (G,S) is a decomposable Coxeter system, then G can be written as a
direct product of indecomposable Coxeter groups. The reduced C∗-algebra
of G is the spatial tensor product of the reduced C∗-algebras of the factors.
This spatial tensor product is known to be simple if and only if each factor is
a simple C∗-algebra [27].

Hence we shall always assume that B is indecomposable and strictly indef-
inite but non-degenerate. In the course of our arguments we shall see that
under these conditions a Coxeter group is an icc-group (i.e., conjugacy classes
of elements different from the identity are infinite) and that the normalised
trace on C∗r (G) is unique. (For a decomposable Coxeter group an argument
similar to the one given in the last paragraph shows that the trace is unique
if and only if the trace is unique for each indecomposable factor; see [4].)

One might think that Coxeter groups of the above
kind are Gromov hyperbolic and arguments like those
in [16] combined with [4] would allow us to prove the
simplicity of the reduced C∗-algebra, but the group
with the Coxeter graph shown in the figure does not
contain a finite index Gromov hyperbolic subgroup.
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Gromov hyperbolic Coxeter groups have been characterized by Moussong
[21] as those Coxeter groups (G,S) which do not contain two infinite commut-
ing parabolic subgroups and further have the property that no subset T ⊂ S
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generates a parabolic subgroup (GT , T ) which is an affine Coxeter group of
rank at least 3.

When B has signature (n − 1, 1) it can happen that G is a hyperbolic
Coxeter group (in the classical sense). Therefore it is a lattice in the real Lie
group O(n−1, 1), and hence Zariski dense in it. A theorem of Bekka, Cowling
and de la Harpe [3] then applies. We do not know whether a Coxeter group
of the kind considered here is always Zariski dense in some simple real Lie
group1.

To prove the simplicity of the reduced C∗-algebra we have to deal with the
combinatorics in G. As a byproduct we obtain a Haagerup inequality, valid
for all finitely generated Coxeter groups:

There exist constants C > 0 and Λ ∈ N such that any function f supported
on elements of word-length n with respect to the generating set S satisfies

‖λ(f) ‖ ≤ C(n+ 1)
3
2 Λ‖ f ‖2.

The constant Λ in this inequality can be obtained in terms of the geometric
representation of (G,S). Examples show that it is not best possible. We con-
jecture that the optimal constant is just the virtual cohomological dimension
of G and refer the reader to [5] for motivation.

We thank the referee for his comments which improved the presentation.

2. Trees

In this section we define certain trees on which a finite index torsion free
normal subgroup Γ of the Coxeter group acts by simplicial automorphisms of
the trees. For trees we use the standard notation of [26]; for the existence
of a finite index torsion free normal subgroup see [9, Chap. V, § 4, Ex. 9].
We shall show that the action of Γ on the product of those trees is free. Our
construction is similar to that of Januszkiewicz [19]. For the convenience of
the reader we shall work with the classical Tits cone U and the transposed
geometric action σ∗ of G on it. Let us introduce some notation and recall
some facts.

The word-length of an element g ∈ G with respect to the generating set
S is defined as l(g) = inf{n : g = s1 · · · · · sn, s1, . . . , sn ∈ S}. We denote
by T = {g−1sg : g ∈ G, s ∈ S} the set of reflections of G. For g ∈ G let
Ng = {t ∈ T : l(tg) < l(g)}. With these notations we have for g, h ∈ G

l(g) = #{t ∈ T : l(tg) < l(g)}

and (see [10])
l(g−1h) = #Ng4Nh.

1Added in proof: This has recently been shown by Y. Benoist and P. de la Harpe
(Adhérence de Zariski de groupes de Coxeter, to appear in Compositio Mathematica).
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We decompose the set of reflections T ⊂ G into disjoint Γ-orbits with
respect to conjugation:

T = T1∪̇T2∪̇ . . . ∪̇TΛ.(1)

Given t ∈ T , we denote by Mt the hyperplane in E∗ fixed by σ∗(t) and call
it the mirror of t. For i ∈ {1, . . . ,Λ} we define a graph Ti as follows: The
vertices are the connected components of U \(

⋃
t∈TiMt) and two such vertices

are connected by an edge if, as connected components, they are separated by
just one mirror.

Lemma 1. The above defined graph is a tree.

Proof. We have to show that a closed path in Ti contains backtracking.
Let C0, C1, . . . , Cn = C0, n ≥ 1, be the sequence of vertices of a non-trivial

closed path. Choose points ci ∈ Ci, where we may assume c0 = cn, and
elements e1, . . . , en of E, considered as functionals on E∗, with ei(c0) < 0 for
all i ∈ {1, . . . , n}, in such a way that ei vanishes on the hyperplane which
defines the edge {Ci−1, Ci}. We may assume that ei = ej if the defining edges
{Ci−1, Ci} and {Cj−1, Cj} are equal.

Consider the function f : {0, . . . , n} 7→ Z defined by

f(i) =
n∑
j=1

sign ej(ci).

It satisfies f(0) = f(n) = −n, and f(1) = f(n−1) = −n+ 2. Since f(i+ 1) ∈
{f(i) + 2, f(i) − 2}, there exists i0 such that f(i0) > f(i0 + 1) = f(i0 − 1).
Hence ei0(ci0) > 0, ei0+1(ci0) > 0, ei0(ci0−1) < 0, ei0+1(ci0+1) < 0, and, of
course, ei0(c0) < 0, ei0+1(c0) < 0. Since U is convex, the hyperplanes ei0 = 0
and ei0+1 = 0 must intersect inside U and we conclude from [13, Lemma 3]
that they coincide. Thus we have found a backtracking. �

The Coxeter group G acts via σ∗ on the chamber system C defined from the
mirrors on U ; see [9] and also [25]. Moreover, two points x, y are separated
by a mirror Mt if and only if, for g ∈ G, σ∗(g)x and σ∗(g)y are separated by
Mgtg−1 . Since we defined the trees Ti with respect to a Γ-orbit in T , we have:

Lemma 2. The contragradient representation σ∗ induces an action of Γ
on Ti by automorphisms of the tree.

Proof. First we show that the action of Γ is well defined. Let γ ∈ Γ and
a component C be given. For c0, c1 ∈ C we have to show that σ∗(γ)c0 and
σ∗(γ)c1 are not separated by a mirror of a reflection in Ti. Indeed, if σ∗(γ)c0
and σ∗(γ)c1 were separated by Mt, then by the remark preceding the lemma
Mγ−1tγ would separate c0 and c1.

Let γ ∈ Γ be given. If C0 and C1 are connected by an edge, then there
exist exactly one t ∈ Ti such that C0 ∩Mt 6= ∅ and C1 ∩Mt 6= ∅. Clearly this
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is the case if and only if σ∗(γ)C0 ∩Mγtγ−1 6= ∅ and σ∗(γ)C1 ∩Mγtγ−1 6= ∅.
Since γtγ−1 ∈ Ti if and only if t ∈ Ti, we are done. �

We consider the product

G = T1 × · · · × TΛ(2)

as a product of chamber systems (see [25, p. 2]). On the vertices VG of G we
use the metric

d1(x, y) =
Λ∑
i=1

di(xi, yi),

where x = (x1, . . . , xΛ), y = (y1, . . . , yΛ) ∈ VG . The action of Γ on VG is
isometric with respect to this metric.

Lemma 3. Γ acts freely on the vertices of G without bounded orbit. More-
over, no non-trivial subgroup of Γ has a bounded orbit.

Proof. Denoting by C0 the fundamental chamber in U , we have the injec-
tion g 7→ σ∗(g)C0 of G onto the chambers of C. If [C]i denotes the connected
component of the chamber C in U \(

⋃
t∈TiMt), we obtain a map of the cham-

bers of C into the set of vertices of the product G: [.] : C 7→ ([C]1, . . . , [C]Λ).
This map is an injection, since two chambers C,C ′ in C are different if they are
separated by a mirror, say Mt, where t ∈ T , for then there is j0 ∈ {1, . . . ,Λ}
with t ∈ Tj0 , whence [C]j0 6= [C ′]j0 .

The composition of these two maps defines an embedding of G into the
vertices of G and the action of Γ on this subset is free, since it is just the
transferred left multiplication in the group G. Moreover, no non-trivial sub-
group of Γ has a bounded orbit. To see this, we note first that the injection
g 7→ [σ∗(g)C0] is an isometry from G endowed with the left invariant distance
coming from the word-length with respect to the generating set S into the
vertices of G endowed with the metric d1. Indeed, for g, h ∈ G we have

l(g−1h) = #Ng4Nh
= #{Mt : Mt separates σ∗(g)C0 from σ∗(h)C0}
= d1([σ∗(g)C0], [σ∗(h)C0]).

So, if [σ∗(γn)C0], n ∈ Z, were bounded in G, then the set of mirrors which
separate C0 from a chamber in

⋃
n∈Z σ

∗(γn)C0 would have finite cardinality,
and hence supn∈Z l(γn) <∞. Therefore the set {γn : n ∈ Z} would be finite,
contradicting the fact that Γ is torsion free.

Now, if x ∈ G has a stabiliser Γx ⊂ Γ, then a vertex w = [σ∗(g)C0] in the
image of G in G would have a bounded Γx-orbit since Γ acts by isometries.
This follows from

d1(γw,w) ≤ d1(γw, γx) + d1(γx, x) + d1(x,w) ≤ 2d1(x,w), ∀γ ∈ Γx.
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Hence Γx = {e}. �

3. The action on the trees

In this section we collect some auxiliary results for later use.

Lemma 4. If t1, t2 ∈ T are reflections such that the corresponding edges
are distinct but in the same tree, then t1t2 acts as a translation on this tree.

Proof. First note that t1 and t2 are Γ conjugate, γ−1t1γ = t2, say, since
their edges belong to the same tree, Ti, say. Therefore, t1t2 = t1γ

−1t1γ ∈ Γ.
An oriented line segment in the Tits-cone from a point v ∈ Mt1 to its

image σ∗(t2)v is just reversed by σ∗(t2). Since the edges are distinct, this
implies that this segment is non-trivial. Since σ∗(t1) maps this line segment
to a segment that is adjacent (since both segments contain v), but differently
oriented, we conclude that the composition σ∗(t1)σ∗(t2) maps the original
segment to a coherently oriented one.

Its image, under σ∗(t1t2), and the line segment itself can be connected to
a coherently oriented broken line in the cone. The mirrors crossed by the line
segment and those crossed by its σ∗(t1t2)-image are separated by Mt1 . Hence,
in Ti, this broken line defines a coherently oriented geodesic. �

The edges of one of the trees Ti (identified with the set of reflections Ti), as a
Γ-orbit of a reflection, generate a subgroup in G. By a theorem independently
proved by Deodhar [11] and Dyer [12] this subgroup is itself a Coxeter group.
Clearly this subgroup is normalised by Γ, but in general we cannot expect
that all its reflections are contained in Ti.

For subgroups generated by a G-conjugation invariant set of reflections we
can say more:

Lemma 5. Let T ′ ⊂ T be a set of reflections of G, invariant under conju-
gation. Let W ′ denote the subgroup generated by T ′ in G. The subgroup W ′

is, with respect to a subset S′ ⊂ T ′, a Coxeter group, normal in G, and its set
of reflections coincides with T ′.

Proof. From the theorem of [11], or rather from Step 1 of its proof (see also
Theorem 3.4 and Corollary 3.11 in [12]) it is clear that (W ′, S′) is a Coxeter
system for some set S′ ⊂ T ′. A reflection in W ′ is conjugate, by an element
of W ′, to a reflection in S′. Since T ′ is G-conjugation invariant, any reflection
of W ′ is in T ′. The other assertions of the lemma are immediate. �

Now we view the set of edges of the product of trees (2) as a fiber bundle
p : edges(T1 × · · · × TΛ) → {1, . . . ,Λ} with base space {1, . . . ,Λ}. Indeed,
two vertices x = (x1, . . . , xΛ), y = (y1, . . . , yΛ) are connected by an edge, say
e(x, y), if for some j ∈ {1, . . . ,Λ} the vertices xj and yj are connected by an
edge in Tj and for all i 6= j we have xi = yi. We define p(e(x, y)) = j.
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Since Γ leaves the fibers invariant we obtain an action of G/Γ by permuta-
tions of {1, . . . ,Λ}, which we denote by π : G/Γ → SymΛ. If O ⊂ {1, . . . ,Λ}
is a π(G/Γ)-orbit, then, by Lemma 5, the edges of p−1(O) are the reflections
of a Coxeter group WO CG.

Lemma 6. For i ∈ {1, . . . ,Λ} and g ∈ G, σ∗(g) induces a morphism of
trees:

g : Ti → Tπ(ġ)(i).

Here g 7→ ġ denotes the quotient morphism G→ G/Γ.

Proof. An edge of Ti is the mirror Mt of some reflection t ∈ Ti. Its image
under σ∗(g) is the mirror of gtg−1 ∈ Tπ(ġ)(i). Hence it defines an edge in
Tπ(ġ)(i).

If C is a component of U \ {Mt : t ∈ Ti}, then some c0, c1 ∈ C would
have images σ∗(g)c0, σ∗(g)c1 in different components of U \{Mt : t ∈ Tπ(ġ)(i)}
if there is a mirror of some t′ ∈ Tπ(ġ)(i) separating the images. But then
g−1t′g ∈ Ti would have a mirror separating c0 and c1. This contradiction
shows that σ∗(g) defines a map from the vertices of Ti to those of Tπ(ġ)(i).

If C0 and C1 are connected by an edge in Ti, then there exists exactly one
t ∈ Ti such that C0 ∩Mt 6= ∅ and C1 ∩Mt 6= ∅. Clearly this is the case if and
only if σ∗(g)C0∩Mgtg−1 6= ∅ and σ∗(g)C1∩Mgtg−1 6= ∅. Since gtg−1 ∈ Tπ(ġ)(i)

if and only if t ∈ Ti, we are done. �

4. A Haagerup inequality

Following Rammage, Robertson and Steger [24] we first prove a Haagerup
inequality for the torsion free subgroup Γ of G. We then apply a theorem of
Jolissaint [20] to the group extension 0→ Γ→ G→ G/Γ→ 0.

We consider the product of trees G as a building of type Ã1× · · · × Ã1. Its
apartments are Λ-dimensional Euclidian spaces tessellated by unit cubes. We
have a shape defined on pairs of vertices

σ : VG × VG → Z+ × · · · × Z+

by
σ(u,w) = (d1(u1, w1), . . . , dΛ(uΛ, wΛ)).

It is clear from Lemma 2 that the action of Γ is shape preserving and we
define a shape on Γ by fixing a vertex v0 ∈ VG : σ(γ) = σ(v0, γv0). Let
p(n1, . . . , nΛ) =

∏Λ
i=1(ni + 1). The following theorem can be proved almost

verbatim as the Ã1 × Ã1 case of [24, Theorem 1.1]:

Theorem 1. If h ∈ l2(Γ) is supported on elements of shape (n1, . . . , nΛ),
then for all f ∈ l2(Γ),

‖ f ∗ h ‖2 ≤ p(n1, . . . , nΛ)‖ f ‖2‖h ‖2.
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Corollary 1. Let (G,S) be a Coxeter group. There exist constants C >
0 and Λ ∈ N such that for any function h ∈ l2(G) supported on elements of
length n and for all f ∈ l2(G),

‖ f ∗ h ‖2 ≤ C(n+ 1)
3
2 Λ‖ f ‖2‖h ‖2.

Proof. Let Γ be a torsion free normal subgroup of finite index in G and
denote by Λ the cardinality of distinct conjugation orbits of Γ on the set
of reflections of G. Since the length of an element of Γ is just the sum of
the components of its shape, the set of elements of length n decomposes
into less than k = (n + 1)Λ sets of elements of different shapes. Obviously
p(σ(γ)) ≤ (l(γ) + 1)Λ. Hence, for any h ∈ l2(Γ) with support on elements of
length n we have

‖ f ∗ h ‖2 = ‖
k∑
j=1

f ∗ hj ‖2

≤ (n+ 1)Λ
k∑
j=1

‖ f ‖2‖hj ‖2

≤ (n+ 1)Λ
√
k‖ f ‖2‖h ‖2,

where h =
∑k
j=1 hj is the orthogonal decomposition of h into functions hj

supported on elements of the same shape.
Since Γ is of finite index in G, we may apply [20, Lemma 2.1.2]. �

5. Free subgroups

As before let Γ be a torsion free subgroup of finite index in the Coxeter
group G and T1, . . . , TΛ the associated trees.

It is obvious from the definition of the trees that for each such tree the
action of Γ on the set of its edges is transitive. Hence each Γ\Ti is either a
simple loop or a single edge with two endpoints, depending on whether Γ has
one or two orbits on the set of vertices.

Lemma 7. For γ ∈ Γ there exists a tree, among T1, . . . , TΛ, on which γ
acts as a translation.

Proof. Denote by vi(e) the vertex in Ti defined by the equivalence class of
the group identity. Since l(γn)→∞ as n→∞, the formula

l(γn) =
Λ∑
1

di(γnvi(e), vi(e))
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shows that for at least one i the sequence di(γnvi(e), vi(e)) must be un-
bounded. Since γ acts as an isometry, for any other vertex v ∈ Ti we have

di(γnvi(e), vi(e)) ≤ di(γnv, v) + di(γnv, γnvi(e)) + di(v, vi(e))

≤ di(γnv, v) + 2di(v, vi(e)).

We infer that γ does not stabilise any finite set of vertices of Ti. In particular,
γ acts without inversion. Now [26, Proposition 25] implies the assertion. �

Remark 1. If m(s, t) < ∞ for all s, t ∈ S, then the Coxeter group itself
has property FA of Serre. (Concerning property FA, see [26, Ex. 3, p. 66].)

Denote by I1, I2 and I3 the sets of indices i ∈ {1, . . . ,Λ} such that the
corresponding trees have, respectively, only one edge, only vertices of valencies
at most two, and at least one vertex of valency at least three. Lemma 4 shows
that the existence of one vertex of valency two implies that the tree contains
an infinite axis of a translation of amplitude two.

Clearly, if G is finite then I2 = I3 = ∅. On the other hand, denote by HiCΓ
the intersection of the kernels of the homomorphisms πj : γ → Aut(Tj) , j /∈ Ii.
Then, whenever G (or, equivalently, Γ) is infinite we have that H1 = {e} is
trivial, H2 is a solvable, normal subgroup of Γ, and H3, if not trivial, contains
non-abelian free subgroups.

That H2 is solvable follows since the group of automorphisms of a tree of
degree two is just Z2 n Z and the set πj , j ∈ I2, separates the points of H2.
Indeed, H2 embeds as a subgroup in a direct sum of solvable groups.

Proposition 1. Let T be a tree with at least one vertex of valency at
least three. Assume that every pair of adjacent edges e1 = {y, x}, e2 = {x, z}
defines a translation u = u(e1, e2) on T with uy = z. If h1, . . . , hl are non-
trivial translations of T , then there is a pair of adjacent edges, defining a
translation v, such that for each j ∈ {1, . . . , l} the group generated by hj and
v in Aut(T ) is isomorphic to the free product Z ∗ Z.

Proof. We shall use Klein’s table tennis criterion, of which a suitable for-
mulation for our needs can be found in [3, Lemma 4.1].

Since a group is acting on the tree there can at most be two valencies of
vertices. More precisely, each vertex is either of valency at least three or has
a neighbour of this kind. It is known that the boundary of the tree is infinite.

By assumption, each hj has an attracting boundary point b+j and a repuls-
ing boundary point b−j , which are connected by the axis aj of the correspond-
ing translation. We take a boundary point not contained in {b+1 , . . . , b

+
l } ∪

{b−1 , . . . , b
−
l } and choose on a straight path towards this point a vertex x of

valency at least three not belonging to one of the axes a1, . . . , al. The trans-
lations {h1, . . . , hl} do not fix this vertex and our proof is completed by the
following well-known argument:
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Let e be an edge adjacent to x, but not belonging to one of the geodesics
from x to hix or from h−1

i x to x, i = 1, . . . , l. We split the tree into two
disjoint trees cutting this edge. Let V denote the part not containing the
above geodesics and U the part containing them. By assumption there exists
a translation u moving x into V . The vertex ux is adjacent to two different
edges which lie inside V , since as an image of x it has valency greater than
two. Again by our assumption there exists a translation v whose axis lies
entirely in V and contains ux.

Now, given h ∈ {h1, . . . , , hl} and j ∈ Z \ {0} it is clear that hjV ⊂ U ,
while, on the other hand, vjU ⊂ V . Since v is of infinite order, Klein’s
criterion implies that the group 〈h, v〉 generated by v and h in the group of
automorphisms of T is the free product 〈h〉 ∗ Z = Z ∗ Z. �

6. Factoriality

We consider again the geometric representation σ : G→ Gl(E). Associated
to G and S there is the bilinear form B : E × E → R whose matrix, with
respect to the standard unit vectors of E = ⊕s∈SRes, has entries

B(es, et) =

 1 if s = t,
− cos(π/m(s, t)) if m(s, t) <∞,
−1 if m(s, t) =∞.

We call (G,S) decomposable if there exist non-empty subsets S1, S2 ⊂ S,
such that s, t ∈ S commute whenever s ∈ S1 and t ∈ S2, or equivalently
B(es, et) = 0, and indecomposable otherwise.

It is well known that the (left) regular representation of a discrete group
is factorial if and only if the group is icc, that is, the conjugation class of any
group element different from the identity is infinite. Our proof of this for a
certain class of Coxeter groups relies very much on an irreducibility lemma
of de la Harpe for finite index subgroups of Coxeter groups ([15, Lemma
1]). It is not immediately clear that the complexified representations remain
irreducible, and we shall provide a proof of this fact.

Proposition 2. Let (G,S) be an indecomposable Coxeter system, with G
infinite. If the associated bilinear form B is indefinite and non-degenerate,
then G is an icc-group.

Proof. For w ∈ G denote by C(w) its centraliser. The conjugation class of
w is finite if and only if the index of C(w) in G is finite. By [15, Lemma 1]
the image σ(C(w)) acts irreducibly on E in this case. By Schur’s lemma the
commutant σ(C(w))′ is a division algebra over R. As it is finite dimensional,
it is isomorphic to R, C, or H . We claim that for any u ∈ G with σ(u) ∈
σ(C(w))′ the operator σ(u) is a real multiple of the identity.

The claim implies the proposition because it implies that σ(w), which is
obviously an element of σ(C(w))′, commutes with all elements from σ(G).
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Since σ is a faithful representation of G we conclude that w is in the centre
of the Coxeter group. (This is trivial; see [18, Section 6.3].)

To establish the claim it suffices to show that any such σ(u) has real spec-
trum. If ξ + iη ∈ Sp(u), with ξ, η ∈ R, then by [7, Chap. 1, Theorem 8]
(ξ − σ(u))2 + η2 is singular and hence equals 0.

If ξ = 0, then σ(u2) = σ(u)2 = −η2. Since detσ(u2) ∈ {+1,−1}, we would
have η2 = 1 and σ(u2) = −1, which is impossible in an infinite Coxeter group.

Now from (ξ − σ(u))2 + η2 = 0 we see that 2ξ = σ(u−1)(σ(u2) + ξ2 + η2).
Here the adjoint to the right hand side leaves the Tits cone U invariant. Hence
ξ must be strictly positive.

We conclude that any u with σ(u) ∈ σ(C(w))′ has its spectrum in the
right half plane {z : <z > 0}. If some z ∈ Sp(u) has non-vanishing imaginary
part, then, on the one hand, for some k ∈ N, zk has negative real part, but
on the other hand, by the spectral mapping theorem, zk is an element of the
spectrum of σ(u)k = σ(uk) ∈ σ(C(w))′. �

Corollary 2. A Coxeter group as in the above proposition is not a finite
extension of an abelian group.

Let σC : G → Gl(E ⊗R C) be the complexification of the geometric repre-
sentation, i.e., σC(g) = σ(g) ⊗R IdC for all g ∈ G, and extend B canonically
to a bilinear form BC, which clearly remains non-degenerate, if B is non-
degenerate.

Lemma 8. Suppose that G is infinite and B non-degenerate. Every sub-
group of finite index in G acts, by σC, irreducibly on E ⊗R C.

Proof. We follow the first part of the arguments of de la Harpe. We may
assume that Γ is normal in G. Assuming L1 6= E ⊗R C to be a non-trivial
σC(Γ)-invariant subspace, we find a generator s ∈ S such that L1∩σC(s)L1 =
{0}.

The complex codimension one subspace Hs = ⊕s′∈S\{s}Ces′ is stabilised by
σC(s) and has non-trivial intersection with L1⊕ σC(s)L1, because the dimen-
sion of the latter subspace is at least two. On the other hand, L1 intersects
trivially with Hs since σC(s) does not fix any of its non-zero elements. We
conclude that L1 complements Hs and is one-dimensional. In particular, we
have es = v + h for some v ∈ L1 and some h ∈ Hs. Now

−es = σC(s)es = σC(s)v + h.

Subtracting, we see that

es =
1
2

(v − σC(s)v) ∈ L1 ⊕ σC(s)L1.

The G-orbit L = {L1, . . . , LN} of L1 is finite since Γ is of finite index in
G, and all of those complex lines are Γ-invariant, by the normality of Γ. As
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dimLj = 1 there exist homomorphisms λj : Γ→ C
∗ by which Γ acts. Because

G acts irreducibly (notice that the extension to complex scalars is included
in the Corollaire of Chap. V, §4, Sec. 7 of [9]) on E ⊗R C, the G-invariant
sum ⊕Nj=1Lj equals the whole space. Since σC is a faithful representation we
conclude that Γ is abelian, in contradiction to the above corollary. �

Remark 2. As in the proof of Proposition 2 one sees that under the
conditions of the above lemma a finite index subgroup of G has a trivial
centraliser.

Proposition 3. If G is infinite and B non-degenerate, then every torsion
free normal subgroup Γ of finite index in G contains no non-trivial solvable
normal subgroup.

Proof. Let H C Γ be a solvable normal subgroup of Γ as in the statement
of the proposition. We denote by H

Z
and Γ

Z
the Zariski closures of σC(H),

respectively σC(Γ), in Gl(E ⊗R C). Clearly, H
Z

is a normal divisor of Γ
Z

.
Moreover, the connected component H

0
(in the Zariski topology) of the iden-

tity in H
Z

is, on the one hand, still normal in Γ
Z

and, on the other hand,
of finite index in H

Z
. We claim that it reduces to the identity. This claim

proves the proposition, since it implies that H
Z

and hence H are finite groups.
Because Γ is torsion-free this is possible only if H = {e}.

The solvable Zariski connected group H
0

has a common eigenvector v ∈
E⊗RC, as follows from the Lie-Kolchin Theorem; see, e.g., [8, Corollary 10.5].
Therefore, there exists a character (a continuous multiplicative function) αv :
H

0 → C
∗ from H

0
to the multiplicative group of C such that h v = αv(h) v.

Since H
0

is normal in Γ
Z

, any vector γv, with γ ∈ Γ
Z

, is also a common
eigenvector, and the corresponding character is αγv(.) = αv(γ−1. γ).

Let

V = {u ∈ E ⊗R C : h u = αu(h)u for some αu as above }.

This set is Γ
Z

invariant and spans an Γ
Z

-invariant subspace. We have seen
that it is non-trivial, and by the irreducibility of σC(Γ) it must equal E⊗R C.

Now the trace of BC is positive and V contains a basis. Hence for some
u ∈ V we have BC(u, u) 6= 0. From

αu(h)BC(u, u) = BC(hu, u) = BC(u, h−1u)

= αw(h−1)BC(u, u) ∀h ∈ H0

we infer that αu ∈ {+1,−1}.
As above we conclude that the set

V1 = {u ∈ E ⊗R C : h u = αu(h)u, αu : H
0 → {+1,−1} is a character }
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contains a basis. With respect to one such basis the elements of H
0

consist of
diagonal matrices with entries from {+1,−1}. Since H

0
is Zariski connected,

it must be trivial. �

7. Simplicity of the regular C∗-algebra

Theorem 2. If (G,S) is an indecomposable Coxeter system, with G infi-
nite, such that the associated bilinear form B is indefinite and non-degenerate,
then its (left) regular C∗-algebra is simple with unique trace.

Before proving the theorem we establish a lemma.

Lemma 9. If (G,S) is as in the theorem, then all trees T1, . . . , TΛ have
vertices of valency at least three.

Proof. Assume that Ti has only vertices of valency two. From Lemma 6
we see that for each j in the orbit O = {π(ġ)i : ġ ∈ G/Γ} the tree Tj is
isomorphic to Ti, and hence has only vertices of valency two.

The group W generated by the reflections ∪j∈OTj contains Γ′ := W ∩ Γ
as a normal torsion-free subgroup of finite index, which is also normal in G.
The set of homomorphisms πj |Γ′ : Γ′ → Aut(Tj), j ∈ O, is faithful, since the
assumption that πj(γ) = Id for all j ∈ O implies that γ acts, by conjugation,
trivially on all reflections in ∪j∈OTj , i.e., on all reflections in W . From this
and the fact that γ ∈W it follows that γ is in the centre of W . But the centre
is trivial, since W is infinite. We infer that Γ′ is solvable. By Proposition 3 it
is trivial and W finite. This is a contradiction. �

Proof of the theorem: Let Γ be a torsion free normal subgroup of finite
index in G. Since G is an icc-group, the results of Bekka and de la Harpe [4]
show that it suffices to prove the assertions for Γ. We shall use the concept
of weak Powers groups in the sense of Boca and Nitica [6].

Let F ⊂ Ch be a finite subset of the Γ-conjugation-class of some h ∈ Γ.
Lemma 7 shows that there is a tree T on which h, and hence all elements of
its conjugation-class, act as translations. This tree has a vertex of valency at
least three. We can now apply Proposition 1 to obtain v ∈ Γ such that for
any k ∈ F the subgroup 〈k, v〉 generated by k and v is isomorphic to Z ∗ Z.

The proof of [3, Lemma 2.2] shows that there exists a constant C > 0 and
v ∈ Γ such that for all k ∈ F∥∥∥∥∥∥

∞∑
j=1

ajλΓ(v−jkvj)

∥∥∥∥∥∥ ≤ C ‖ a ‖2 ∀a ∈ l2(Z+).(3)

Armed with this, the computations in the proof of [6, Lemma 2.2] prove
the following fact which we state as a lemma.
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Lemma 10. Given a finite linear combination x =
∑
k∈F akk ∈ CΓ with

e /∈ F and ε > 0 there exist n ∈ N and v1, . . . , vn ∈ Γ such that in C∗λ(Γ),∥∥∥∥∥∥ 1
n

n∑
j=1

λΓ(vj)λΓ(x)λΓ(vj)∗

∥∥∥∥∥∥ ≤ ε.(4)

The arguments in the proof of [3, Lemma 2.1] show that C∗λ(Γ) is simple.
Finally, the uniqueness of the trace is an immediate consequence of inequality
(4). �

Remark 3. It is not hard to see that Γ is a weak Powers group. By
Remark 2, the centraliser of Γ in G is trivial. Hence the Coxeter group itself
is an ultra-weak Powers group in the sense of Bédos [2].
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