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COMPACTNESS ARGUMENTS FOR SPACES OF
p-INTEGRABLE FUNCTIONS WITH RESPECT TO A

VECTOR MEASURE AND FACTORIZATION OF
OPERATORS THROUGH LEBESGUE-BOCHNER SPACES

E.A. SÁNCHEZ PÉREZ

Abstract. If λ is a vector measure with values in a Banach space

and p > 1, we consider the space of real functions Lp(λ) that are p-
integrable with respect to λ. We define two different vector valued dual

topologies and we prove several compactness results for the unit ball of

Lp(λ). We apply these results to obtain new Grothendieck-Pietsch type
factorization theorems.

1. Introduction

The Grothendieck-Pietsch factorization theorem for p-summing operators
is a fundamental tool in the theory of Banach spaces. From a technical point
of view, the proof of this classical result is closely related to the weak* com-
pactness of the unit ball of the dual of a Banach space. The aim of this
paper is to apply similar arguments in order to obtain a factorization theorem
for operators defined on Köthe (Banach) function spaces through spaces of
Bochner integrable functions. We also use compactness properties (but with
respect to different topologies) of the unit ball of a particular class of Köthe
function spaces (spaces of p-integrable functions with respect to a vector mea-
sure). In a recent paper, A. Defant [5] proposed a general and unified point of
view for understanding the relation between vector-valued norm inequalities
and factorization properties of (homogeneous) operators on Köthe function
spaces in the context of the Maurey-Rosenthal theorem. In particular, De-
fant obtained several results on the factorization properties for operators on
spaces of Bochner integrable functions (see 4.4 in [5]). Although the subject
we consider here is closely related, our point of view is different, since we
restrict our attention to the particular case of factorizations through spaces
of p-integrable functions with respect to a vector measure. In this case the
spaces of Bochner integrable functions appear in a natural way.
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2. Preliminaries and notation

Let (Ω,Σ) be a measurable space, X a (real) Banach space and λ : Σ→ X a
countably additive vector measure. Following the definition of Bartle, Dunford
and Schwartz [1] and Lewis [12], we consider the space L1(λ) of (classes of) real
functions that are integrable with respect to λ. This space has been studied
by Kluvánek and Knowles [10], Okada [15], and Curbera ([4], [3] and [2]). In
this paper we use the same construction in order to define for real numbers
p > 1 the spaces Lp(λ) of real functions that are p-integrable with respect
to λ. In Section 2 we investigate several elementary lattice properties of the
spaces Lp(λ) in order to get an easy description of their dual spaces. Section
3 is devoted to proving topological properties of these spaces by means of a
new “vector-dual” space that can be defined using integration with respect to
vector measures. In Section 4 we apply these results to obtain our factorization
theorem.

Throughout this paper we will use several well-known results about general
Vector Measure Theory. The reader can find these results in the book of
Diestel and Uhl [8], and the results about Measure Theory in the book of
Halmos [9].

The notation for Banach spaces and vector measures is standard. A good
reference for general questions on this subject is the book of Wojtaszczyk
[19]. Aspects related to locally convex topologies can be found in [11]. For
p-absolutely summing operators we refer the reader to [18], [7] and [6].

If A ∈ Σ, we shall write χA for the characteristic function of A. Throughout
this paper every vector measure will be countably additive. If (Ω,Σ) is a
measurable space and λ : Σ→ X is a countably additive vector measure, the
semivariation of λ is the set function ‖λ‖(A) = sup {|〈λ, x′〉| (A) : x′ ∈ BX′},
where |〈λ, x′〉| is the variation of the scalar measure 〈λ, x′〉 and BX′ is the
closed unit ball of the dual space X ′ of X.

A measurable real function f defined on Ω is integrable with respect to λ
(λ-integrable for short) [12] if it is 〈λ, x′〉-integrable for each x′ ∈ X ′ and for
every A ∈ Σ there is an element

∫
A
f dλ of X such that〈∫

A

f dλ, x′
〉

=
∫
A

f d 〈λ, x′〉 , x′ ∈ X ′.

The Banach lattice L1(λ) coincides with the completion of the normed space
of equivalence classes of simple functions that are equal if the set where they
differ has zero semivariation with respect to the norm

‖f‖λ = sup
{∫

Ω

|f | d |〈λ, x′〉| : x′ ∈ BX′
}

(see [12] and [13]). The order in this lattice is the ‖λ‖-almost everywhere
order. The following norm is equivalent to the one defined above:

|‖f‖|λ = sup
A∈Σ

∥∥∥∥∫
A

f dλ

∥∥∥∥ , f ∈ L1(λ).
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In particular, |‖f‖|λ ≤ ‖f‖λ ≤ 2|‖f‖|λ.
If λ is a vector measure and f =

∑n
i=1 αiχAi is a Σ-simple function (where

{Ai} ⊂ Σ are pairwise disjoint sets), we define an integral operator by∫
Ω

f dλ =
n∑
i=1

αiλ(Ai).

This definition can be extended to all elements f of the space L1(λ). Various
properties of the integral operator f →

∫
Ω
f dλ have been studied by Okada

and Ricker in [16] and [17].
We extend the definition of L1(λ) to Lp(λ) as follows.

Definition 1. Let 1 < p < ∞ and let λ be a countably additive vector
measure. We say that a measurable real function f defined on Ω is p-integrable
with respect to λ if |f |p is λ-integrable.

A norm can be defined for the vector space of simple functions (more pre-
cisely, equivalence classes of functions that are equal ‖λ‖-a.e.) by

‖f‖p,λ = sup

{(∫
Ω

|f |p d |〈λ, x′〉|
)1/p

: x′ ∈ BX′
}
.

This norm is equivalent to the norm defined by

|‖f‖|p,λ = sup
A∈Σ

∥∥∥∥∫
A

|f |p dλ
∥∥∥∥1/p

.

Definition 2. Lp(λ) denotes the set of (equivalence classes of) p-integra-
ble functions with respect to λ, endowed with the topology given by the norm
‖ · ‖p,λ.

Remark 3. Note that, if p > 1, each function f ∈ Lp(λ) also belongs to
L1(λ). To verify this, let us define for a function f ∈ Lp(λ) the set E(f) =
{ω ∈ Ω : |f(ω)| ≤ 1}. It is clear that χE(f) ∈ L1(λ), and hence |f |p +χE(f) ∈
L1(λ). Since |f | ≤ |f |p + χE(f), it follows from the lattice property of L1(λ)
that f ∈ L1(λ).

We now establish several basic results on the lattice structure of the spaces
of p-integrable functions with respect to a vector measure. First we prove
that this set is indeed a Banach space.

Proposition 4. Let p ≥ 1 and λ be a vector measure. Then Lp(λ) is a
Banach space and the vector space consisting of (equivalence classes of) simple
functions is dense in it.

Proof. First we show that the simple functions are dense in Lp(λ). Of
course, every simple function is p-integrable with respect to λ. We will use
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the fact that this set is dense in L1(λ) (see [12]). If ε > 0 and f ∈ Lp(λ),
there is a simple function f0 such that

sup
x′∈BX′

(∫
Ω

||f |p − |f0|p| d |〈λ, x′〉|
)1/p

< ε.

A standard argument using the properties of the integrable functions with
respect to a scalar measure, the decomposition of f into its positive and
negative parts and the inequality |a − b|p ≤ |ap − bp| for every a, b ∈ [0,∞]
shows that there is a simple function f1 such that |f1|p = |f0|p and

sup
x′∈BX′

(∫
Ω

|f − f1|p d |〈λ, x′〉|
)1/p

< 2ε.

This means that the set of p-integrable functions is in the closure of the
normed space of simple functions with respect to the norm ‖ · ‖p,λ. Now we
show that the limit of each Cauchy sequence of p-integrable functions is also
p-integrable. Let (fn)∞n=1 be a Cauchy sequence in Lp(λ) and ε > 0. We
can suppose that ‖fn‖p,λ ≤ 1 for every n. For each n, consider the canonical
decomposition of the measurable function fn into its positive and negative
parts, fn = f+

n − f−n . It is clear that ‖f+
n ‖p,λ ≤ 1 and ‖f−n ‖p,λ ≤ 1 for every

n. Moreover, the definition of the norm ‖ · ‖p,λ implies that the sequences
(f+
n )∞n=1 and (f−n )∞n=1 are also Cauchy sequences, since |fn− fm| ≥ |f+

n − f+
m|

and |fn − fm| ≥ |f−n − f−m| pointwise. Choose a natural number n0 such that
for all n,m ≥ n0

sup
x′∈BX′

(∫
Ω

∣∣f+
n − f+

m

∣∣p d |〈λ, x′〉|)1/p

< ε.

Let x′0 ∈ BX′ and A ∈ Σ. Consider the scalar measure µ defined as
µ(B) = 〈λ(B), x′0〉 for each B ∈ Σ. Then there are positive measures µ1 and
µ2 such that µ(B) = µ1(B)− µ2(B) for each B ∈ Σ, and we get for i = 1, 2,

ε >

(∫
A

∣∣f+
n − f+

m

∣∣p d |〈λ, x′0〉|)1/p

≥
(∫

A

∣∣f+
n − f+

m

∣∣p dµi)1/p

≥

∣∣∣∣∣
(∫

A

|f+
n |p dµi

)1/p

−
(∫

A

|f+
m|p dµi

)1/p
∣∣∣∣∣

≥ 1
p

∣∣∣∣(∫
A

|f+
n |p dµi

)
−
(∫

A

|f+
m|p dµi

)∣∣∣∣ ,
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where the last inequality holds since |ap − bp| ≤ p|a − b| for all a, b ∈ [0, 1].
Then,

2pε >
∣∣∣∣(∫

A

|f+
n |p dµ1

)
−
(∫

A

|f+
m|p dµ1

)∣∣∣∣
+
∣∣∣∣(∫

A

|f+
m|p dµ2

)
−
(∫

A

|f+
n |p dµ2

)∣∣∣∣
≥
∣∣∣∣(∫

A

|f+
m|p d 〈λ, x′0〉

)
−
(∫

A

|f+
n |p d 〈λ, x′0〉

)∣∣∣∣
=
∣∣∣∣〈(∫

A

|f+
m|p dλ

)
−
(∫

A

|f+
n |p dλ

)
, x′0

〉∣∣∣∣ .
Thus, supA∈Σ

∥∥∫
A
|f+
m|p dλ−

∫
A
|f+
n |p dλ

∥∥ < 2pε, and
(
|f+
n |p
)∞
i=1

is a Cauchy
sequence in L1(λ). Since L1(λ) is a Banach space, there is a function h+

that is the limit of
(
|f+
n |p
)∞
i=1

in L1(λ). Moreover, we can suppose that h+

is a positive function. Let us define f+ := (h+)1/p. We can use the same
argument to find a limit h− of the sequence

(
|f−n |p

)∞
i=1

in L1(λ) and a function
f− := (h−)1/p. Consider the measurable function f := f+ − f−. It is clear
that f ∈ Lp(λ). Moreover, if we denote by λx′ the measures |〈λ, x′〉| for each
x′ ∈ X ′, we obtain for every n,

sup
x′∈BX′

(∫
Ω

∣∣∣∣f+
n

∣∣p − h+
∣∣ dλx′)1/p

+ sup
x′∈BX′

(∫
Ω

∣∣∣∣f−n ∣∣p − h−∣∣ dλx′)1/p

≥ sup
x′∈BX′

(∫
Ω

|f+
n − f+|p dλx′

)1/p

+ sup
x′∈BX′

(∫
Ω

|f−n − f−|p dλx′
)1/p

≥ sup
x′∈BX′

(∫
Ω

∣∣f+
n − f−n −

(
f+ − f−

)∣∣p dλx′)1/p

,

where we have used again the inequality |a − b|p ≤ |ap − bp| for every a, b ∈
[0,∞]. This shows that f ∈ Lp(λ) is the limit of the sequence (fn)∞n=1. �

Proposition 5. Let p ≥ 1. Then Lp(λ) is a Köthe function space.

Proof. Let µ be a control measure for λ (for instance, a Rybakov measure;
see IX.2 of [8]). We will show that Lp(λ) is a Köthe function space over µ (see
Def. 1.b.17 in [14]). Suppose that f is a µ-measurable function and g ∈ Lp(λ)
such that |f | ≤ |g| µ-a.e.. Then |g|p ∈ L1(λ). Since |f |p ≤ |g|p, we get
|f |p ∈ L1(λ) by applying Theorem 1 in [2]. Moreover,∫

Ω

|f |p d |〈λ, x′〉| ≤
∫

Ω

|g|p d |〈λ, x′〉|



912 E.A. SÁNCHEZ PÉREZ

for every x′ ∈ X ′. This means that ‖f‖p,λ ≤ ‖g‖p,λ. For each A ∈ Σ, we have
χA ∈ Lp(λ), and ‖χA‖p,λ is equivalent to ‖λ‖p(A), as a consequence of the
equivalent expression for the norm given in Definition 1. �

Proposition 6. Let p ≥ 1. Then Lp(λ) is an order continuous Banach
lattice with weak order unit.

Proof. The following proof is similar to the proof of Theorem 1 in [2] but
we include it for the sake of completeness. Lp(λ) is a Banach lattice with the
natural order, i.e., the pointwise λ-a.e. order. We use the characterization of
order continuity given in 1.a.8 of [14]: a Banach lattice X is order continuous
if every increasing order bounded sequence is convergent in the norm topology
of X. Take such a sequence (fn)∞n=1 in Lp(λ). We can suppose that 0 ≤ fn ≤
fn+1 ≤ g, where g ∈ Lp(λ). Let us define f(ω) = supn fn(ω), for ω ∈ Ω. On
the one hand, for each x′ ∈ X ′, (fn)∞n=1 is order bounded (as g ∈ Lp(|〈λ, x′〉|),
and thus f ∈ Lp(|〈λ, x′〉|), since Lp(|〈λ, x′〉|) is order continuous. On the other
hand, the measure Φ|g|p(A) =

∫
A
|g|p dλ is absolutely continuous with respect

to the semivariation ‖λ‖ (using the fact that a function f which is scalarly
integrable is integrable with respect to λ if and only if the measure Φf (A) =∫
A
f dλ is absolutely continuous with respect to ‖λ‖; see [13]). Therefore we

get ∥∥∥∥∫
A

|f |p dλ
∥∥∥∥ ≤ sup

{∫
A

|f |p d |〈x′, λ〉| : x′ ∈ BX′
}
≤
∥∥Φ|g|p

∥∥ (A).

This means that |f |p ∈ L1(λ), and thus f ∈ Lp(λ). It remains to check
that ‖fn − f‖p,λ → 0. Let ε > 0. Since the measure Φ|f−f1|p is absolutely
continuous with respect to µ (as shown in the proof of Proposition 5), there
is a δε > 0 such that if µ(A) < δε then Φ|f−f1|p(A) < ε. Egoroff’s Theorem
gives a subset A0 ∈ Σ such that µ(A0) < δε and the convergence of (fn)∞n=1 is
uniform in Ω−A0. Thus, if, for each x′ ∈ X, we denote by λx′ the measures
|〈λ, x′〉|, we can write

‖|fn − f |p‖λ = sup
x′∈BX′

∫
Ω

|fn − f |p dλx′

≤ sup
x′∈BX′

∫
Ω−A0

|fn − f |p dλx′ + sup
x′∈BX′

∫
A0

|f1 − f |p dλx′

≤ ε‖λ‖ (Ω−A0) +
∥∥Φ|f1−f |p

∥∥ (A0)

if n ≥ n0, where n0 only depends on ε. This gives the result.
Finally, let us show that χΩ is a weak order unit. An element e ≥ 0 of a

Banach lattice L is said to be a weak order unit of L if e ∧ x = 0 for x ∈ L
implies x = 0, where y ∧ z denotes the greatest lower bound for y, z ∈ L (see
[14]). Since Lp(λ) is an order continuous Banach lattice, it is σ-complete (see
Proposition 1.a.8 in [14]). The elements of Lp(λ) are functions, and the order
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is the pointwise order. Thus, the projection PχΩ associated to χΩ is defined
as the multiplication operator PχΩ(f) := χΩf . Then χΩ is a weak order unit
since obviously χΩf = f for every f ∈ Lp(λ) (see p. 9 of [14]). �

The results of this section lead to an easy representation of the dual space
of Lp(λ). Let µ be a Rybakov measure for λ. As in the case of L1(λ) (see
Theorem 1.b.14 in [14], [13], [15] or Proposition 1.1 in [16]), we can obtain the
dual space (Lp(λ))′ as the Köthe function space of µ-measurable functions h
that satisfy

sup
‖g‖p,λ≤1

∣∣∣∣∫
Ω

gh dµ

∣∣∣∣ <∞.
This expression defines a norm for the dual space, and the duality is given by
〈g, h〉 =

∫
Ω
gh dµ (see Lemma 1 in [5]).

3. Vector measure duality and compactness arguments

Let p > 1. We denote by p′ the real number that satisfies 1/p + 1/p′ = 1.
If λ is a vector measure, let us fix a function f ∈ Lp′(λ). This function
defines a linear map f̃ : Lp(λ) → X via the expression f̃ : g →

∫
Ω
fg dλ, for

g ∈ Lp(λ). Indeed, the following inequalities and the density of the simple
functions in Lp(λ)-spaces (Proposition 4) show that this map is well-defined
and continuous. In particular, it is easy to see that the product fg gives an
integrable function with respect to λ. Moreover, the multiplication map may
be defined (and is also continuous) with images in L1(λ). For a simple function
g, the required inequality (via Hölder’s inequality for scalar measures) is∥∥∥∥∫

A

fg dλ

∥∥∥∥≤ sup
x′∈BX′

∣∣∣∣∫
Ω

|fg| d |〈λ, x′〉|
∣∣∣∣

≤

(
sup

x′∈BX′

∣∣∣∣∫
Ω

|g|pd |〈λ, x′〉|
∣∣∣∣1/p

)
·

(
sup

x′∈BX′

∣∣∣∣∫
Ω

|f |p
′
d |〈λ, x′〉|

∣∣∣∣1/p′
)
,

for each A ∈ Σ. These operators may be used in order to define a “vector
valued duality” between the spaces Lp(λ) and Lp′(λ).

Definition 7. Let µ be a (finite) control measure for a vector measure λ
and let L be a Köthe function space on (Ω,Σ, µ). Consider the (linear) space
L0(µ) of (equivalence classes of µ-a.e.) simple functions f that satisfy:

(1) The function fg is integrable with respect to λ for each g ∈ L.
(2) The norm ‖f‖Lλ = sup‖g‖L≤1 ‖fg‖λ is finite.

We define the Banach space Lλ of µ-measurable functions as the completion
of the space L0(µ) with respect to the norm given in (2). The same expression
can be used for every f ∈ Lλ.
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Using the equivalent formula |‖ · ‖|λ for the norm of L1(λ) (see Section 2)
we see that the following norm is equivalent to the norm of Lλ defined above:

|‖f‖|Lλ := sup
A∈Σ,‖g‖L≤1

∥∥∥∥∫
A

fg dλ

∥∥∥∥
X

.

Proposition 8. Let p > 1. Then (Lp(λ))λ = Lp′(λ).

Proof. The inequalities at the begining of this section give ‖f‖(Lp(λ))λ ≤
‖f‖p′,λ and the rest of the conditions needed to assure that Lp′(λ) ⊂ (Lp(λ))λ.
Now suppose that f ∈ Lp′(λ). Let us define the function

g =
fp
′−1

(‖f‖p′,λ)p
′/p
.

On the one hand, since p′ − 1 = p′/p,

‖g‖p,λ =
supx′∈BX′

(∫
Ω
|f |(p′−1)p d |〈λ, x′〉|

)1/p

supx′∈BX′
(∫
|f |p′ d |〈λ, x′〉|

)1/p = 1

On the other hand, we have

‖f‖(Lp(λ))λ ≥ ‖fg‖λ

= sup
x′∈BX′

∫
Ω

|f | |f |p′−1

supx′∈BX′
(∫
|f |p′ d |〈λ, x′〉|

)1/p d |〈λ, x′〉|
= sup
x′∈BX′

(∫
Ω

|f |p
′
d |〈λ, x′〉|

)1/p′

= ‖f‖p′,λ.

These inequalities and the density of the set of the simple functions in both
spaces give the result. �

In particular, if we call a Banach function space L λ-reflexive when (Lλ)λ =
L, then the spaces Lp(λ) are λ-reflexive for p > 1. We will use the descrip-
tion of Lp(λ) as (Lp(λ)λ)λ in the following section. However, the dual space
(Lp(λ))′ does not coincide with Lp′(λ), even in the case when the range of
λ is relatively compact. Of course, for each x′ ∈ X ′ there is an operator
Ix′ from Lp′(λ) to (Lp(λ))′ given by the formula 〈Ix′(f), g〉 :=

〈∫
Ω
fg dλ, x′

〉
.

Moreover, if h ∈ Lp′(|〈λ, x′〉|) then the expression ξh,x′ : g →
∫

Ω
hg d |〈λ, x′〉|

defines an element of (Lp(λ))′, since∣∣∣∣∫
Ω

hg d |〈λ, x′〉|
∣∣∣∣ ≤ (∫

Ω

|g|p d |〈λ, x′〉|
)1/p(∫

Ω

|h|p
′
d |〈λ, x′〉|

)1/p′

≤ K‖g‖p,λ.
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The case when x′0 defines a Rybakov measure for λ leads in this way to
a continuous inclusion of Lp′(λ) into (Lp(λ))′ via Lp(λ) � h → ξh,x′0 , since
the dual space of a Köthe function space can be represented by means of the
duality relation

∫
fgdµ for a Rybakov measure µ.

The following example shows that Lp′(λ) and (Lp(λ))′ are different spaces.
Let µ be the Lebesgue measure for Ω = [0,∞] and p > 1. Consider the vector
measure λ : Σ→ l2 given by λ(A) :=

∑∞
i=1

µ(A∩[i−1,i])
2i/2

ei, where {ei}∞i=1 defines
the canonical basis of l2. Take the element x′0 =

∑∞
i=1

1
2i/2

ei ∈ l2 and the

function f :=
∑∞
i=1

2i/p
′

i χ[i−1,i]. Then f belongs to Lp′(|〈λ, x′0〉|) ⊂ (Lp(λ))′,
since ∫

[0,∞]

|f |p
′
d |〈λ, x′0〉| =

∞∑
i=1

2i

ip′
· 1

2i
=
∞∑
i=1

1
ip′

<∞.

However, f is not an element of Lp′(λ). Let us show that |f |p′ is not
λ-integrable. Since l2 does not contain an isomorphic copy of c0, the λ-
integrability of |f |p′ is equivalent to its |〈λ, x′〉|-integrability, for each x′ ∈ X ′
(see Theorem 1 on p. 31 of [10]). Thus it is enough to find an element x′1 ∈ X ′

such that |f |p′ is not |〈λ, x′1〉|-integrable. Take the sequence x′1 =
∑∞
i=1

ip
′/p

2i/2
ei,

in which case x′1 is an element of l2. However, a direct calculation of the
integral of |f |p′ with respect to |〈λ, x′1〉| gives the series

∞∑
i=1

(
2i

ip′

)
· 1

2i/2
.
ip
′/p

2i/2
=
∞∑
i=1

ip
′/p−p′ =

∞∑
i=1

1
i
,

which does not converge. This means that∫
[0,∞]

|f |p
′
d |〈λ, x′1〉| =∞.

Thus, f is not an element of Lp′(λ).
The aim of the rest of this section is to obtain compactness results for the

unit ball of the spaces Lp(λ) endowed with a topology that is coarser than
the norm topology. In order to do this we define two locally convex topologies
for the spaces Lp(λ). Note that, for p > 1, Lp(λ) can also be represented
(isometrically) as (Lp′(λ))λ, as a consequence of Proposition 8. Then we can
use the equivalent norm |‖ · ‖|(Lp′ (λ))λ given after Definition 7 for the space
Lp(λ). From now on, we will use the norm |‖ · ‖|(Lp′ (λ))λ for the space Lp(λ),
and we will denote it briefly by ‖ · ‖Lp(λ). For simplicity of notation, the
definition of the unit ball BLp(λ) of Lp(λ) will also be with respect to this
norm. We will write Bp,λ for the unit ball defined by the usual norm ‖ · ‖p,λ.

Lemma 9. Let p > 1. Then

‖g‖Lp(λ) := |‖g‖|(Lp′ (λ))λ = sup
‖f‖p′,λ≤1

∥∥∥∥∫
Ω

fg dλ

∥∥∥∥ ,
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for every g ∈ Lp(λ). Thus the unit ball BLp(λ) of the space Lp(λ) (with respect
to this norm) can then be represented as

BLp(λ) =

{
g ∈ Lp(λ) : sup

‖f‖p′,λ≤1

∥∥∥∥∫
Ω

fg dλ

∥∥∥∥ ≤ 1

}
.

Proof. The result is a direct consequence of Proposition 8 and the definition
of the equivalent norm for the space Lp′(λ)λ given after Definition 7. The
lattice property of the space Lp′(λ) implies that ‖fχA‖p′,λ ≤ ‖f‖p′,λ for each
function f ∈ Lp′(λ) and A ∈ Σ. This means that

sup
A∈Σ,‖f‖p′,λ≤1

∥∥∥∥∫
A

fg dλ

∥∥∥∥
X

= sup
‖f‖p′,λ≤1

∥∥∥∥∫
A

fg dλ

∥∥∥∥
X

. �

Definition 10. Let p > 1 and consider the space Lp(λ). Given g0 ∈
Lp(λ), ε > 0, n ∈ N, and f1, f2, . . . , fn ∈ Lp′(λ), we define the set

ξε,f1,...,fn(g0) :=
{
g ∈ Lp(λ) :

∥∥∥∥∫
Ω

fi(g − g0) dλ
∥∥∥∥
X

< ε,∀i = 1, . . . , n
}
.

It is easy to see that a (Hausdorff) locally convex topology on Lp(λ) can be
defined if we consider the class of all the sets ξε,f1,...,fn(g0) for every g0 ∈ Lp(λ)
as a basis of neighbourhoods. We call this topology the λ-topology for the
space Lp(λ).

It is obvious that all the multiplication operators Tf : Lp(λ) → X defined
by Tf (g) =

∫
Ω
fg dλ, where f ∈ Lp′(λ), are continuous with respect to the

λ-topology.

Definition 11. Let p > 1. Given a function g0 ∈ Lp(λ), ε > 0, n ∈ N,
x′1, . . . , n

′
n ∈ X ′, and f1, f2, . . . , fn ∈ Lp′(λ), we define the set

ξε,f1,...,fn,x′1,...,x
′
n
(g0)

:=
{
g ∈ Lp(λ) :

∣∣∣∣〈∫
Ω

fi(g − g0) dλ, x′i

〉∣∣∣∣ < ε,∀i = 1, . . . , n
}
.

Then the λ-weak topology for the space Lp(λ) is the Hausdorff locally convex
topology which has as a basis of neighbourhoods the family of sets

ξε,f1,...,fn,x′1,...,x
′
n
(g0).

It is easy to see that the λ-topology is coarser than the norm topology and
finer than the λ-weak topology. The λ-weak topology is also coarser than the
weak topology of Lp(λ), as the following argument shows. Let f ∈ Lp′(λ) and
x′ ∈ X ′, and consider the continuous linear form φ(g) =

〈∫
Ω
fg dλ, x′

〉
. If µ

is a Rybakov measure for λ, then λ is absolutely continuous with respect to
µ, and so there is a Radon-Nikodym derivative f0 (depending on f and x′)
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for the scalar measure 〈λ(A), x′〉 =
∫
A
f0 dµ. Thus φ(g) =

∫
Ω
gff0 dµ and ff0

defines an element of (Lp(λ))′ since

sup
‖g‖p,λ≤1

∣∣∣∣∫
Ω

gff0 dµ

∣∣∣∣ = sup
‖g‖p,λ≤1

∣∣∣∣〈∫
Ω

gf dλ, x′
〉∣∣∣∣ ≤ ‖x′‖ · ‖f‖Lp′ (λ).

Proposition 12. The unit ball of the space Lp(λ) is closed for the λ-weak
topology, and thus for the λ-topology.

Proof. Let B̂λLp(λ) be the closure of BLp(λ) with respect to the λ-weak

topology. Suppose that BLp(λ) 6= B̂λLp(λ). Then there is a function g0 ∈
B̂λLp(λ) − BLp(λ), and hence a δ > 0 such that ‖g0‖Lp(λ) > 1 + δ. Thus
there exists a function f0 ∈ Bp′,λ and a norm one element x′0 ∈ X ′ such
that

∣∣〈∫
Ω
g0f0 dλ, x

′
0

〉∣∣ > 1 + δ. On the other hand, since B̂λLp(λ) is closed
for the λ-weak topology, there exists a sequence (gn)∞n=1 ⊂ BLp(λ) such that∣∣〈∫

Ω
f0(g0 − gn) dλ, x′0

〉∣∣ < 1/n for every natural number n. But

1
n
>

∣∣∣∣〈∫
Ω

f0g0 dλ−
∫

Ω

f0gn dλ, x
′
0

〉∣∣∣∣
≥
∣∣∣∣∣∣∣∣〈∫

Ω

f0g0 dλ, x
′
0

〉∣∣∣∣− ∣∣∣∣〈∫
Ω

f0gn dλ, x
′
0

〉∣∣∣∣∣∣∣∣ > 1 + δ − ‖gn‖Lp(λ) ≥ δ,

and we get a contradiction. �

Proposition 13. The unit ball BLp(λ) is compact for the λ-weak topology.

Proof. The proof follows the lines of the classical proof of Alaoglu’s the-
orem. For each x′ ∈ X ′, consider the product space Sx′ := Πf∈Lp′ (λ)Bx′,f ,
where

Bx′,f =
{〈∫

Ω

fg dλ, x′
〉

: g ∈ BLp(λ)

}
⊂ R.

These sets are compact, since
〈∫

Ω
f(·) dλ, x′

〉
defines a linear form in Lp(λ).

Thus, the product space Sx′ is compact as a consequence of Tychonov’s The-
orem. Now consider the product space Πx′∈X′Sx′ . Another application of
Tychonov’s Theorem gives the compactness of this topological space. We can
identify the elements g ∈ BLp(λ) via their coordinates

〈∫
Ω
fg dλ, x′

〉
as ele-

ments of the product space. The definition of the λ-weak topology makes it
clear that it coincides with the product topology in the topological subspace
of the product defined by BLp(λ). Then the closure of BLp(λ) in this topology
is compact. Proposition 12 then yields the desired conclusion. �

We are interested in the case when the unit ball is also compact for the
λ-topology. This is not true in general, as shown by the following example.
Consider the measure space (Σ, [0, 1], µ), where Σ is the σ-algebra of Borel
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subsets and µ is the Lebesgue measure, and the vector measure of bounded
variation λ : Σ → L1(µ) given by λ(A) = χA. The range rg(λ) of λ is closed
but not compact (see p. 261 of [8]). If p > 1, a direct calculation shows that in
this case Lp′(λ) = Lp′(µ), and the λ-topology is finer than the weak topology.
However, BLp(λ) is not a compact set for the λ-topology as this would imply
that the range of the vector measure λ is compact. Indeed, if f is a function
in Lp′(λ), then the integral map Tf : Lp(λ) → X given by Tf (g) :=

∫
fg dλ

is obviously continuous for the λ-topology. We also have that χ[0,1] ∈ BLp′ (λ)

and, for each A ∈ Σ, ‖χA‖p,λ ≤ 1. Then if BLp(λ) is λ-compact the set
Bχ[0,1] =

{∫
Ω
g dλ ∈ L1(µ) : g ∈ BLp(λ)

}
would also be compact. In fact, in

this case Lp(λ) coincides with Lp(µ).
The following theorem characterizes the situation when the unit ball is

compact for the λ-topology in terms of the different topologies we have defined
for Lp(λ).

Theorem 14. Let p > 1 and λ be a vector measure. The following are
equivalent.

(1) The unit ball BLp(λ) is compact for the λ-topology.
(2) For each f ∈ Lp′(λ), the operator g → Tf (g) =

∫
Ω
fg dλ, from Lp(λ)

into X, is compact.
(3) The λ-topology coincides with the λ-weak topology.

Proof. First we show the equivalence of (1) and (2). We apply the same
argument that we used to prove Proposition 13. Consider the product space
Πf∈Lp′ (λ)B̂f , where, for f ∈ Lp′(λ), B̂f is the closure in X of the set

Bf :=
{∫

fg dλ ∈ X : g ∈ BLp(λ)

}
.

We can identify the element g ∈ BLp(λ) with its coordinates (
∫

Ω
fg dλ)f∈Lp′ (λ)

as elements of the product space. This space is compact, by Tychonov’s
Theorem. From the definition of the λ-topology it is clear that this topology
is exactly the product topology when restricted to the topological subspace
BLp(λ). Since the latter space is closed, it is compact.

The converse is obvious (since each X-valued, linear function
∫

Ω
f(·) dλ is

continuous for the λ-topology).
Now we prove the equivalence of (1) and (3). Clearly (3) implies (1) since

BLp(λ) is compact for the λ-weak topology. To see the converse, we will use
the following property, which is easily proved: if B is a compact subset (for
the norm topology) of a Banach space, then for each ε > 0 there is a finite
number of norm one linear functionals x′i ∈ X ′, i = 1, . . . , n such that, for
each x ∈ B, there is a number i ∈ {1, . . . , n} satisfying that ‖x‖ ≤ |〈x, x′i〉|+ε.
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Let

ξε,f1,...,fn(0) :=
{
g ∈ Lp(λ) :

∥∥∥∥∫
Ω

fig dλ

∥∥∥∥
X

< ε, ∀i = 1, . . . , n
}

(where fi ∈ Lp′(λ) for i = 1, . . . , n) be a basic neighbourhood of 0 ∈ BLp(λ) for
the λ-topology. Then we just need to find a neighbourhood of 0 for the λ-weak
topology V such that V ⊂ ξε,f1,...,fn(0). Take i0 ∈ {1, . . . , n}, and consider
the set Ai0 :=

{∫
Ω
fi0g dλ : g ∈ BLp(λ)

}
. This set is well-defined and bounded

(see Lemma 9). Moreover, it is a compact set in X, and so we can find finitely
many elements x′1, . . . , x

′
m of the dual space X ′ satisfying the above property

for ε/2. Thus, for each g ∈ BLp(λ), there is an index j ∈ {1, . . . ,m} such that∥∥∫ fi0g dλ∥∥ ≤ ε/2 +
∣∣〈∫

Ω
fi0g dλ, x

′
j

〉∣∣. Therefore, the λ-weak neighbourhood
of 0 defined by

Vi0 :=
⋂

j=1,...,m

{
g ∈ BLp(λ) :

∣∣∣∣〈∫ fi0g dµ, x
′
j

〉∣∣∣∣ < ε

2

}
is contained in the λ-neighbourhood ξε,fi0 (0). Since

ξε,f1,...,fn(0) =
⋂

i=1,...,n

ξε,fi(0),

we see that V =
⋂

i0=1,...,n

Vi0 is the desired λ-weak neighbourhood. �

Definition 15. A vector measure λ satisfying any one of the conditions
of Theorem 14 will be called p-compact.

If Lp(λ) is a reflexive space, then λ is a p-compact vector measure if and
only if the λ topology is coarser than the weak topology. This is a direct
consequence of Theorem 14 and the fact that the weak topology is finer than
the λ-weak topology.

4. Factorizations through spaces of Bochner integrable functions

In this section we apply the above results to obtain our factorization theo-
rem for Köthe function spaces. First we show how we can use the results for
operators defined in the spaces Lp(λ).

Lemma 16. Let p > 1 and q ≥ 1, and let λ be an X-valued p′-compact
vector measure. Let Y be a Banach space and T a continuous linear operator
T : Lp(λ)→ Y . Then the following statements are equivalent:

(1) There is a constant K such that, for each finite sequence (gi)ni=1 ⊂
Lp(λ), we have(

n∑
i=1

‖T (gi)‖qY

)1/q

≤ K sup
‖f‖L

p′ (λ)≤1

(
n∑
i=1

∥∥∥∥∫
Ω

gif dλ

∥∥∥∥q
X

)1/q

.



920 E.A. SÁNCHEZ PÉREZ

(2) There is a constant K and a regular probability measure µ0 defined
on the Borel sets of BLp′ (λ) such that, for every g ∈ Lp(λ),

‖T (g)‖Y ≤ K

(∫
BL

p′ (λ)

∥∥∥∥∫
Ω

fg dλ

∥∥∥∥q
X

dµ0(f)

)1/q

.

Proof. First we give an easy proof of the implication (2)⇒ (1). Let (gi)ni=1

be a finite sequence of functions in Lp(λ). Then
n∑
i=1

‖T (gi)‖qY ≤ K
q

∫
BL

p′ (λ)

n∑
i=1

∥∥∥∥∫
Ω

fgi dλ

∥∥∥∥q
X

dµ0(f)

≤ Kq sup
f∈BL

p′ (λ)

(
n∑
i=1

∥∥∥∥∫
Ω

fgi dλ

∥∥∥∥q
X

)
.

For the converse, we use a classical separation argument based on Ky Fan’s
Lemma (see [18] or [7]). Consider the topological space BLp′ (λ) endowed with
the λ-topology, and the space M(BLp′ (λ)) of regular Borel measures. Riesz’
Theorem states that this space is the dual of the space of continuous func-
tions C(BLp′ (λ)). Consider the subset P (BLp′ (λ)) ⊂M(BLp′ (λ)) of probability
measures. This is a convex set which is compact if we endow M(BLp′ (λ)) with
its weak* topology. In this context, we need to define an appropriate set of
functions N on P (BLp′ (λ)) satisfying the properties that are required to ap-
ply Ky Fan’s Lemma (see p. 190 of [7]). For each finite sequence (gi)ni=1 from
Lp(λ) we can define a function µ→ Φg1,...,gn(µ), for µ ∈M(BLp′ (λ)), by

Φg1,...,gn(µ) :=
n∑
i=1

‖T (gi)‖qY −K
q

∫
BL

p′ (λ)

n∑
i=1

∥∥∥∥∫
Ω

fgi dλ

∥∥∥∥q
X

dµ(f).

We define N to be the set of all such functions. Then we have:
(a) Each function Φg1,...,gn(·) is clearly convex, and continuous in the weak*

topology of M
(
BLp′ (λ)

)
, since for each g ∈ Lp(λ) the function Ψg(f) :=∥∥∫

Ω
fg dλ

∥∥q belongs to C
(
BLp′ (λ)

)
.

(b) A direct calculation shows that each convex combination of two func-
tions from N gives another function in N (see, for example, p. 192 of [7]).

(c) Consider a function Φg1,...,gn(·) ∈ N . Assumption (1), the compactness
of BLp′ (λ) and the continuity of the functions Ψg of (a) give a function f0 ∈
BLp′ (λ) such that

n∑
i=1

‖T (gi)‖qY −K
q

n∑
i=1

∥∥∥∥∫
Ω

f0gi dλ

∥∥∥∥q
X

≤ 0.

Then the discrete measure δf0 satisfies Φg1,...,gn

(
δf0

)
≤ 0. An application of

Ky Fan’s Lemma gives the desired probability measure µ0. �
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Let Q be a Hausdorff compact topological space and let µ be a regular Borel
probability measure on Q. If X is Banach space, consider the space of X-
valued continuous functions C(Q,X) and the space Lp(Q,µ,X) of X-valued
Bochner µ-integrable functions. We write Ip for the natural inclusion map
Ip : C(Q,X) → Lp(Q,µ,X). It is well known that this map is continuous,
injective and ‖Ip‖ ≤ 1.

If we consider the space of continuous functions C
(
BLp′ (λ), X

)
the results

of Section 3 make it clear that the map Id: Lp(λ) → C
(
BLp′ (λ), X

)
defined

as Id(g) :=
∫
g(·) dλ is an isometry. Thus we can identify Lp(λ) with the

subspace Id(Lp(λ)).
The following theorem is just the “factorization form” of the above lemma.

Theorem 17. Let p > 1 and q ≥ 1, and λ be an X-valued p′-compact
vector measure. Let T : Lp(λ)→ Y be a continuous linear operator satisfying
(1) of Lemma 16. Then there is a probability measure µ0 ∈M

(
BLp′ (λ)

)
such

that T factorizes as follows:

G ⊂ C(BLp′ , X)

Lp(λ)

Id

?

T1

-
Iq

Iq(G) ⊂ Lq(BLp′ , µ0, X)

Y-
T

6

where G and Iq(G) are the subspaces of C
(
BLp′ (λ), X

)
and Lq

(
BLp′ (λ), µ0, X

)
,

respectively, defined by the functions of Lp(λ).

Proof. The map Id: Lp(λ)→ C
(
BLp′ (λ), X

)
is a continuous operator, and

its image G := Id(Lp(λ) is closed. Consider the Bochner space Lq
(
BLp′ (λ), µ0,

X
)
, where µ0 is a probability measure given by Lemma 16. The restriction

of the inclusion Iq to the subspace G is also continuous. Finally, the oper-
ator T1 defined by T1(g) := T (g) for the functions g ∈ Iq(G) is also well
defined (as both Id and Iq are injective) and continuous, since ‖T (g)‖qY ≤
Kq
∫
BL

p′ (λ)

∥∥∫
Ω
fg dλ

∥∥q
X
dµ0(f). �

The converse is also true; i.e., if we have such a factorization, then the op-
erator T satisfies (1) of Lemma 16. In fact, as for the case of q-absolutely sum-
ming operators, the canonical map satisfying this condition is Iq : C

(
BLp′ (λ),

X
)
→ Lq

(
BLp′ (λ), µ0, X

)
, and the Ideal Property is obviously true for the

factorization scheme of the theorem.
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We conclude this paper with a natural extension of the above results to op-
erators defined on Köthe function spaces. The condition we need is a previous
canonical factorization through a space Lp(λ).

Definition 18. Let L be a Köthe function space over (Ω,Σ, µ), Y a
Banach space, and p > 1. Let λ : Σ → X be a µ-continuous vector measure.
We say that an operator T : L→ Y is (λ, p)-representable if

(1) the natural map I(λ,p) : L → Lp(λ), given by I(λ,p)(g) := g, is well-
defined, continuous, and has dense range, and

(2) there is an operator T1 : Lp(λ)→ Y such that T1oI(λ,p) = T .

Corollary 19. Let L be a Köthe function space over (Ω,Σ, µ), Y a
Banach space, q ≥ 1 and p > 1. Let λ : Σ → X be a p′-compact vector
measure. If T : L → Y is a (λ, p)-representable operator, then the following
are equivalent.

(1) There is a constant K such that, for each finite sequence (gi)ni=1 ⊂ L,(
n∑
i=1

‖Tgi‖qY

)1/q

≤ K sup
‖f‖L

p′ (λ)≤1

(
n∑
i=1

∥∥∥∥∫
Ω

gif dλ

∥∥∥∥q
X

)1/q

.

(2) If G is the subspace I(λ,p)(L), then there is a probability measure µ0

such that the operator T factorizes as follows:

G ⊂ C(BLp′ , X)

L

I(λ,p)

?
-

Iq
Iq(G) ⊂ Lq(BLp′ , µ0, X)

Y

A

-T

6

An obvious example of this result is the Grothendieck-Pietsch factorization
theorem for p-summing operators on Lp spaces. For a finite positive measure
µ every operator defined on Lp(µ) is obviously (µ, p)-representable by consid-
ering the factorization through the same Lp(µ). We have just shown that this
is also true for spaces Lp(λ), where λ has range in a finite dimensional space.
In this case λ is obviously p′-compact, and the (λ, p)-representability of the
operator T can be easily checked.
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