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RICHNESS OF INVARIANT SUBSPACE LATTICES FOR A
CLASS OF OPERATORS

MINGXUE LIU AND CHEN LIN

Abstract. In 1994, H. Mohebi and M. Radjabalipour proved that ev-
ery operator in a certain class of operators on reflexive Banach spaces

has infinitely many invariant subspaces. In this paper, we prove that
the invariant subspace lattice for every operator in the class of oper-
ators on (general) Banach spaces is rich, and we give an example of
an operator T that has infinitely many invariant subspaces, while the
invariant subspace lattice Lat(T ) for T is not rich. Here we call an in-

variant lattice subspace Lat(T ) for the operator T rich if there exists an
infinite dimensional Banach space E such that Lat(T ) contains a sub-
lattice that is order isomorphic to the lattice Lat(E) of all closed liner

subspaces of E. Finally we show that the invariant subspace lattice
Lat(T ) for a bounded linear operator T on a reflexive Banach space X

is reflexive-rich if and only if the invariant subspace lattice Lat(T ∗) for

T ∗ is reflexive-rich.

S. Brown [2] showed that if T is a hyponormal operator on a Hilbert space
such that σ(T ) is dominating in some nonempty open subset G of the complex
plane C, then T has a non-trivial invariant subspace. The work initiated by
S. Brown has been generalized by J. Eschmeier and B. Prunaru [3].

To state the result of J. Eschmeier and B. Prunaru, we recall that, given
a bounded linear operator B on a Banach space and a nonempty open set
G ⊂ C, we say that B is decomposable in G if for every open subset H ⊂
G there exists an invariant subspace M of B such that σ(B|M) ⊂ H and
σ(B/M) ⊂ C \H, where B/M is the quotient operator induced by B. In view
of [9] (also see [2, p. 95]) and [4], every hyponormal operator on a Hilbert space
is up to a similarity the restriction of an operator B that is decomposable in
any open subset G of C.

J. Eschmeier and B. Prunaru [3] proved that if T is a bounded linear
operator on a Banach space such that T is up to a similarity the restriction of
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an operator B decomposable in some nonempty open subset G of C and σ(T )
is dominating in the open set G, then T has a non-trivial invariant subspace.
Moreover, if the essential spectrum σe(T ) of T is dominating in the open set
G, then the invariant subspace lattice Lat(T ) for T is rich.

The results of [3] were, in turn, improved by H. Mohebi and M. Radja-
balipour [8]. In particular, Mohebi and Radjabalipour showed that for reflex-
ive Banach spaces the condition of decomposability of B can be replaced by
a weaker condition. More precisely, they proved the following theorem:

Theorem A ([8, Theorem I.1]). Assume the operators T ∈ B(X) and
B ∈ B(Z) on the reflexive Banach spaces X and Z and the nonempty open
set G in the complex plane C satisfy the following conditions:

(1) qT = Bq for some injective q ∈ B(X,Z) with a closed range qX.
(2) There exist sequences {G(n)} of open sets and {M(n)} of invariant

subspaces of B such that G(n) ⊂ G(n+1), G = ∪nG(n), σ(B|M(n)) ⊂
C\G(n) and σ(B/M(n)) ⊂ G(n), n = 1, 2, . . . .

(3) σ(T )\σp(B) is dominating in G.

Then T has infinitely many invariant subspaces.

In this paper we give an extension of Theorem A. We show that, given two
operators T ∈ B(X) and B ∈ B(Z) on (general) Banach spaces X and Z
such that T is up to a similarity the restriction of B and there exist sequences
{G(n)} of open sets and {M(n)} of invariant subspaces of B as in Theorem A,
if σ(T ) \ σp(B∗∗) is dominating in the open set G then T has infinitely many
invariant subspaces. Moreover, if σe(T )\σ(B∗∗) is dominating in the open set
G, then Lat(T ) is rich. In particular, the reflexivity is not needed anymore.
In addition, we give an example in which the operator T has infinitely many
invariant subspaces, while the invariant subspace lattice Lat(T ) for T is not
rich. Finally we show that the invariant subspace lattice Lat(T ) for a bounded
linear operator T on a reflexive Banach space X is reflexive-rich if and only
if the invariant subspace lattice Lat(T ∗) for T ∗ is reflexive-rich.

To prove these results we first need to recall some basic terminology and
facts and prove some lemmas.

Let E be a Banach space. Then Lat(E) denotes the lattice of all closed
linear subspaces of E. If M is a nonempty subset of E, then M⊥ denotes
the annihilator of M . If N is a nonempty subset of E∗, then ⊥N denotes
the preannihilator of N . If M ⊂ Lat(E), A ∈ B(E) and AM ⊂ M , then
we denote by A|M the restriction of A onto M , and by A/M the quotient
operator induced by A on the quotient space E/M . It is well known that the
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essential spectrum is given by

σe(A) =
{
λ ∈ C : ran(λ−A) is not closed}
∪
{
λ ∈ C : ran(λ−A) is closed and dim ker(λ−A) =∞

}
∪ {λ ∈ C : ran(λ−A) is closed and dim ker(λ−A∗) =∞

}
.

A subset σ of the complex plane C will be called dominating in the open
set G if ‖f‖ = sup{|f(λ)| : λ ∈ σ ∩ G} holds for all f ∈ P∞(G), where
P∞(G) stands for the smallest w∗-closed subspace of L∞(G) containing all
polynomials. It is well-known that the point evaluation Eλ : P∞(G) → C,
f → f(λ), is a w∗-continuous linear functional.

Lemma 1. Let X be a Banach space, T ∈ B(X), and λ ∈ C. If dim ker(λ−
T ) =∞, then the invariant subspace lattice Lat(T ) for T is rich.

Proof. Let M be a closed linear subspace in the Banach space E = ker(λ−
T ). Then (λ− T )x = 0 for each x ∈ M . Thus we obtain that TM ⊂ M and
M ∈ Lat(T ). Therefore the lattice Lat(E) of all closed linear subspaces of
the infinite dimensional Banach space E = ker(λ− T ) is order isomorphic to
a sublattice of Lat(T ). �

Lemma 2. Let X be a Banach space, T ∈ B(X), and λ ∈ C. If
dim(X/ran(λ− T )) = ∞, then the invariant subspace lattice Lat(T ) for T
is rich.

Proof. Assume without loss of generality that λ = 0. Let π : X −→
X/ranT be the canonical quotient map. Let M be a given closed linear
subspace in the Banach space X/ranT . Then there is a closed linear subspace
NM = π−1(M) in X such that NM ⊃ ranT . Therefore TNM ⊂ ranT ⊂ NM .
Consequently the map Φ : Lat(X/ranT ) −→ Lat(T ), M 7−→ π−1(M), defines
a lattice embedding. �

Lemma 3. Let X be a Banach space, T ∈ B(X), and λ ∈ C. Then we
have:

(1) If either dim ker(λ − T ∗) or dim(X/ran(λ− T )) is equal to ∞, then
the invariant subspace lattice Lat(T ) for T and the invariant subspace
lattice Lat(T ∗) for T ∗ are rich.

(2) If either dim ker(λ−T ) or dim(X∗/ ran(λ−T ∗)) is equal to ∞, and if
ran(λ− T ) is closed in X, then the invariant subspace lattice Lat(T )
for T and the invariant subspace lattice Lat(T ∗) for T ∗ are rich.

Proof. Without loss of generality we may assume that λ = 0.
(1) Since kerT ∗ = ranT

⊥ ∼= (X/ranT )∗, it follows that dim kerT ∗ = ∞
if and only if dim(X/ranT ) = ∞. Thus the conclusion of (1) follows from
Lemmas 1 and 2.
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(2) Since ranT is closed in X, it follows from the Closed Range Theorem
that (kerT )⊥ = ran(T ∗). Therefore (kerT )∗ ∼= X∗/ kerT⊥ = X∗/ ran(T ∗).
Consequently dim(X∗/ ran(T ∗)) =∞ if and only if dim kerT =∞. Thus the
conclusion of (2) follows from Lemmas 1 and 2. �

The following result improves Lemma I.3 in [8] and Proposition 1.4 in [3].

Lemma 4. Let T ∈ B(X) and B ∈ B(Z) be operators on Banach spaces
X and Z, and let q ∈ B(Z,X∗) be a surjection with qB = T ∗q. Let λ ∈ C,
and let ran(λ − T ) be not closed in X. If either λ − B or (λ − B)| ker q
has a dense range, then for any finite codimensional subspace N in X∗ there
exists a sequence {zn} in Z such that qzn ∈ N , ‖qzn‖ = 1 for all n, and
limn→∞ ‖(λ−B)zn‖ = 0.

Proof. Assume without loss of generality that λ = 0. It is obvious that
ker q is an invariant subspace for B. Define the operator q̃ : Z/ ker q −→ X∗

by q̃(z + ker q) = qz for all z ∈ Z. Since q̃ is a bijection, we can assume
without loss of generality that X∗ = Z/ ker q. Therefore q is the canonical
quotient map from Z into Z/ ker q and T ∗ is the quotient operator induced
by B on Z/ ker q.

Since N is a finite codimensional subspace of X∗, there exists a finite
dimensional subspace M of X∗ such that X∗ = M ⊕N .

We first show that if B(ker q) = ker q, then the conclusion of the lemma
is valid. Define the operator T̃ ∗ : N −→ X∗ by T̃ ∗y = T ∗y for all y ∈ N .
Since dimM < ∞ and ran(T ∗) is not closed in X∗, ran(T̃ ∗) is not closed in
X∗. Therefore there exists a sequence {yn} of unit vectors in N such that
limn→∞ T̃ ∗yn = 0. Since q ∈ B(Z,X∗) is a surjection, there exists un ∈ Z
such that qun = yn. It is easy to see that limn→∞ ‖Bun + ker q‖ = 0. It
follows that for every natural number n there exists z′n ∈ ker q such that
limn→∞ ‖Bun − z′n‖ = 0. Since B(ker q) = ker q, there exists vn ∈ ker q
such that ‖z′n − Bvn‖ < 1/n. Thus we have limn→∞‖Bun − Bvn‖ = 0.
Set zn = un − vn. Then zn ∈ Z, qzn ∈ N , and ‖qzn‖ = 1 for all n, and
limn→∞ ‖Bzn‖ = 0.

Next, we show that if BZ = Z, then the conclusion of the lemma is still
valid. Put W = B(ker q) ⊂ ker q. Define the operator B̃ : Z/ ker q −→ Z/W

by B̃(u+ ker q) = Bu+W for all u+ ker q ∈ Z/ ker q. Then it is easy to see
that B̃ is a well-defined bounded linear operator from Z/ ker q into Z/W .

We now show that B̃(Z/ ker q) = Z/W . In fact, for any v + W ∈ Z/W
and any ε > 0 it follows from BZ = Z that there exists v′ ∈ Z such that
‖Bv′ − v‖ < ε. Consequently

‖B̃(v′ + ker q)− (v +W )‖ = ‖(Bv′ +W )− (v +W )‖
= ‖(Bv′ − v) +W‖ < ε.
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Next we prove that ran B̃ is not closed in Z/W . Indeed, assume ran(B̃) is

closed. Then ran B̃ = ran B̃ = Z/W . For every u+ ker q ∈ Z/ ker q, it follows
from u + W ∈ Z/W = ran B̃ that there exists v + ker q ∈ Z/ ker q such that
u+W = B̃(v+ker q) = Bv+W. Therefore Bv−u ∈W ⊂ ker q. Consequently

u+ ker q = Bv + ker q = T ∗(v + ker q).

From the above argument it follows that T ∗ is a surjection. Hence ran(T ∗) is
closed. This contradicts the assumption that ranT is not closed.

Define the operator B: N −→ Z/W by By = B̃y for all y ∈ N . Since
dimM < ∞ and ran B̃ is not closed in Z/W , ranB is not closed in Z/W .
Therefore there exists a sequence {yn} of unit vectors in N such that
limn→∞Byn = 0. Assume that yn = un + ker q. It is easy to see that
limn→∞ ‖Bun + W‖ = 0. It follows that for every natural number n there
exists z′n ∈W such that limn→∞ ‖Bun − z′n‖ = 0. Since W = B(ker q), there
exists vn ∈ ker q such that ‖z′n−Bvn‖ < 1/n. Thus we have limn→∞ ‖Bun−
Bvn‖ = 0. Set zn = un− vn. Then zn ∈ Z, qzn ∈ N , and ‖qzn‖ = 1 for all n,
and limn→∞ ‖Bzn‖ = 0. �

Theorem 1. Assume the operators T ∈ B(X) and B ∈ B(Z) on Banach
spaces X and Z and the nonempty open set G in the complex plane C satisfy
the following conditions:

(1) qB = T ∗q for some surjective q ∈ B(Z,X∗).
(2) There exist sequences {G(n)} of open sets and {M(n)} of invariant

subspaces of B such that G(n) ⊂ G(n+1), G = ∪nG(n), σ(B|M(n)) ⊂
G(n) and σ(B/M(n)) ⊂ C\G(n), n = 1, 2, . . . .

Then we have:
(a) If the set K = σ(T )\{λ ∈ C : (λ−B)Z 6= Z and (λ−B) ker q 6=

ker q} is dominating in G, then T has infinitely many invariant sub-
spaces.

(b) If K ∩ σe(T ) is dominating in G, then the invariant subspace lattice
Lat(T ) for T and the invariant subspace lattice Lat(T ∗) for T ∗ are
rich.

To prove Theorem 1 we first establish some lemmas. Throughout the proof
of Theorem 1, we assume that X, Z, T , B, q, G, G(n), M(n), and K are as
in Theorem 1. Put M(G) = ∪nM(n), and define

K1 =
{
λ ∈ C : for any finite codimensional subspace N in X∗ there

exists a sequence {zn} in Z satisfying qzn ∈ N,
‖qzn‖ = 1 for all n, and lim

n→∞
‖(λ−B)zn‖ = 0

}
.

It is easy to see that M(n) ⊂M(n+1) for n = 1, 2, . . . (also see [8, Lemma
I.2]). Therefore for every x ∈ X and every z ∈ M(G) there exists a natural
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number n such that z ∈M(n). Define a functional x⊗ z : H∞(G) −→ C by

x⊗ z(f) = 〈x, qf(B|M(n))z〉, f ∈ P∞(G),

where f(B|M(n)) is defined by the Riesz-Dunford functional calculus with
analytic functions. It is easy to see that x⊗ z is a well-defined w∗-continuous
linear functional which is independent of the particular choice of n.

Lemma 5 (cf. [3, Proposition 2.8] or [6, Lemma 2]). Let r, s be natural
numbers. Consider non-negative real numbers c1, c2, . . . , cr with c1 +c2 + · · ·+
cr = 1 and complex numbers λ1, λ2, . . . , λr ∈ K1 ∩ G. If a1, a2, . . . , as ∈ X,
b1, b2, . . . , bs ∈ M(G), and ε > 0 are arbitrary, then there are vectors x ∈ X
and z ∈M(G) such that ‖x‖ ≤ 3, ‖qz‖ ≤ 2 and

(1) ‖(c1Eλ1 + c2Eλ2 + · · ·+ crEλr )− x⊗ z‖ < ε;
(2) max{‖x⊗bj‖ : j = 1, 2, . . . , s} < ε, max{‖aj⊗z‖ : j = 1, 2, . . . , s} < ε.

Proof. The proof of Lemma 5 is essentially the same as that of Proposition
2.8 in [3]. �

Let E be a nonempty set and m a natural number. We define

Em = {(x1, x2, . . . , xm) : x1, x2, . . . , xm ∈ E},
M(m,E) = {(xjk) : xjk ∈ E, j, k = 1, 2, . . . ,m}.

We write M(∞, E) for the set of all infinite matrices (xjk)j,k≥1 with coeffi-
cients xjk (j, k = 1, 2, . . . ) in E. Put Q = L1(G)/⊥H∞(G). From Lemma 5
we derive the following result as in [3].

Lemma 6 (cf. [3, Proposition 2.6]). If K1 is dominating in G, then for
each matrix L = (Ljk)j,k≥1 ∈ M(∞, Q) there are sequences {xm} and {zm}
such that

(1) xm ∈ Xm, zm ∈ [M(G)]m;
(2) for each natural number j, the limits x(j) = limm→∞ xm(j) ∈ X and

x∗(j) = limm→∞ qzm(j) ∈ X∗ exist, where xm(j) and zm(j) denote
the j-th components of xm and zm, respectively;

(3) for all natural numbers j and k we have Ljk = limm→∞ xm(j)⊗zm(k),
where the limit is taken in Q.

From Lemma 6 we deduce as in [3] the following result.

Lemma 7. Assume the operators T ∈ B(X) and B ∈ B(Z) on Banach
spaces X and Z and the nonempty open set G in the complex plane C satisfy
the following conditions:

(1) qB = T ∗q for some surjective q ∈ B(Z,X∗).
(2) There exist sequences {G(n)} of open sets and {M(n)} of invariant

subspaces of B such that G(n) ⊂ G(n+1), G = ∪nG(n), σ(B|M(n)) ⊂
G(n) and σ(B/M(n)) ⊂ C\G(n), n = 1, 2, . . . .
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(3) The set K1 is dominating in G.
Then the invariant subspace lattice Lat(T ) for T and the invariant subspace
lattice Lat(T ∗) for T ∗ are rich.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. If K is dominating in G and K\σe(T ) is a finite set,
then by the maximum modulus principle for analytic functions the set K ∩
σe(T )(= K\(K\σe(T ))) is dominating in G. Therefore, if K is dominating
in G and K ∩ σe(T ) is not dominating in G, then K\σe(T ) is an infinite set.
Hence the set

σ(T ) \ {λ ∈ C : ran(λ− T ) is not closed, or dim ker(λ− T ) =∞}
is also an infinite set. It is easy to see from this that either ker(λ − T ) or
ran(λ− T ) is a nontrivial invariant subspace of T for infinitely many complex
numbers λ.

To prove Theorem 1 it therefore suffices to prove the second assertion of
Theorem 1. Put

K0 = K ∩ {λ ∈ C : ran(λ− T ) is closed}
∩
(
{λ ∈ C : dim ker(λ− T ) =∞}

∪ {λ ∈ C : dim ker(λ− T ∗) =∞}
)
.

Let φ denote the empty set. If K0 6= φ, then it follows from Lemma 3 that
the invariant subspace lattice Lat(T ) for T and the invariant subspace lattice
Lat(T ∗) for T ∗ are rich. If K0 = φ, then the set

K ∩ σe(T ) =
(
K ∩

{
λ ∈ C : ran(λ− T ) is not closed

}
∩ σe(T )

)
∪K0

= K ∩
{
λ ∈ C : ran(λ− T ) is not closed

}
is dominating in G. On the other hand, by Lemma 4 we have(

K ∩ {λ ∈ C : ran(λ− T ) is not closed}
)
⊂ K1.

Consequently K1 is dominating in G. Therefore it follows from Lemma 7 that
the invariant subspace lattice Lat(T ) for T and the invariant subspace lattice
Lat(T ∗) for T ∗ are rich. �

Theorem 2. Assume the operators T ∈ B(X) and B ∈ B(Z) on Banach
spaces X and Z and the nonempty open set G in the complex plane C satisfy
the following conditions:

(1) qT = Bq for some injective q ∈ B(X,Z) with a closed range qX.
(2) There exist sequences {G(n)} of open sets and {M(n)} of invariant

subspaces of B such that G(n) ⊂ G(n+1), G = ∪nG(n), σ(B|M(n)) ⊂
C\G(n) and σ(B/M(n)) ⊂ G(n), n = 1, 2, . . . .

Then we have:
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(a) If the set K2 = σ(T )\(σp(B∗∗) ∩ {λ ∈ C : (λ−B∗) ker q∗ 6= ker q∗})
is dominating in G, then T has infinitely many invariant subspaces.

(b) If K2 ∩ σe(T ) is dominating in G, then the invariant subspace lattice
Lat(T ) for T and the invariant subspace lattice Lat(T ∗) for T ∗ are
rich.

Proof. (1’) By condition (1) of the theorem and the Closed Range Theorem
we have ran(q∗) = (ker q)⊥ = X∗ and q∗B∗ = T ∗q∗.

(2’) From condition (2) of the theorem we obtain σ(B∗|M(n)⊥) ⊂ G(n)
and σ(B∗/M(n)⊥) ⊂ C\G(n), n = 1, 2, . . . .

(3’) Since ranA
⊥

= ker(A∗) for any bounded linear operator A on any

Banach space Y , it follows that ran(λ−B∗)
⊥

= ker((λ−B∗)∗) for any λ ∈ C.
Therefore,{

λ ∈ C : (λ−B∗)Z∗ 6= Z∗
}

=
{
λ ∈ C : ran(λ−B∗)

⊥
6= {0}

}
=
{
λ ∈ C : ker(λ−B∗∗) 6= {0}

}
= σp(B∗∗).

Consequently,

K2 = σ(T )\
{
λ ∈ C : (λ−B∗)Z∗ 6= Z∗, and (λ−B∗) ker q∗ 6= ker q∗

}
.

To prove Theorem 2 it therefore suffices to replace the quantities X, Z, T ,
B, q, G, G(n) and M(n) in Theorem 1 by the quantities X, Z∗, T , B∗, q∗,
G, G(n) and M(n)⊥, respectively. �

Remark 1. It is clear that Theorem 2 contains as special case Theorem
A, the main result of [8], and improves this result in several respects:

(1) The spaces X and Z in Theorem 2 are general Banach spaces, while
X and Z in Theorem A are reflexive Banach spaces.

(2) The thickness condition of the spectrum in Theorem 2 is weaker than
that in Theorem A.

(3) The conclusion of Theorem A is that the operator T has infinitely
many invariant subspaces, while the conclusion of Theorem 2 is that
the invariant subspace lattice Lat(T ) for the operator T is rich. We
give below an example in which the operator T has infinitely many
invariant subspaces, while Lat(T ) is not rich.

Corollary 1. Assume the operators T ∈ B(X) and B ∈ B(Z) on the
Banach space X and the reflexive Banach space Z and the nonempty open set
G in the complex plane C satisfy the following conditions:

(1) qT = Bq for some injective q ∈ B(X,Z) with a closed range qX.
(2) There exist sequences {G(n)} of open sets and {M(n)} of invariant

subspaces of B such that G(n) ⊂ G(n+1), G = ∪nG(n), σ(B|M(n)) ⊂
C\G(n) and σ(B/M(n)) ⊂ G(n), n = 1, 2, . . . .
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Then we have:
(a) If the set

K3 = σ(T )\
(
σp(B) ∩ {λ ∈ C : (λ−B∗) ker q∗ 6= ker q∗}

)
is dominating in G, then T has infinitely many invariant subspaces.

(b) If K3 ∩ σe(T ) is dominating in G, then the invariant subspace lattice
Lat(T ) for T and the invariant subspace lattice Lat(T ∗) for T ∗ are
rich.

Example 1. Let S be the unilateral shift of multiplicity 1 on the Hardy
space H2. Let φ1 be the inner function defined by φ1(z) = exp (z + 1)/(z − 1),
and let P be the projection from H2 onto (φ1H

2)⊥. Then it follows from [10,
p. 61] that the operator T = PS|(φ1H

2)⊥ is unicellular and Lat(T ) is order
isomorphic to [0, 1]. Therefore T has infinitely many invariant subspaces, and
Lat(T ) is totally ordered. But for an infinite dimensional Banach space E it
is not possible that Lat(E) is totally ordered. Consequently, Lat(T ) cannot
be rich.

Remark 2. It is easy to see that the richness of Lat(T ) in the theorems
of [3] and in this paper can be strengthened to reflexive-richness. Here we
call an invariant subspace lattice Lat(T ) for the operator T ∈ B(X) on the
Banach space X reflexive-rich if there exists an infinite dimensional Banach
space E such that Lat(T ) contains a sublattice order isomorphic to the lattice
Lat(E), and E is a reflexive Banach space whenever X is a reflexive Banach
space.

Let X be a Banach space. Let M,N be linear subspaces of X and L a
linear subspace of X∗. It is well known that M ∨N = M +N , ⊥(M⊥) = M ,
(⊥L)⊥ ⊃ L, and there exist examples for which (⊥L)⊥ 6= L. But if X is a
reflexive Banach space, then (⊥L)⊥ = L.

Lemma 8. Let E be a reflexive Banach space. Then ϕ : L 7−→ ⊥L is a
bijection of Lat(E∗) onto Lat(E).

Proof. We first show that ϕ is an injection. In fact, for any L,H ∈ Lat(E∗),
if L 6= H, then ⊥L 6= ⊥H. Otherwise, ⊥L =⊥ H. Consequently L = (⊥L)⊥) =
(⊥H)⊥) = H, which is a contradiction. Next we show that ϕ is a surjection.
Indeed, for any M ∈ Lat(E), we have M⊥ ∈Lat(E∗) and (⊥(M⊥) = M .
Therefore ϕ is a surjection of Lat(E∗) onto Lat(E). �

Lemma 9. Let X be a reflexive Banach space and let T ∈ B(X). Let
[Lat(T )]s be a sublattice of Lat(T ). Put [Lat(T ∗)]s = {M⊥,M ∈ [Lat(T )]s}.
Then [Lat(T ∗)]s is a sublattice of Lat(T ∗), and the map ψ : M 7−→ M⊥ is a
bijection of [Lat(T )]s onto [Lat(T ∗)]s.
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Proof. It is easy to see that [Lat(T ∗)]s ⊂ Lat(T ∗). Moreover for any
M⊥, N⊥ ∈ [Lat(T ∗)]s we have

M⊥ ∨N⊥ = (M ∩N)⊥ ∈ [Lat(T ∗)]s,

M⊥ ∩N⊥ = (M ∨N)⊥ ∈ [Lat(T ∗)]s.
Therefore [Lat(T ∗)]s is a sublattice of Lat(T ∗). It can be proved as in Lemma
8 that ψ is a injection. Moreover, it is clear that ψ is a surjection. �

Theorem 3. Let X be a reflexive Banach space and let T ∈ B(X). Then
the invariant subspace lattice Lat(T ) for T is reflexive-rich if and only if the
invariant subspace lattice Lat(T ∗) for T ∗ is reflexive-rich.

Proof. Necessity: Since Lat(T ) is reflexive-rich, there exists an infinite di-
mensional reflexive Banach space E such that Lat(T ) contains a sublattice
[Lat(T )]s that is order isomorphic to the lattice Lat(E). Assume that τ is
the corresponding isometric isomorphism. It follows from Lemma 9 that
[Lat(T ∗)]s is a sublattice of Lat(T ∗). To prove the necessity it therefore
suffices to show that Lat(E∗) is order isomorphic to [Lat(T ∗)]s.

Define the map π of Lat(E∗) into Lat(T ∗)]s by

π(L) = [τ(⊥L)]⊥

for all L ∈ Lat(E∗). It follows from Lemmas 8 and 9 and the definition
of τ that ϕ : L 7−→ ⊥L is a bijection of Lat(E∗) onto Lat(E), that τ :
⊥L 7−→ τ(⊥L) is a bijection of Lat(E) onto [Lat(T )]s, and that ψ : τ(⊥L) 7−→
[τ(⊥L)]⊥ is a bijection of [Lat(T )]s onto [Lat(T ∗)]s. Therefore π : L 7−→
[τ(⊥L)]⊥ is a bijection of Lat(E∗) onto [Lat(T ∗)]s.

It is easy to see that for any L,H ∈ [Lat(E∗)]s, if L ⊂ H, then π(L) ⊂
π(H). Conversely, for any L,H ∈ [Lat(E∗)]s, if π(L) ⊂ π(H), then L ⊂
H(since E is reflexive). Consequently π is a two-sided order-preserving map.

Sufficiency: Since Lat(T ∗) is reflexive-rich, it follows from the necessity
that Lat(T ∗∗) is reflexive-rich. Consequently Lat(T ) is reflexive-rich. �
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