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DIFFERENTIAL TRANSCENDENCE OF A CLASS OF
GENERALIZED DIRICHLET SERIES

MASAAKI AMOU AND MASANORI KATSURADA

Abstract. We investigate differential transcendence properties for a
generalized Dirichlet series of the form

∑∞
n=0 anλ

−s
n . Our treatment of

this series is purely algebraic and does not rely on any analytic properties
of generalized Dirichlet series. We establish differential transcendence
theorems for a certain class of generalized Dirichlet series. These results
imply that the Hurwits zeta-function ζ(s, a) does not satisfy an algebraic
differential equation with complex coefficients.

1. Introduction and statement of results

Let λn (n ∈ N0 := {0, 1, 2, . . .}) be a strictly increasing sequence of positive
numbers which tends to infinity as n tends to infinity, and let an (n ∈ N0) be
an arbitrary sequence of complex numbers. We consider a series of the form

(1.1) f(s) =
∞∑
n=0

an
λsn
,

which is called a (formal) Dirichlet series. Here s is an abstract symbol (or
a complex variable if the series converges for some complex number s = s0).
Let a be a positive real parameter. The series

(1.2) ζ(s, a) =
∞∑
n=0

1
(n+ a)s

,

which is a particular case of (1.1), is called the Hurwitz zeta-function. Note
that ζ(s, 1) = ζ(s) is the Riemann zeta-function. The aim of the present
paper is to study the differential transcendence of a certain class of generalized
Dirichlet series, which includes the Hurwitz zeta-functions. Our main results
are stated at the end of this section. We emphasize that our arguments are
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purely algebraic and do not appeal to any analytic properties of generalized
Dirichlet series.

We denote by G the set of all generalized Dirichlet series. The complex
field C can be regarded as a subset of G by defining 1s = 1. Then the set
G forms an algebra over C under the following operations of addition and
multiplication (or convolution). For any elements f(s) =

∑∞
l=0 alλ

−s
l and

g(s) =
∑∞
m=0 bmµ

−s
m in G, let κn (n ∈ N0) be the strictly increasing sequence

consisting of all elements λl and µm (l,m ∈ N0), and let νn (n ∈ N0) be
the strictly increasing sequence consisting of all elements of the form λlµm
(l,m ∈ N0). Then the addition and the multiplication of f and g are defined
by

f(s) + g(s) =
∞∑
n=0

cnκ
−s
n , cn = a′n + b′n

and

f(s)g(s) =
∞∑
n=0

dnν
−s
n , dn =

∑
l,m∈N0
λlµm=νn

albm,

respectively, where a′n = ak if λk = κn for some k and a′n = 0 otherwise,
and b′n is defined analogously. Further, the derivative with respect to s of the
series f(s) given by (1.1) is defined by

f ′(s) =
∞∑
n=0

an(− log λn)
λsn

,

and for any j ∈ N the j-th derivative f (j)(s) is defined inductively as the j-th
iterate of the derivative.

Let r be a positive integer and let H be any subalgebra of G. A collection of
generalized Dirichlet series f1, . . . , fr is called differentially algebraically inde-
pendent over H if there are no nontrivial algebraic relations with coefficients
in H among the series f (j)

l (j = 0, 1, 2, . . . ; l = 1, 2, . . . , r). In particular, if
this condition holds in the case r = 1, the series f1 is said to be differentially
transcendental over H.

We define the (formal) Dirichlet series ring D, a subalgebra of G, as the set
of all series f ∈ G of the form f =

∑∞
n=1 ann

−s. Note that the Riemann zeta-
function ζ(s) belongs to this subalgebra. The study of differential algebraic
independence of elements of D has a long history, which dates back to a
problem of Hilbert posed at the International Congress of Mathematicians
held on 1902 (see Ostrowski [4]). Let A be the set of all arithmetic functions,
which forms a ring under the usual addition, subtraction and convolution. It
is readily seen that A is isomorphic to D through the homomorphism

A 3 a(n) 7−→
∞∑
n=1

a(n)n−s ∈ D.
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Popken [5] studied independence problems on the algebra A. More systematic
and thorough investigations of the structure of A (and hence D) have been
carried out by Shapiro [6], and Shapiro and Sparer [7]. Laohakosol [2] gave
a refinement of an independence criterion for arithmetic functions, due to
Popken [5], and proved certain differential independence results in quantitative
form for the elements of D.

A Dirichlet series f =
∑∞
n=1 ann

−s ∈ D is called a Dirichlet polynomial
if an = 0 for all sufficiently large n, and the subring of D consisting of all
Dirichlet polynomials is denoted by D0. One of the simplest results in this
direction is the following theorem (see, for e.g., [2, Theorem 4]).

Theorem A. Let f =
∑∞
n=1 ann

−s ∈ D be such that the set

{p prime : p divides some n with an 6= 0}

is an infinite set. Then f is differentially transcendental over C.

Let U = {un}n∈N be a sequence of complex numbers. The U -operation ∂U
on D is defined for f =

∑∞
n=1 ann

−s ∈ D by

(∂Uf)(s) =
∞∑
n=1

anun
ns

,

and for any j ∈ N, ∂jUf denotes the j-th iterate of the U -operation. We
note that ∂U becomes the derivative (with respect to s) when un = − log n.
Following an argument in [7], one can easily reformulate the statement of
Theorem A by using the U -operation and D0 instead of the derivative (with
respect to s) and C, respectively.

Theorem B. Let f =
∑∞
n=1 ann

−s ∈ D be such that the set

{p prime : p divides some n with an 6= 0}

is an infinite set. Let U = {un}n∈N be a sequence of complex numbers that
are pairwise distinct. Then, for any r ∈ N0, the series f, ∂Uf, ∂2

Uf, . . . , ∂
r
Uf

are algebraically independent over D0.

In the present paper we generalize Theorem A to a certain class of (formal)
generalized Dirichlet series, which includes a family of Hurwitz zeta functions
ζ(s, a).

Our first theorem implies the differential transcendence of ζ(s, a) for tran-
scendental a.

Theorem 1. Let f =
∑∞
n=0 anλ

−s
n be a generalized Dirichlet series such

that an 6= 0 for infinitely many n ∈ N0. Suppose that λn (n ∈ N0) and pn
(n ∈ N) are multiplicatively independent, where pn is the n-th prime number.
Then f is differentially transcendental over D0.
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Let K be an algebraic number field of finite degree, and let OK be the ring
of integers in K. For any α ∈ K we write N(α) = NormK/Q(α). Our second
theorem implies the differential transcendence of ζ(s, a) for algebraic a.

Theorem 2. Let f =
∑∞
n=0 anλ

−s
n be a generalized Dirichlet series which

satisfies the following four conditions:
(i) λn ∈ K for all n ∈ N0;
(ii) there exists a positive integer D such that Dλn ∈ OK for all n ∈ N0;
(iii) the sequence {|N(λn)|}n∈N0 is strictly increasing except for finitely

many initial terms;
(iv) if D is a positive integer satisfying (ii), the set

{p prime : p divides N(Dλn) for some n with an 6= 0}
is an infinite set.

Then f is differentially transcendental over D0.

We give two corollaries of the theorems. To state the first corollary, which
is a consequence of Theorem 2, we extend the notion of the norm to any
polynomial P (x) =

∑m
j=0 αjx

j ∈ K[X] by setting

(NormK/Q P )(x) :=
d∏
i=1

m∑
j=0

σi(αj)xj ,

where σ1, . . . , σd are the automorphisms from K into C.

Corollary 1. Let K be a real algebraic number field of finite degree over
Q, and let P (x) be a non-constant polynomial with coefficients in K such that
P (n) > 0 for all n ∈ N0. Let an (n ∈ N0) be a sequence of complex numbers
satisfying an 6= 0 for all sufficiently large n ∈ N0. Then the generalized
Dirichlet series

f(s) =
∞∑
n=0

an
P (n)s

is differentially transcendental over D0. If we suppose in addition that the
norm for P (x) contains a factor Q(x) ∈ Z[x] with at least two simple roots,
then the same conclusion holds under the weaker condition that an 6= 0 for
infinitely many n.

Remark. The formal series f(s) in Corollary 1 is, in fact, a generalized
Dirichlet series since the set {n′ ∈ N0 : P (n) = P (n′)} is a finite set for any
n ∈ N0.

If λn = n+a (n ∈ N0) with a positive real number a, we can apply Theorem
1 or Theorem 2 according as a is transcendental or algebraic, and then obtain
the following corollary.
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Corollary 2. Let a be a positive real number, and let an (n ∈ N0) be a
sequence of complex numbers satisfying an 6= 0 for infinitely many n. Then
the generalized Dirichlet series

(1.3) g(s) =
∞∑
n=0

an
(n+ a)s

is differentially transcendental over D0.

Remark. Let x be a real parameter. The Lerch zeta-function L(x, a, s) is
a particular case by (1.3), with the choice an = e2πinx. Using the universality
properties of Lerch zeta-functions, Garunkštis and Laurinčikas [1] recently
established the functional independence of L(x, a, s) when a is rational or
transcendental (see also the very recent work of Laurinčikas and Matsumoto
[3]). For instance, when a is transcendental, their result asserts that if Fm,
m = 0, 1, . . . , n, are continuous functions and for all s

n∑
m=0

smFm(L(x, a, s), L′(x, a, s), . . . , L(N−1)(x, a, s)) = 0,

then Fm ≡ 0 for m = 0, 1, . . . , n. Here N is an arbitrary positive integer, and
L(j)(x, a, s), j = 0, 1, . . . , N − 1, denotes the j-th derivative with respect to
the variable s.

The authors would like to thank Professor Ryotaro Okazaki who kindly
pointed out that condition (iii) in the original version of Theorem 2 was in-
sufficient. The authors are also indebted to the referee for valuable comments
and refinements of an earlier version of the present paper.

We prove Theorem 1 in the next section. Theorem 2 is proved in Section
3, and the final section is devoted to the proofs of the corollaries.

2. Proof of Theorem 1

In order to prove Theorem 1, we need a slight generalization of the Jacobian
criterion for algebraic independence of elements in D, due to Shapiro and
Sparer (see Theorem 3.1 of [7, Section 3]).

Let H be an arbitrary subalgebra of G. A derivation d over H is defined to
be a mapping from H into itself satisfying

d(f1f2) = d(f1)f2 + f1d(f2), d(c1f1 + c2f2) = c1d(f1) + c2d(f2)

for all f1 and f2 in H, and any complex constants c1 and c2. For any given
elements f1, f2, . . . , fr in H, the Jacobian of the fi relative to the di is defined
as the r × r determinant

J(f1, . . . , fr|d1, . . . , dr) = det(di(fj))1≤i,j≤r.
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Lemma 1. Let f1, . . . , fr be given elements in H, and let d1, . . . , dr be
derivations over H which annihilate all elements of a subring K of H. If
J(f1, . . . , fr|d1, . . . , dr) 6= 0, then the elements f1, . . . fr are algebraically in-
dependent over K.

Remark. The proof of [7, Theorem 3.1] remains valid if A and E in the
proof are replaced, as above, by H and K, respectively.

We proceed to the proof of Theorem 1. Let f =
∑∞
n=0 anλ

−s
n be a gener-

alized Dirichlet series satisfying the assumptions of Theorem 1. By removing
the subsequence of those numbers λn for which an = 0, we may suppose
without loss of generality that an 6= 0 for all n ∈ N0.

Let r be a nonnegative integer, and let P (X0, X1, . . . , Xr) be a nonzero
polynomial with coefficients in D0. We will show that

(2.1) P (f, f ′, f ′′, . . . , f (r)) 6= 0.

Set Sn = p−sn for n = 1, 2, 3, . . ., where pn denotes the n-th prime number.
Then there exists a positive integer l such that the coefficients of P belong to
C[S1, S2, . . . , Sl]. Let Tn = λ−sn (n ∈ N0) be the infinite sequence of variables.
Since λn (n ∈ N0) and pn (n ∈ N) are multiplicatively independent, the
numbers Tn (n ∈ N0) are algebraically independent over K = C[S1, S2, . . . , Sl].
The ring H = K[[Tn : n ∈ N0]] (⊂ G) can therefore be regarded as a formal
power series ring over K with Tn (n ∈ N0) as the variables. This allows
us to define, for any n ∈ N0, a derivation ∂n = ∂/∂Tn over H, which is
the usual differentiation with respect to Tn. We consider now the Jacobian
Jm = J(f, f ′, . . . , f (r)|∂m, ∂m+1, . . . , ∂m+r) for a positive integer m satisfying
λn > 1 for all n ≥ m. On writing bn = − log λn we have

Jm = det(∂m+i(f (j))0≤i,j≤r = det(am+ib
j
m+i)0≤i,j≤r

= am · · · am+r det(bjm+i)0≤i,j≤r 6= 0.

By Lemma 1, this implies the algebraic independence of f, f ′, . . . , f (r) over K,
and hence (2.1). The proof of Theorem 1 is therefore complete. �

3. Proof of Theorem 2

We first assume that λ0 > 1 and λn ∈ OK with |N(λn)| > 1 for all
n ∈ N0, and set Λ = {λn}n∈N0 . Before beginning the proof, we introduce
some notation.

Let I be the set of all finite non-decreasing sequences in N0 with the con-
vention that I includes the empty sequence ∅. For any I = (i1, i2, . . . , im) ∈ I
we define

τ(I) = τ(I; Λ) =
m∏
l=1

λil
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with the convention τ(∅) = 1. Then the following lemma follows immediately
form conditions (i), (ii) and (iii) of Theorem 2.

Lemma 2. For any I ∈ I and any n ∈ N we have:
(i) #{I ′ ∈ I : τ(I ′) = τ(I)} <∞;
(ii) #{(n′, I ′) ∈ N× I : n′τ(I ′) = nτ(I)} <∞;
(iii) #{(n′, I ′) ∈ N× I : |N(n′τ(I ′))| = |N(nτ(I))|} <∞.

We introduce an equivalence relation on the set I with respect to Λ as
follows. Let I and I ′ be elements of I. We say that I is equivalent to I ′ if
and only if τ(I) = τ(I ′) holds. The equivalence class of I is denoted by [I],
and the set of all equivalence classes by I/Λ. By (i) of Lemma 2 any series of
the form ∑

[I]∈I/Λ

a([I])
τ(I)s

(a([I]) ∈ C)

makes sense as an element of G, and the set of all such elements is denoted
by HΛ.

We now prove Theorem 2 under the assumption stated above. Let r be a
nonnegative integer, and let

P (X0, X1, . . . , Xr) =
∑

J=(j0,...,jr)∈J0

PJX
j0
0 X

j1
1 · · ·Xjr

r

be a nonzero element of D0[X0, X1, . . . , Xr], where

PJ =
m(J)∑
m=1

pJ(m)
ms

∈ D0 (m(J) ∈ N; pJ(m) ∈ C),

and J0 is a finite subset of J defined by

J = {J = (j0, j1, . . . , jr) : jl ∈ N0 (0 ≤ l ≤ r)}.
Then we show that

F := P (f, f ′, f ′′, . . . , f (r)) 6= 0.

For any J = (j0, j1, . . . , jr) ∈ J one can represent f j0(f ′)j1 · · · (f (r))jr in the
form

f j0(f ′)j1 · · · (f (r))jr =
∑

[I]∈I/Λ

aJ([I])
τ(I)s

(aJ([I]) ∈ C),

and hence

F =
∑
J∈J0

m(J)∑
m=1

pJ(m)
ms

∑
[I]∈I/Λ

aJ([I])
τ(I)s

.

Let M be a positive integer such that M ≥ maxJ∈J0 m(J). Then by (ii) of
Lemma 2 we can consider the algebra

H := HΛ[m−s : m = 2, 3, . . . ,M ](⊂ G),
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whose elements are given by ∑
m,[I]

c(m, [I])
(mτ(I))s

,

where c(m, [I]) ∈ C and m is bounded. We define a map from H to D by

σ : H 3
∑
m,[I]

c(m, [I])
(mτ(I))s

7−→
∑
m,[I]

c(m, [I])
|N(mτ(I))|s

∈ D.

From (iii) of Lemma 2 and the multiplicativity of the norm it is seen that the
map σ is a well-defined homomorphism. The image σ(F ) is written as

∑
J∈J0

m(J)∑
m=1

pJ(m)
|N(m)|s

r∏
l=0

( ∞∑
n=0

an(− log λn)l

|N(λn)|s
)jl
.

The desired assertion therefore follows (under the assumption made at the
beginning of the section), since, by Theorem B, the series

∞∑
n=0

an(− log λn)l

|N(λn)|s
(l = 0, 1, . . . , r)

are algebraically independent over D0.
To show the assertion in the general case, suppose on the contrary that

P (f, f ′, . . . , f (r)) = 0

for some nonzero P (X0, X1, . . . , Xr) ∈ D0[X0, X1, . . . , Xr]. Let D be a pos-
itive integer such that Dλ0 > 1 and Dλn ∈ OK with |N(Dλn)| > 1 for all
n ∈ N0, and define

g(s) =
∞∑
n=0

an
(Dλn)s

.

It follows from the preceding argument that g(s) is differentially transcenden-
tal over D0. Since f(s) = (1/D)−sg(s), we have

f (j)(s) =
j∑

k=0

(
j

k

)
(logD)k

(1/D)s
g(j−k)(s)

= (1/D)−s
j∑

k=0

(
j

k

)
(logD)kg(j−k)(s) (j = 0, 1, 2, . . .).

Hence the equality
(D−s)NP (f, f ′, . . . , f (r)) = 0

with a sufficiently large N ∈ N yields a differentially algebraic relation for
g(s) over D0, which is a contradiction. �
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4. Proof of the corollaries

Proof of Corollary 1. The sequence λn = P (n) (n ∈ N0) obviously satisfies
conditions (i)–(iii) of Theorem 2. Hence it remains to verify condition (iv).
Let D be a positive integer such that P̃ (x) := D(NormK/Q P )(x) ∈ Z[x].
Since N(λn) = (NormK/Q P )(n), to prove the first assertion of Corollary 1 we
need to show

lim sup
n→∞

P[P̃ (n)] = +∞,

where, for any integer N ≥ 2, P[N ] denotes the greatest prime factor of N .
This is clear if P̃ (x) does not have a constant term since n | P̃ (n). Thus
suppose c := P̃ (0) 6= 0. Given an arbitrarily large k ∈ N, let p1, . . . , pk be the
first k prime numbers. It is readily seen that P̃ (c(p1 · · · pk)l) with a sufficiently
large l ∈ N has a prime factor different from p1, . . . , pk, and this shows the
desired assertion.

Next we suppose, in addition, that NormK/Q P contains a factor Q(x) ∈
Z[x] with at least two simple roots. Then a result of Siegel [8] gives

lim
n→∞

P[Q(n)] = +∞,

which ensures that condition (iv) is fulfilled in this case. The second assertion
therefore follows, and the corollary is proved. �

Proof of Corollary 2. If a is transcendental or rational, then the assertion
directly follows from Theorem 1 or Theorem 2, respectively. When a is al-
gebraic but not rational, we can apply the second part of Corollary 1 with
P (x) = x+ a. This completes the proof. �

References
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