ABSOLUTE CONTINUITY OF PERIODIC SCHRÖDINGER OPERATORS WITH POTENTIALS IN THE KATO CLASS

ZHONGWEI SHEN

Abstract

We consider the Schrödinger operator $-\Delta+V$ in \mathbb{R}^{d} with periodic potential V in the Kato class. We show that, if $d=2$ or $d=3$, the spectrum of $-\Delta+V$ is purely absolutely continuous.

1. Introduction

Let V be a real valued measurable function on $\mathbb{R}^{d}, d \geq 2$. V is said to belong to the Kato class K_{d} if

$$
\begin{align*}
& \lim _{r \rightarrow 0} \sup _{\mathbf{x} \in \mathbb{R}^{d}} \int_{|\mathbf{y}-\mathbf{x}| \leq r} \frac{|V(\mathbf{y})| d \mathbf{y}}{|\mathbf{y}-\mathbf{x}|^{d-2}}=0, \quad \text { for } d \geq 3 \tag{1.1}\\
& \lim _{r \rightarrow 0} \sup _{\mathbf{x} \in \mathbb{R}^{d}} \int_{|\mathbf{y}-\mathbf{x}| \leq r}|V(\mathbf{y})| \ln \left\{|\mathbf{y}-\mathbf{x}|^{-1}\right\} d \mathbf{y}=0, \quad \text { for } d=2 \tag{1.2}
\end{align*}
$$

It is well known that, if $V \in K_{d}$, then the quadratic form associated with $-\Delta+V$ defines a unique self-adjoint operator which we also denote by $-\Delta+V$ [7]. We refer the reader to [18] for the naturalness of the Kato class in the study of L^{p} properties of the semigroup $e^{-t(-\Delta+V)}$. The purpose of this paper is to show that, if $d=2$ or $d=3$ and $V \in K_{d}$ is a real periodic function on \mathbb{R}^{d}, then the spectrum of $-\Delta+V$ is purely absolutely continuous.

Main Theorem. Let $A=\left(a_{j k}\right)_{d \times d}$ be a symmetric, positive-definite matrix with real constant entries. Let $V \in K_{d}$ be a real periodic function on \mathbb{R}^{d}. If $d=2$ or $d=3$, then the spectrum of operator $D A D^{T}+V$ is purely absolutely continuous where $D=-i \nabla$ and $D A D^{T}=\sum_{j, k} D_{j} a_{j k} D_{k}$.

A few remarks are in order.
REmARK 1.3. For a Schrödinger operator $-\Delta+V$ with periodic potential V, the absolute continuity of the spectrum was first established by

[^0]L. Thomas [21] in \mathbb{R}^{3} under the assumption $V \in L_{\text {loc }}^{2}\left(\mathbb{R}^{3}\right)$. Thomas' result was subsequently extended to \mathbb{R}^{d} by M. Reed and B. Simon [13] under the assumption $V \in L_{\mathrm{loc}}^{r}\left(\mathbb{R}^{d}\right)$, where $r>d-1$ if $d \geq 4$ and $r=2$ if $d=2$ or $d=3$. In [4] L. Danilov applied the approach of Thomas to the Dirac operator with a periodic potential. Recently, the absolute continuity of the magnetic Schrödinger operator $(-i \nabla-\mathbf{A}(\mathbf{x}))^{2}+V(\mathbf{x})$ with periodic potentials \mathbf{A} and V was investigated by R. Hempel and I. Herbst [5], [6], M. Birman and T. Suslina [1], [2], [3], A. Morame [12], and A. Sobolev [19]. In particular, the results in [2] and [3], pertaining to the case $-\Delta+V$, give the absolute continuity for $V \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{d}\right)$, where $p>1$ if $d=2, p=d / 2$ if $d=3$ or $d=4$, and $p=d-2$ if $d \geq 5$. In [16], the author established the absolute continuity of $-\Delta+V$ under the condition $V \in L_{\text {loc }}^{d / 2}\left(\mathbb{R}^{d}\right), d \geq 3$. This is best possible in the context of the L^{p} spaces, in the sense that, under the periodicity condition, $L_{\mathrm{loc}}^{d / 2}$ is the largest space for which the self-adjoint operator $-\Delta+V$ may be defined by a quadratic form. The case $V \in$ weak- $L^{d / 2}$ was also studied in [16].

Remark 1.4. In [17] the author investigated the periodic Schrödinger operator $-\Delta+V$ with potential V in the Morrey-Campanato class. The author showed that, if $d \geq 3, p \in((d-1) / 2, d / 2$], and

$$
\begin{equation*}
\limsup _{r \rightarrow 0} \sup _{\mathbf{x} \in \Omega} r^{2}\left\{\frac{1}{r^{d}} \int_{|\mathbf{y}-\mathbf{x}| \leq r}|V(\mathbf{y})|^{p} d \mathbf{y}\right\}^{1 / p}<\varepsilon(p, d, \Omega) \tag{1.5}
\end{equation*}
$$

where $\varepsilon(p, d, \Omega)>0$ and Ω is a periodic cell for V, then $-\Delta+V$ has purely absolutely continuous spectrum. This improves the $L^{d / 2}$ and weak- $L^{d / 2}$ results in [16]. We point out that the Kato class considered in this paper is not comparable with the Morrey-Campanato class for $d \geq 3$ and $p>1$. Indeed, one can construct a periodic potential V in \mathbb{R}^{3} such that

$$
\begin{equation*}
|V(x)| \sim \frac{1}{\left|\mathbf{x}^{\prime}\right|^{2}\left|\ln \left(\left|\mathbf{x}^{\prime}\right|\right)\right|^{\delta}} \quad \text { as } \quad|\mathbf{x}| \rightarrow 0 \tag{1.6}
\end{equation*}
$$

where $\mathbf{x}^{\prime}=\left(x_{2}, x_{3}\right)$. Then $V \in K_{3}$ if $\delta>2$, but V does not satisfy (1.5) since $V \notin L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{3}\right)$ for any $p>1$. On the other hand, if

$$
\begin{equation*}
|V(\mathbf{x})| \sim \frac{1}{|\mathbf{x}|^{2}|\ln (|\mathbf{x}|)|^{\delta}} \quad \text { as } \quad|\mathbf{x}| \rightarrow 0 \tag{1.7}
\end{equation*}
$$

then V satisfies (1.5) for $1<p<3 / 2$, if $\delta>0$. However, $V \in K_{3}$ if and only if $\delta>1$. Clearly, in the two-dimensional case, our result improves the $L^{p}(p>1)$ result in [2].

REMARK 1.8. By a change of coordinates, we may assume that V is periodic with respect to the lattice $(2 \pi \mathbb{Z})^{d}$.

Our main theorem is proved by using the approach of L. Thomas [21] and a new pointwise estimate on the kernel function of a certain integral operator.

To be more precise, let $\Omega=[0,2 \pi)^{d} \approx \mathbb{R}^{d} /(2 \pi \mathbb{Z})^{d}=\mathbb{T}^{d}$. We consider a family of operators

$$
\begin{equation*}
\mathbb{H}_{V}(z \mathbf{a}+\mathbf{b})=(\mathbf{D}+z \mathbf{a}+\mathbf{b}) A(\mathbf{D}+z \mathbf{a}+\mathbf{b})^{T}+V, \quad z \in \mathbb{C} \tag{1.9}
\end{equation*}
$$

defined on $L^{2}\left(\mathbb{T}^{d}\right)$ with $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{d}$ fixed. Using the Floquet decomposition and Thomas' argument, we may reduce the main theorem to the problem of showing that the family of operators $\left\{\mathbb{H}_{V}(z \mathbf{a}+\mathbf{b}): z \in \mathbb{C}\right\}$ has no common eigenvalues. To this end, we will show that, for some appropriately chosen $\mathbf{a} \in \mathbb{R}^{d}$,

$$
\begin{equation*}
\left\|\left\{\mathbb{H}_{V}(z \mathbf{a}+\mathbf{b})\right\}^{-1}\right\|_{L^{1}\left(\mathbb{T}^{d}\right) \rightarrow L^{1}\left(\mathbb{T}^{d}\right)} \rightarrow 0 \quad \text { as } \quad \rho \rightarrow \infty \tag{1.10}
\end{equation*}
$$

where $\langle\mathbf{b}, \mathbf{a}\rangle=0, z=\delta+i \rho$, and δ is some fixed number depending on a and b.

To prove (1.10), the key step is to show that

$$
\begin{align*}
& \left\|V\left\{\mathbb{H}_{0}(z \mathbf{a}+\mathbf{b})\right\}^{-1}\right\|_{L^{1}\left(\mathbb{T}^{d}\right) \rightarrow L^{1}\left(\mathbb{T}^{d}\right)} \tag{1.11}\\
& \quad \leq \begin{cases}C \sup _{\mathbf{x} \in \Omega} \int_{\Omega} \frac{|V(\mathbf{y})| d \mathbf{y}}{|\mathbf{y}-\mathbf{x}|}, & \text { if } d=3 \\
C \sup _{\mathbf{x} \in \Omega} \int_{\Omega}\{1+|\ln | \mathbf{x}-\mathbf{y}| |\}|V(\mathbf{y})| d \mathbf{y}, & \text { if } d=2\end{cases}
\end{align*}
$$

where $\mathbb{H}_{0}(z \mathbf{a}+\mathbf{b})=(\mathbf{D}+z \mathbf{a}+\mathbf{b}) A(\mathbf{D}+z \mathbf{a}+\mathbf{b})^{T}$. This will be done by establishing the following pointwise estimate on the kernel function $G_{\rho}(\mathbf{x}, \mathbf{y})$ of the operator $\left\{\mathbb{H}_{0}(z \mathbf{a}+\mathbf{b})\right\}^{-1}$:

$$
\left|G_{\rho}(\mathbf{x}, \mathbf{y})\right| \leq \begin{cases}\frac{C}{|\mathbf{x}-\mathbf{y}|}, & \text { if } d=3 \tag{1.12}\\ C\{1+|\ln | \mathbf{x}-\mathbf{y}| |\}, & \text { if } d=2\end{cases}
$$

This paper is organized as follows. In Sections 2 and 3 we prove the kernel function estimate (1.12), and in Section 4 we prove the Main Theorem.

Throughout the rest of this paper we assume that $d=2$ or $d=3$, and that $V \in K_{d}$ is periodic with respect to the lattice $(2 \pi \mathbb{Z})^{d}$. We use $\|\cdot\|_{p}$ to denote the norm in $L^{p}\left(\mathbb{T}^{d}\right)$. Finally we use C and c to denote positive constants, which may depend on the matrix A, and which are not necessarily the same at each occurrence.

2. Some preliminaries

We begin by choosing $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{R}^{d}$ such that

$$
\begin{equation*}
|\mathbf{a}|=1, \quad \mathbf{a} A=\left(s_{0}, 0, \cdots, 0\right), \quad s_{0}>0 \tag{2.1}
\end{equation*}
$$

For $\mathbf{b}=\left(b_{1}, \cdots, b_{d}\right) \in \mathbb{R}^{d}$ with $\langle\mathbf{b}, \mathbf{a}\rangle=0$ and $|\mathbf{b}| \leq \sqrt{d}$, let

$$
\begin{equation*}
\delta=\frac{1}{a_{1}}\left(\frac{1}{2}-b_{1}\right) \tag{2.2}
\end{equation*}
$$

Note that $a_{1}>0$ since $\mathbf{a} A \mathbf{a}^{T}=s_{0} a_{1}>0$. We consider the operator

$$
\begin{equation*}
\mathbb{H}_{0}(\mathbf{k})=(\mathbf{D}+\mathbf{k}) A(\mathbf{D}+\mathbf{k})^{T} \tag{2.3}
\end{equation*}
$$

defined on $L^{2}\left(\mathbb{T}^{d}\right)$, where

$$
\begin{equation*}
\mathbf{k}=(\delta+i \rho) \mathbf{a}+\mathbf{b} \quad \text { and } \quad \rho \geq 1 \tag{2.4}
\end{equation*}
$$

For $\psi \in L^{1}(\Omega)$, let

$$
\begin{equation*}
\hat{\psi}(\mathbf{n})=\frac{1}{(2 \pi)^{d}} \int_{\Omega} e^{-i\langle\mathbf{n}, \mathbf{y}\rangle} \psi(\mathbf{y}) d \mathbf{y} \tag{2.5}
\end{equation*}
$$

We may write

$$
\begin{equation*}
\left\{\mathbb{H}_{0}(\mathbf{k})\right\}^{-1} \psi(\mathbf{x})=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} \frac{\hat{\psi}(\mathbf{n}) e^{i\langle\mathbf{n}, \mathbf{x}\rangle}}{(\mathbf{n}+\mathbf{k}) A(\mathbf{n}+\mathbf{k})^{T}} \tag{2.6}
\end{equation*}
$$

for $\psi \in C^{\infty}\left(\mathbb{T}^{d}\right)$. Using (2.4) and (2.1), it is easy to see that

$$
\begin{align*}
(\mathbf{n}+\mathbf{k}) A(\mathbf{n}+\mathbf{k})^{T}= & (\mathbf{n}+\delta \mathbf{a}+\mathbf{b}) A(\mathbf{n}+\delta \mathbf{a}+\mathbf{b})^{T} \tag{2.7}\\
& -\rho^{2} s_{0} a_{1}+2 i \rho s_{0}\left(n_{1}+\delta a_{1}+b_{1}\right) .
\end{align*}
$$

By (2.2) we have

$$
\begin{aligned}
\left|(\mathbf{n}+\mathbf{k}) A(\mathbf{n}+\mathbf{k})^{T}\right| & \geq 2 \rho s_{0}\left|n_{1}+\delta a_{1}+b_{1}\right| \\
& =2 \rho s_{0}\left|n_{1}+\frac{1}{2}\right| \geq \rho s_{0}
\end{aligned}
$$

since n_{1} is an integer.
We now choose $\eta \in C^{\infty}\left(\mathbb{R}_{+}\right)$such that $\eta(r)=1$ if $r \geq s_{0}^{2}$, and $\eta(r)=0$ if $0<r<s_{0}^{2} / 2$. Then,

$$
\eta\left(\frac{\left|(\mathbf{n}+\mathbf{k}) A(\mathbf{n}+\mathbf{k})^{T}\right|^{2}}{\rho^{2}}\right)=1 \quad \text { for any } \mathbf{n} \in \mathbb{Z}^{d}
$$

It follows that

$$
\begin{align*}
\left\{\mathbb{H}_{0}(\mathbf{k})\right\}^{-1} \psi(\mathbf{x}) & =\sum_{\mathbf{n} \in \mathbb{Z}^{d}} \frac{e^{i\langle\mathbf{n}, \mathbf{x}\rangle} \hat{\psi}(\mathbf{n}) \eta\left(\left|(\mathbf{n}+\mathbf{k}) A(\mathbf{n}+\mathbf{k})^{T}\right|^{2} / \rho^{2}\right)}{(\mathbf{n}+\mathbf{k}) A(\mathbf{n}+\mathbf{k})^{T}} \tag{2.8}\\
& =\int_{\Omega} G_{\rho}(\mathbf{x}-\mathbf{y}) \psi(\mathbf{y}) d \mathbf{y}
\end{align*}
$$

where

$$
\begin{equation*}
G_{\rho}(\mathbf{x})=\frac{1}{(2 \pi)^{d}} \sum_{\mathbf{n} \in \mathbb{Z}^{d}} \frac{e^{i\langle\mathbf{n}, \mathbf{x}\rangle} \eta\left(\left|(\mathbf{n}+\mathbf{k}) A(\mathbf{n}+\mathbf{k})^{T}\right|^{2} / \rho^{2}\right)}{(\mathbf{n}+\mathbf{k}) A(\mathbf{n}+\mathbf{k})^{T}} \tag{2.9}
\end{equation*}
$$

Note that, by the Plancherel theorem, we have $G_{\rho} \in L^{2}(\Omega)$ if $d=2$ or $d=3$. Let
(2.10) $\varphi(\xi, \rho)=\xi A \xi^{T}-\rho^{2} s_{0} a_{1}+2 i \rho s_{0} \xi_{1}$, where $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right) \in \mathbb{R}^{d}$.

Then,

$$
\begin{equation*}
h_{\rho}(\xi)=\frac{\eta\left(|\varphi(\xi, \rho)|^{2} / \rho^{2}\right)}{\varphi(\xi, \rho)} \in L^{2}\left(\mathbb{R}^{d}\right) \tag{2.11}
\end{equation*}
$$

We denote its inverse Fourier transform by $F_{\rho}(\mathbf{x})$, i.e.,

$$
\begin{equation*}
F_{\rho}(\mathbf{x})=\left(h_{\rho}\right)^{\vee}(\mathbf{x})=\int_{\mathbb{R}^{d}} e^{i\langle\mathbf{x}, \xi\rangle} h_{\rho}(\xi) d \xi \tag{2.12}
\end{equation*}
$$

Using the fact that $(-\mathbf{x})^{\beta} F_{\rho}(\mathbf{x})$ is the inverse Fourier transform of $\mathbf{D}^{\beta} h_{\rho}(\xi)$, one sees that

$$
F_{\rho}(\mathbf{x})=O\left(\frac{1}{|\mathbf{x}|^{N}}\right) \quad \text { as }|\mathbf{x}| \rightarrow \infty
$$

for any $N \geq 1$. It follows that

$$
\begin{aligned}
& \frac{\eta\left(\left|(\mathbf{n}+\mathbf{k}) A(\mathbf{n}+\mathbf{k})^{T}\right|^{2} / \rho^{2}\right)}{(\mathbf{n}+\mathbf{k}) A(\mathbf{n}+\mathbf{k})^{T}}=\frac{\eta\left(|\varphi(\mathbf{n}+\delta \mathbf{a}+\mathbf{b}, \rho)|^{2} / \rho^{2}\right)}{\varphi(\mathbf{n}+\delta \mathbf{a}+\mathbf{b}, \rho)}=h_{\rho}(\mathbf{n}+\delta \mathbf{a}+\mathbf{b}) \\
& \quad=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{-i\langle\mathbf{n}+\delta \mathbf{a}+\mathbf{b}, \mathbf{x}\rangle} F_{\rho}(\mathbf{x}) d \mathbf{x} \\
& \quad=\frac{1}{(2 \pi)^{d}} \sum_{\mathbf{m} \in \mathbb{Z}^{d}} \int_{\Omega} e^{-i\langle\mathbf{n}+\delta \mathbf{a}+\mathbf{b}, \mathbf{x}+2 \pi \mathbf{m}\rangle} F_{\rho}(\mathbf{x}+2 \pi \mathbf{m}) d \mathbf{x} \\
& \quad=\frac{1}{(2 \pi)^{d}} \int_{\Omega} e^{-i\langle\mathbf{n}, \mathbf{x}\rangle} \sum_{\mathbf{m} \in \mathbb{Z}^{d}} e^{-i\langle\delta \mathbf{a}+\mathbf{b}, \mathbf{x}+2 \pi \mathbf{m}\rangle} F_{\rho}(\mathbf{x}+2 \pi \mathbf{m}) d \mathbf{x}
\end{aligned}
$$

In view of (2.9), this implies that

$$
\begin{equation*}
G_{\rho}(\mathbf{x})=\frac{1}{(2 \pi)^{d}} \sum_{\mathbf{m} \in \mathbb{Z}^{d}} e^{-i\langle\delta \mathbf{a}+\mathbf{b}, \mathbf{x}+2 \pi \mathbf{m}\rangle} F_{\rho}(\mathbf{x}+2 \pi \mathbf{m}) \tag{2.13}
\end{equation*}
$$

which is a form of Poisson summation formula [20]. In particular,

$$
\begin{equation*}
\left|G_{\rho}(\mathbf{x})\right| \leq \frac{1}{(2 \pi)^{d}} \sum_{\mathbf{n} \in \mathbb{Z}^{d}}\left|F_{\rho}(\mathbf{x}+2 \pi \mathbf{n})\right| \tag{2.14}
\end{equation*}
$$

To estimate the function $F_{\rho}(\mathbf{x})$, we first note that

$$
\varphi(\xi, \rho)=\rho^{2} \varphi(\xi / \rho, 1)
$$

and

$$
h_{\rho}(\xi)=\frac{\eta\left(\rho^{2}|\varphi(\xi / \rho, 1)|^{2}\right)}{\rho^{2} \varphi(\xi / \rho, 1)} .
$$

It follows that

$$
F_{\rho}(\mathbf{x})=\left(h_{\rho}\right)^{\vee}(\mathbf{x})=\rho^{d-2}\left(\frac{\eta\left(\rho^{2}|\varphi(\cdot, 1)|^{2}\right)}{\varphi(\cdot, 1)}\right)^{\vee}(\rho \mathbf{x})
$$

Let

$$
\begin{equation*}
f_{\rho}(\mathbf{x})=\left(\frac{\eta\left(\rho^{2}|\varphi(\cdot, 1)|^{2}\right)}{\varphi(\cdot, 1)}\right)^{\vee}(\mathbf{x}) \tag{2.15}
\end{equation*}
$$

Then,

$$
\begin{equation*}
F_{\rho}(\mathbf{x})=\rho^{d-2} f_{\rho}(\rho \mathbf{x}) \tag{2.16}
\end{equation*}
$$

Note that

$$
\begin{align*}
\varphi(\xi, 1) & =\sum_{j, k} a_{j k} \xi_{j} \xi_{k}-s_{0} a_{1}+2 i s_{0} \xi_{1}, \tag{2.17}\\
|\varphi(\xi, 1)|^{2} & =\left|\sum_{j, k} a_{j k} \xi_{j} \xi_{k}-s_{0} a_{1}\right|^{2}+4 s_{0}^{2} \xi_{1}^{2}
\end{align*}
$$

A direct computation yields the estimates

$$
\begin{align*}
\left|\frac{\partial^{\ell}}{\partial \xi_{j}^{\ell}}\left\{\frac{1}{\varphi(\xi, 1)}\right\}\right| & \leq \frac{C_{\ell}(1+|\xi|)^{\ell}}{|\varphi(\xi, 1)|^{\ell+1}}, \tag{2.18}\\
\left|\frac{\partial^{\ell}}{\partial \xi_{j}^{\ell}}\left\{\eta\left(\rho^{2}|\varphi(\xi, 1)|^{2}\right)\right\}\right| & \leq C_{\ell} \rho^{\ell} \tag{2.19}
\end{align*}
$$

for $\ell \geq 0$ and $j=1, \ldots, d$.
Lemma 2.20. Let $f_{\rho}(\mathbf{x})$ be defined by (2.15). Then, for any $\mathbf{x} \in \mathbb{R}^{d}$,

$$
\begin{array}{ll}
\left|f_{\rho}(\mathbf{x})\right| \leq \frac{C \rho^{3}}{|\mathbf{x}|^{4}}, & \text { if } d=3 \\
\left|f_{\rho}(\mathbf{x})\right| \leq \frac{C \rho^{4}}{|\mathbf{x}|^{4}}, & \text { if } d=2 \tag{2.22}
\end{array}
$$

Proof. Since $x_{j}^{4} f_{\rho}(\mathbf{x})$ is the inverse Fourier transform of

$$
\frac{\partial^{4}}{\partial \xi_{j}^{4}}\left\{\frac{\eta\left(\rho^{2}|\varphi(\xi, 1)|^{2}\right)}{\varphi(\xi, 1)}\right\}
$$

we have

$$
\begin{aligned}
\left|x_{j}^{4} f_{\rho}(\mathbf{x})\right| \leq & \int_{\mathbb{R}^{d}}\left|\frac{\partial^{4}}{\partial \xi_{j}^{4}}\left\{\frac{\eta\left(\rho^{2}|\varphi(\xi, 1)|^{2}\right)}{\varphi(\xi, 1)}\right\}\right| d \xi \\
\leq & C \int_{\mathbb{R}^{d}} \sum_{\ell=0}^{4}\left|\frac{\partial^{\ell}}{\partial \xi_{j}^{\ell}}\left\{\frac{1}{\varphi(\xi, 1)}\right\}\right| \cdot\left|\frac{\partial^{4-\ell}}{\partial \xi_{j}^{4-\ell}}\left\{\eta\left(\rho^{2}|\varphi(\xi, 1)|^{2}\right)\right\}\right| d \xi \\
\leq & C \int_{|\varphi(\xi, 1)| \geq c / \rho} \frac{(1+|\xi|)^{4}}{|\varphi(\xi, 1)|^{5}} d \xi \\
& +C \int_{|\varphi(\xi, 1)| \sim 1 / \rho} \sum_{\ell=0}^{3} \frac{(1+|\xi|)^{\ell}}{|\varphi(\xi, 1)|^{\ell+1}} \cdot \rho^{4-\ell} d \xi \\
\leq & C \int_{|\varphi(\xi, 1)| \geq c / \rho} \frac{(1+|\xi|)^{4}}{|\varphi(\xi, 1)|^{5}} d \xi \\
\leq & C \int_{\mathbb{R}^{d}} \frac{(1+|\xi|)^{4}}{\{|\varphi(\xi, 1)|+1 / \rho\}} d \xi
\end{aligned}
$$

Note that

$$
\begin{align*}
|\varphi(\xi, 1)| & \sim\left|\xi_{1}\right|+\left|\xi A \xi^{T}-\mathbf{a} A \mathbf{a}^{T}\right| \tag{2.23}\\
& =\left|\xi_{1}\right|+\{|\xi B|+|\mathbf{a} B|\}| | \xi B|-|\mathbf{a} B||
\end{align*}
$$

where $B=\sqrt{A} \geq 0$. Using this it is not hard to see that

$$
I_{1}:=\int_{|\xi B| \geq 2|\mathbf{a} B|} \frac{(1+|\xi|)^{4}}{\{|\varphi(\xi, 1)|+1 / \rho\}^{5}} d \xi \leq C \int_{|\xi| \geq c} \frac{|\xi|^{4}}{|\xi|^{10}} d \xi \leq C
$$

Also,

$$
\begin{aligned}
I_{2} & :=\int_{|\xi B| \leq 2|\mathbf{a} B|} \frac{(1+|\xi|)^{4}}{\{|\varphi(\xi, 1)|+1 / \rho\}^{5}} d \xi \\
& \leq C \int_{|\xi B| \leq 2|\mathbf{a} B|} \frac{d \xi}{\left\{\left|\xi_{1}\right|+||\xi B|-|\mathbf{a} B||+1 / \rho\right\}^{5}} \\
& \leq C \int_{|\xi| \leq 2|\mathbf{a} B|} \frac{d \xi}{\left\{\left|\left(\xi B^{-1}\right)_{1}\right|+||\xi|-|\mathbf{a} B||+1 / \rho\right\}^{5}} \\
& \leq C \int_{|\xi| \leq 2|\mathbf{a} B|} \frac{d \xi}{\left\{\left|\xi_{1}\right|+||\xi|-|\mathbf{a} B||+1 / \rho\right\}^{5}}
\end{aligned}
$$

where the last inequality follows by a rotation.

Now suppose $d=3$. Then, using spherical coordinates with $\xi_{1}=r \cos \theta$, we have

$$
\begin{aligned}
I_{2} & \leq C \int_{0}^{2|\mathbf{a} B|} r^{2}\left\{\int_{0}^{\pi / 2} \frac{\sin \theta d \theta}{\{r \cos \theta+|r-|\mathbf{a} B||+1 / \rho\}^{5}}\right\} d r \\
& \leq C \int_{0}^{2|\mathbf{a} B|} \frac{d r}{\{|r-|\mathbf{a} B||+1 / \rho\}^{4}} \\
& \leq C \int_{0}^{|\mathbf{a} B|} \frac{d r}{\{r+1 / \rho\}^{4}} \\
& \leq C \rho^{3} .
\end{aligned}
$$

Similarly, if $d=2$,

$$
\begin{aligned}
I_{2} & \leq C \int_{0}^{2|\mathbf{a} B|} r\left\{\int_{0}^{\pi / 2} \frac{d \theta}{\{r \cos \theta+|r-|\mathbf{a} B||+1 / \rho\}^{5}}\right\} d r \\
& \leq C \int_{0}^{2|\mathbf{a} B|} \frac{d r}{\{|r-|\mathbf{a} B||+1 / \rho\}^{5}} \\
& \leq C \int_{0}^{|\mathbf{a} B|} \frac{d r}{\{r+1 / \rho\}^{5}} \\
& \leq C \rho^{4} .
\end{aligned}
$$

Thus we have proved that, for $j=1, \cdots, d$,

$$
\left|x_{j}^{4} f_{\rho}(\mathbf{x})\right| \leq C\left\{I_{1}+I_{2}\right\} \leq \begin{cases}C \rho^{3}, & \text { if } d=3 \\ C \rho^{4}, & \text { if } d=2\end{cases}
$$

The estimates (2.21) and (2.22) then follow.
It follows from (2.16) and Lemma 2.20 that, for any $\mathbf{x} \in \mathbb{R}^{d}$,

$$
\begin{equation*}
\left|F_{\rho}(\mathbf{x})\right| \leq \frac{C}{|\mathbf{x}|^{4}} \quad \text { for } d=2 \text { or } 3 \tag{2.24}
\end{equation*}
$$

This will be used to estimate the terms on the right hand side of (2.14), where $|\mathbf{x}+2 \pi \mathbf{n}| \geq 1 / 2$.

3. Pointwise estimate of the kernel function $G_{\rho}(\mathbf{x})$

In this section we will show that, if $|\mathbf{x}| \leq 1 / 2$, then

$$
\left|F_{\rho}(\mathbf{x})\right| \leq \begin{cases}\frac{C}{|\mathbf{x}|}, & \text { if } d=3 \tag{3.1}\\ C \ln \frac{1}{|\mathbf{x}|}, & \text { if } d=2\end{cases}
$$

Together with (2.24) and (2.14), this implies that

$$
\left|G_{\rho}(\mathbf{x})\right| \leq \begin{cases}C\left\{1+\sum_{|\mathbf{x}+2 \pi \mathbf{n}| \leq 1 / 2} \frac{1}{|\mathbf{x}+2 \pi \mathbf{n}|}\right\}, & \text { if } d=3 \tag{3.2}\\ C\left\{1+\sum_{|\mathbf{x}+2 \pi \mathbf{n}| \leq 1 / 2} \ln \frac{1}{|\mathbf{x}+2 \pi \mathbf{n}|}\right\}, & \text { if } d=2\end{cases}
$$

To prove (3.1), we recall that $F_{\rho}(\mathbf{x})=\rho^{d-2} f_{\rho}(\rho \mathbf{x})$ and write

$$
\begin{equation*}
f_{\rho}(\mathbf{x})=\left\{\frac{1}{\varphi(\cdot, 1)}\right\}^{\vee}(\mathbf{x})+\left\{\frac{\eta\left(\rho^{2}|\varphi(\cdot, 1)|^{2}\right)-1}{\varphi(\cdot, 1)}\right\}^{\vee}(\mathbf{x}) \tag{3.3}
\end{equation*}
$$

Lemma 3.4. We have

$$
\int_{\mathbb{R}^{d}}\left|\frac{\eta\left(\rho^{2}|\varphi(\xi, 1)|^{2}\right)-1}{\varphi(\xi, 1)}\right| d \xi \leq \frac{C}{\rho}
$$

Proof. Recall that $\eta(r)=1$ for $r \geq s_{0}^{2}$. Thus, as in the proof of Lemma 2.20, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \mid & \frac{\eta\left(\rho^{2}|\varphi(\xi, 1)|^{2}\right)-1}{\varphi(\xi, 1)} \left\lvert\, d \xi \leq C \int_{|\varphi(\xi, 1)| \leq c / \rho} \frac{d \xi}{|\varphi(\xi, 1)|}\right. \\
& \leq C \int_{\left|\xi_{1}\right|+||\xi|-|\mathbf{a} B|| \leq c / \rho} \frac{d \xi}{} \frac{d \xi|+||\xi|-|\mathbf{a} B||}{} \\
& \leq C \int_{\left|\left|\xi^{\prime}\right|-\left|\xi^{\prime} B\right|\right| \leq c / \rho} \frac{d \xi}{\left|\xi_{1}\right|+\left|\left|\xi^{\prime}\right|-|\mathbf{a} B|\right|} \text { where } \xi=\left(\xi_{1}, \xi^{\prime}\right) \\
& \leq C \int_{|r-|\mathbf{a} B|| \leq c / \rho} \int_{\left|\xi_{1}\right| \leq c / \rho} \frac{d \xi_{1} d r}{\left|\xi_{1}\right|+|r-|\mathbf{a} B||} \\
& \leq \frac{C}{\rho} \int_{0<r<c} \int_{\left|\xi_{1}\right| \leq c} \frac{d \xi_{1} d r}{\left|\xi_{1}\right|+r} \\
& \leq \frac{C}{\rho}
\end{aligned}
$$

It follows from Lemma 3.4 that

$$
\begin{equation*}
\left|\left\{\frac{\eta\left(\rho^{2}|\varphi(\cdot, 1)|^{2}\right)-1}{\varphi(\cdot, 1)}\right\}^{\vee}(\mathbf{x})\right| \leq \frac{C}{\rho} . \tag{3.5}
\end{equation*}
$$

To estimate the first term on the right hand side of (3.3), we first note that, by several changes of variables, we have

$$
\begin{equation*}
\left\{\frac{1}{\varphi(\cdot, 1)}\right\}^{\vee}(\mathbf{x})=\frac{|\mathbf{a} B|^{d-2}}{\operatorname{det}(B)}\left\{\frac{1}{|\xi|^{2}-1+2 i \xi_{1}}\right\}^{\vee}\left(|\mathbf{a} B| \mathbf{x} B^{-1} O^{-1}\right) \tag{3.6}
\end{equation*}
$$

where O is a $d \times d$ orthogonal matrix such that $\mathbf{a} B O^{-1}=(|\mathbf{a} B|, 0, \cdots, 0)$.
Lemma 3.7. Let $u(\mathbf{x})$ denote the inverse Fourier transform of $\left\{|\xi|^{2}-1+\right.$ $\left.2 i \xi_{1}\right\}^{-1}$ in $\mathbb{R}^{d}, d=2$ or $d=3$. Let $\mathbf{x}=\left(x_{1}, \mathbf{x}^{\prime}\right) \in \mathbb{R}^{d}$. Then,

$$
\begin{align*}
& u(\mathbf{x})=2 \pi \int_{0}^{\infty} J_{0}\left(\left|\mathbf{x}^{\prime}\right| r\right) v\left(r, x_{1}\right) r d r, \quad \text { if } d=3 \tag{3.8}\\
& u(\mathbf{x})=2 \int_{0}^{\infty} \cos \left(\left|x_{2}\right| r\right) v\left(r, x_{1}\right) d r, \quad \text { if } d=2 \tag{3.9}
\end{align*}
$$

where

$$
\begin{equation*}
v\left(r, x_{1}\right)=\int_{\mathbb{R}} \frac{e^{i x_{1} \xi_{1}}}{r^{2}+\xi_{1}^{2}-1+2 i \xi_{1}} d \xi_{1} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{0}(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i t \cos \omega} d \omega \tag{3.11}
\end{equation*}
$$

is the Bessel function of the first kind of order 0.
Proof. One may verify that, for $R>0$,

$$
\left\{|\xi|^{2}-1+2 i \xi_{1}\right\}^{-1} \chi_{\left\{\xi \in \mathbb{R}^{d}:\left|\xi^{\prime}\right| \leq R\right\}} \in L^{1}\left(\mathbb{R}^{d}\right)
$$

where $\xi=\left(\xi_{1}, \xi^{\prime}\right)$. Since $\left\{|\xi|^{2}-1+2 i \xi_{1}\right\}^{-1} \in L^{p}\left(\mathbb{R}^{d}\right)$ for $3 / 2<p<2$, we have, by the Hausdorff-Young inequality [20],

$$
u(\mathbf{x})=\lim _{R \rightarrow \infty} \int_{\substack{\xi \in \mathbb{R}^{d} \\\left|\xi^{\prime}\right| \leq R}} \frac{e^{i\langle\mathbf{x}, \xi\rangle}}{|\xi|^{2}-1+2 i \xi_{1}} d \xi
$$

where the limit is taken in the $L^{p^{\prime}}$-space. From this, (3.8) and (3.9) follow by using Fubini's theorem and polar coordinates. We omit the details.

Lemma 3.12. Let $v\left(r, x_{1}\right)$ be the function defined by (3.10). Then,

$$
v\left(r, x_{1}\right)= \begin{cases}\frac{\pi}{r} e^{x_{1}-r\left|x_{1}\right|}, & \text { if } r>1 \\ \frac{\pi}{r}\left\{e^{x_{1}-r\left|x_{1}\right|}-e^{(1-r) x_{1}}\right\}, & \text { if } 0<r<1\end{cases}
$$

Proof. First we write

$$
v\left(r, x_{1}\right)=e^{x_{1}} \int_{\mathbb{R}} \frac{e^{i x_{1}\left(\xi_{1}+i\right)}}{r^{2}+\left(\xi_{1}+i\right)^{2}} d \xi_{1}
$$

Applying Cauchy's integral theorem to the function

$$
w(z)=\frac{e^{i x_{1} z}}{r^{2}+z^{2}}=\frac{e^{i x_{1} z}}{(z+r i)(z-r i)},
$$

we obtain

$$
v\left(r, x_{1}\right)= \begin{cases}e^{x_{1}} \int_{\mathbb{R}} \frac{e^{i x_{1} y}}{r^{2}+y^{2}} d y, & \text { if } r>1 \tag{3.13}\\ e^{x_{1}} \int_{\mathbb{R}} \frac{e^{i x_{1} y}}{r^{2}+y^{2}} d y-\frac{\pi}{r} e^{(1-r) x_{1}}, & \text { if } 0<r<1\end{cases}
$$

By a routine application of the residue theorem, one may show that

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{e^{i x_{1} y}}{r^{2}+y^{2}} d y=\frac{\pi}{r} e^{-r\left|x_{1}\right|} \tag{3.14}
\end{equation*}
$$

see, e.g., [14, pp. 389-390]. This, together with (3.13), yields the lemma.
LEmma 3.15. Let $v\left(r, x_{1}\right)$ be the function defined by (3.10). Then,

$$
\left|v\left(r, x_{1}\right)\right| \leq \begin{cases}\frac{\pi}{r} e^{(1-r) \cdot\left|x_{1}\right|}, & \text { if } r>1 \\ C\left\{e^{(r-1)\left|x_{1}\right|}+\left|x_{1}\right| e^{-\left|x_{1}\right| / 2}\right\}, & \text { if } 0<r<1\end{cases}
$$

and

$$
\left|\frac{\partial v}{\partial r}\left(r, x_{1}\right)\right| \leq \begin{cases}\frac{C}{r^{2}}\left(1+r\left|x_{1}\right|\right) e^{(1-r)\left|x_{1}\right|}, & \text { if } r>1 \\ C\left\{\left|x_{1}\right|^{2} e^{-\left|x_{1}\right| / 2}+\left(1+\left|x_{1}\right|\right) e^{(r-1)\left|x_{1}\right|}\right\}, & \text { if } 0<r<1\end{cases}
$$

Proof. We will only prove the second estimate, using Lemma 3.12. The proof of the first estimate is easier.

If $r>1$,

$$
\frac{\partial v}{\partial r}=-\frac{\pi}{r^{2}} e^{x_{1}-r\left|x_{1}\right|}+\frac{\pi}{r} e^{x_{1}-r\left|x_{1}\right|}\left(-\left|x_{1}\right|\right)
$$

Hence,

$$
\left|\frac{\partial v}{\partial r}\right|=\frac{\pi\left(1+r\left|x_{1}\right|\right)}{r^{2}} e^{x_{1}-r\left|x_{1}\right|} \leq \frac{\pi\left(1+r\left|x_{1}\right|\right)}{r^{2}} e^{(1-r)\left|x_{1}\right|}
$$

Next suppose $0<r<1$. We may assume $x_{1}<0$ since $v\left(r, x_{1}\right)=0$ if $0<r<1$ and $x_{1} \geq 0$. Note that, in this case, we have

$$
\frac{\partial v}{\partial r}=-\frac{\pi}{r^{2}}\left\{e^{(1+r) x_{1}}-e^{(1-r) x_{1}}\right\}+\frac{\pi x_{1}}{r}\left\{e^{(1+r) x_{1}}+e^{(1-r) x_{1}}\right\}
$$

If $1 / 2 \leq r<1$, it is easy to see that

$$
\begin{aligned}
\left|\frac{\partial v}{\partial r}\right| & \leq C\left|e^{(1+r) x_{1}}-e^{(1-r) x_{1}}\right|+C\left|x_{1}\right|\left\{e^{(1+r) x_{1}}+e^{(1-r) x_{1}}\right\} \\
& \leq C\left\{1+\left|x_{1}\right|\right\} e^{(r-1)\left|x_{1}\right|}
\end{aligned}
$$

Also, if $0<r<1 / 2$ and $\left|r x_{1}\right| \geq 1$, then $\left|x_{1}\right| \geq 1 / r$. It follows that

$$
\begin{aligned}
\left|\frac{\partial v}{\partial r}\right| & \leq C\left|x_{1}\right|^{2}\left\{e^{(1+r) x_{1}}+e^{(1-r) x_{1}}\right\} \\
& \leq C\left|x_{1}\right|^{2} e^{-\left|x_{1}\right| / 2}
\end{aligned}
$$

Finally, if $0<r<1 / 2$ and $\left|r x_{1}\right|<1$, we use $e^{t}=1+t+O\left(t^{2}\right)$ for $|t|<1$ to obtain

$$
\begin{aligned}
\frac{\partial v}{\partial r} & =-\frac{\pi}{r^{2}} e^{x_{1}}\left\{2 r x_{1}+O\left(\left(r x_{1}\right)^{2}\right)\right\}+\frac{\pi x_{1}}{r} e^{x_{1}}\left\{2+O\left(\left(r x_{1}\right)^{2}\right)\right\} \\
& =\frac{\pi}{r^{2}} e^{x_{1}} O\left(\left(r x_{1}\right)^{2}\right)+\frac{\pi x_{1}}{r} e^{x_{1}} O\left(\left(r x_{1}\right)^{2}\right)
\end{aligned}
$$

It follows that

$$
\left|\frac{\partial v}{\partial r}\right| \leq C\left\{\left|x_{1}\right|^{2} e^{x_{1}}+r\left|x_{1}\right|^{3} e^{x_{1}}\right\} \leq C\left|x_{1}\right|^{2} e^{-\left|x_{1}\right|}
$$

The proof is now complete.
Lemma 3.16. Let $u(\mathbf{x})$ be the inverse Fourier transform of $\left\{|\xi|^{2}-1+\right.$ $\left.2 i \xi_{1}\right\}^{-1}$ in \mathbb{R}^{d}. Then, if $d=3$,

$$
|u(\mathbf{x})| \leq \frac{C}{|\mathbf{x}|}
$$

and, if $d=2$,

$$
|u(\mathbf{x})| \leq \begin{cases}C \ln \frac{1}{|\mathbf{x}|}, & \text { if }|\mathbf{x}| \leq \frac{1}{2} \\ \frac{C}{|\mathbf{x}|}, & \text { if }|\mathbf{x}|>\frac{1}{2}\end{cases}
$$

Proof. We first consider the case $d=3$. It follows from (3.8) that

$$
\begin{aligned}
u(\mathbf{x}) & =2 \pi \int_{0}^{1 /\left|\mathbf{x}^{\prime}\right|} J_{0}\left(\left|\mathbf{x}^{\prime}\right| r\right) v\left(r, x_{1}\right) r d r+2 \pi \int_{1 /\left|\mathbf{x}^{\prime}\right|}^{\infty} J_{0}\left(\left|\mathbf{x}^{\prime}\right| r\right) v\left(r, x_{1}\right) r d r \\
& =I_{1}+I_{2}
\end{aligned}
$$

By Lemma 3.15, $\left|v\left(r, x_{1}\right)\right| r \leq C$. This, together with the observation $\left|J_{0}(t)\right| \leq$ 1, gives

$$
\left|I_{1}\right| \leq 2 \pi \int_{0}^{1 /\left|\mathbf{x}^{\prime}\right|}\left|v\left(r, x_{1}\right)\right| r d r \leq \frac{C}{\left|\mathbf{x}^{\prime}\right|}
$$

To estimate I_{2} we first assume that $\left|\mathbf{x}^{\prime}\right| \leq 1$. Since

$$
\begin{equation*}
r J_{0}(r)=\frac{d}{d r}\left\{r J_{1}(r)\right\} \tag{3.17}
\end{equation*}
$$

where $J_{\nu}(r)$ denotes the Bessel function of the first kind of order ν (see [11]), we may use integration by parts to obtain

$$
\begin{aligned}
I_{2} & =\frac{2 \pi}{\left|\mathbf{x}^{\prime}\right|^{2}} \int_{1}^{\infty} r J_{0}(r) v\left(\frac{r}{\left|\mathbf{x}^{\prime}\right|}, x_{1}\right) d r \\
& =-\frac{2 \pi}{\left|\mathbf{x}^{\prime}\right|^{2}} J_{1}(1) v\left(\frac{1}{\left|\mathbf{x}^{\prime}\right|}, x_{1}\right)-\frac{2 \pi}{\left|\mathbf{x}^{\prime}\right|^{3}} \int_{1}^{\infty} r J_{1}(r) \frac{\partial v}{\partial r}\left(\frac{r}{\left|\mathbf{x}^{\prime}\right|}, x_{1}\right) d r
\end{aligned}
$$

It then follows from the estimate (see [11])

$$
\begin{equation*}
\left|J_{1}(r)\right| \leq \frac{C}{r^{1 / 2}}, \quad \text { for } r \geq 1 \tag{3.18}
\end{equation*}
$$

and Lemma 3.15 that

$$
\begin{aligned}
\left|I_{2}\right| & \leq \frac{C}{\left|\mathbf{x}^{\prime}\right|}+\frac{C}{\left|\mathbf{x}^{\prime}\right|^{3}} \int_{1}^{\infty} r^{1 / 2}\left|\frac{\partial v}{\partial r}\left(\frac{r}{\left|\mathbf{x}^{\prime}\right|}, x_{1}\right)\right| d r \\
& \leq \frac{C}{\left|\mathbf{x}^{\prime}\right|}+\frac{C}{\left|\mathbf{x}^{\prime}\right|^{3 / 2}} \int_{1 /\left|\mathbf{x}^{\prime}\right|}^{\infty} r^{1 / 2}\left|\frac{\partial v}{\partial r}\left(r, x_{1}\right)\right| d r \\
& \leq \frac{C}{\left|\mathbf{x}^{\prime}\right|}+\frac{C}{\left|\mathbf{x}^{\prime}\right|^{3 / 2}} \int_{1 /\left|\mathbf{x}^{\prime}\right|}^{\infty} r^{1 / 2} \cdot \frac{1}{r^{2}} \cdot\left\{1+r\left|x_{1}\right|\right\} e^{(r-1)\left|x_{1}\right|} d r \\
& \leq \frac{C}{\left|\mathbf{x}^{\prime}\right|}
\end{aligned}
$$

If $\left|\mathbf{x}^{\prime}\right| \geq 1$, we write

$$
\begin{aligned}
I_{2} & =\frac{2 \pi}{\left|\mathbf{x}^{\prime}\right|^{2}} \int_{1}^{\left|\mathbf{x}^{\prime}\right|} r J_{0}(r) v\left(\frac{r}{\left|\mathbf{x}^{\prime}\right|}, x_{1}\right) d r+\frac{2 \pi}{\left|\mathbf{x}^{\prime}\right|^{2}} \int_{\left|\mathbf{x}^{\prime}\right|}^{\infty} r J_{0}(r) v\left(\frac{r}{\left|\mathbf{x}^{\prime}\right|}, x_{1}\right) d r \\
& =I_{21}+I_{22}
\end{aligned}
$$

Note that, using (3.17), integration by parts, and (3.18), we have

$$
\begin{aligned}
\left|I_{21}\right| & \leq \frac{C}{\left|\mathbf{x}^{\prime}\right|^{3 / 2}}+\frac{C}{\left|\mathbf{x}^{\prime}\right|^{3}} \int_{1}^{\left|\mathbf{x}^{\prime}\right|} r^{1 / 2}\left|\frac{\partial v}{\partial r}\left(\frac{r}{\left|\mathbf{x}^{\prime}\right|}, x_{1}\right)\right| d r \\
& \leq \frac{C}{\left|\mathbf{x}^{\prime}\right|^{3 / 2}}+\frac{C}{\left|\mathbf{x}^{\prime}\right|^{3 / 2}} \int_{1 /\left|\mathbf{x}^{\prime}\right|}^{1} r^{1 / 2}\left|\frac{\partial v}{\partial r}\left(r, x_{1}\right)\right| d r \\
& \leq \frac{C}{\left|\mathbf{x}^{\prime}\right|^{3 / 2}}+\frac{C}{\left|\mathbf{x}^{\prime}\right|^{3 / 2}} \int_{0}^{1}\left|x_{1}\right| e^{(r-1)\left|x_{1}\right|} d r \\
& \leq \frac{C}{\left|\mathbf{x}^{\prime}\right|^{3 / 2}} \leq \frac{C}{\left|\mathbf{x}^{\prime}\right|}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\left|I_{22}\right| & =\frac{2 \pi}{\left|\mathbf{x}^{\prime}\right|^{2}}\left|\int_{\left|\mathbf{x}^{\prime}\right|}^{\infty} \frac{d}{d r}\left\{r J_{1}(r)\right\} v\left(\frac{r}{\left|\mathbf{x}^{\prime}\right|}, x_{1}\right) d r\right| \\
& \leq \frac{C}{\left|\mathbf{x}^{\prime}\right|^{3 / 2}}+\frac{C}{\left|\mathbf{x}^{\prime}\right|^{3}} \int_{\left|\mathbf{x}^{\prime}\right|}^{\infty} r^{1 / 2}\left|\frac{\partial v}{\partial r}\left(\frac{r}{\left|\mathbf{x}^{\prime}\right|}, x_{1}\right)\right| d r \\
& =\frac{C}{\left|\mathbf{x}^{\prime}\right|^{3 / 2}}+\frac{C}{\left|\mathbf{x}^{\prime}\right|^{3 / 2}} \int_{1}^{\infty} r^{1 / 2}\left|\frac{\partial v}{\partial r}\left(r, x_{1}\right)\right| d r \\
& \leq \frac{C}{\left|\mathbf{x}^{\prime}\right|^{3 / 2}} \leq \frac{C}{\left|\mathbf{x}^{\prime}\right|}
\end{aligned}
$$

Thus we have proved that, for any $\mathbf{x} \in \mathbb{R}^{3}$,

$$
\begin{equation*}
|u(\mathbf{x})| \leq \frac{C}{\left|\mathbf{x}^{\prime}\right|} \tag{3.19}
\end{equation*}
$$

To finish the case $d=3$, we still need to show that

$$
\begin{equation*}
|u(\mathbf{x})| \leq \frac{C}{\left|x_{1}\right|}, \quad \text { for any } \mathbf{x} \in \mathbb{R}^{3} \tag{3.20}
\end{equation*}
$$

Clearly, (3.19) and (3.20) imply that $|u(\mathbf{x})| \leq C /|\mathbf{x}|$ for any $\mathbf{x} \in \mathbb{R}^{3}$.
To see (3.20), we use Lemma 3.15 to obtain

$$
\begin{aligned}
|u(\mathbf{x})| & \leq 2 \pi \int_{0}^{\infty}\left|v\left(r, x_{1}\right)\right| r d r \\
& \leq C \int_{0}^{1}\left\{e^{(r-1)\left|x_{1}\right|}+\left|x_{1}\right| e^{-\left|x_{1}\right| / 2}\right\} d r+C \int_{1}^{\infty} e^{(1-r)\left|x_{1}\right|} d r \\
& \leq \frac{C}{\left|x_{1}\right|}
\end{aligned}
$$

We now consider the case $d=2$. By Lemmas 3.7 and 3.5,

$$
\begin{aligned}
|u(\mathbf{x})| & =2\left|\int_{0}^{\infty} \cos \left(\left|x_{2}\right| r\right) v\left(r, x_{1}\right) d r\right| \\
& \leq 2 \int_{0}^{\infty}\left|v\left(r, x_{1}\right)\right| d r \\
& \leq C \int_{0}^{1}\left\{e^{(r-1)\left|x_{1}\right|}+\left|x_{1}\right| e^{-\left|x_{1}\right| / 2}\right\} d r+C \int_{1}^{\infty} e^{(1-r)\left|x_{1}\right|} \frac{d r}{r} \\
& \leq C\left|x_{1}\right| e^{-\left|x_{1}\right| / 2}+C \int_{0}^{1} e^{-r\left|x_{1}\right|} d r+C \int_{0}^{\infty} e^{-r\left|x_{1}\right|} \frac{d r}{r+1}
\end{aligned}
$$

From this it is not hard to see that

$$
|u(\mathbf{x})| \leq \begin{cases}C \ln \frac{1}{\left|x_{1}\right|}, & \text { if }\left|x_{1}\right| \leq \frac{1}{2} \tag{3.21}\\ \frac{C}{\left|x_{1}\right|}, & \text { if }\left|x_{1}\right|>\frac{1}{2}\end{cases}
$$

Finally, we will show that

$$
|u(\mathbf{x})| \leq \begin{cases}C \ln \frac{1}{\left|x_{2}\right|}, & \text { if }\left|x_{2}\right| \leq \frac{1}{2} \tag{3.22}\\ \frac{C}{\left|x_{2}\right|}, & \text { if }\left|x_{2}\right|>\frac{1}{2}\end{cases}
$$

The desired estimate for $|u(\mathbf{x})|$ follows easily from (3.21) and (3.22).
To see (3.22) we write

$$
\begin{aligned}
u(\mathbf{x}) & =2 \int_{0}^{1 /\left|x_{2}\right|} \cos \left(\left|x_{2}\right| r\right) v\left(r, x_{1}\right) d r+2 \int_{1 /\left|x_{2}\right|}^{\infty} \cos \left(\left|x_{2}\right| r\right) v\left(r, x_{1}\right) d r \\
& =I_{3}+I_{4}
\end{aligned}
$$

as in the case of $d=3$. If $\left|x_{2}\right|>1 / 2$, by Lemma 3.15 , we have

$$
\left|I_{3}\right| \leq C \int_{0}^{1 /\left|x_{2}\right|}\left|v\left(r, x_{1}\right)\right| d r \leq C \int_{0}^{1 /\left|x_{2}\right|} d r \leq \frac{C}{\left|x_{2}\right|}
$$

Similarly, if $\left|x_{2}\right| \leq 1 / 2$,
$\left|I_{3}\right| \leq 2 \int_{0}^{1}\left|v\left(r, x_{1}\right)\right| d r+2 \int_{1}^{1 /\left|x_{2}\right|}\left|v\left(r, x_{1}\right)\right| d r \leq C+C \int_{1}^{1 /\left|x_{2}\right|} \frac{d r}{r} \leq C \ln \frac{1}{\left|x_{2}\right|}$.
To estimate I_{4} we use integration by parts. Suppose $\left|x_{2}\right| \leq 1 / 2$. Then

$$
\begin{aligned}
\left|I_{4}\right| & =\frac{2}{\left|x_{2}\right|}\left|\int_{1 /\left|x_{2}\right|}^{\infty} \frac{\partial}{\partial r}\left\{\sin \left(\left|x_{2}\right| r\right)\right\} v\left(r, x_{1}\right) d r\right| \\
& \leq C+\frac{C}{\left|x_{2}\right|} \int_{1 /\left|x_{2}\right|}^{\infty}\left|\frac{\partial v}{\partial r}\left(r, x_{1}\right)\right| d r \\
& \leq C+\frac{C}{\left|x_{2}\right|} \int_{1 /\left|x_{2}\right|}^{\infty} \frac{1}{r^{2}}\left\{1+r\left|x_{1}\right|\right\} e^{(1-r)\left|x_{1}\right|} d r \\
& \leq C \leq C \ln \frac{1}{\left|x_{2}\right|}
\end{aligned}
$$

If $\left|x_{2}\right|>1 / 2$, then

$$
\begin{aligned}
\left|I_{4}\right| & \leq \frac{2}{\left|x_{2}\right|}\left|\int_{1 /\left|x_{2}\right|}^{1} \frac{\partial}{\partial r}\left\{\sin \left(\left|x_{2}\right| r\right)\right\} \cdot v\left(r, x_{1}\right) d r\right| \\
& +\frac{2}{\left|x_{2}\right|}\left|\int_{1}^{\infty} \frac{\partial}{\partial r}\left\{\sin \left(\left|x_{2}\right| r\right)\right\} \cdot v\left(r, x_{1}\right) d r\right| \\
& \leq \frac{C}{\left|x_{2}\right|}+\frac{C}{\left|x_{2}\right|} \int_{1 /\left|x_{2}\right|}^{1}\left|\frac{\partial v}{\partial r}\left(r, x_{1}\right)\right| d r+\frac{C}{\left|x_{2}\right|} \int_{1}^{\infty}\left|\frac{\partial v}{\partial r}\left(r, x_{1}\right)\right| d r \\
& \leq \frac{C}{\left|x_{2}\right|} .
\end{aligned}
$$

This proves (3.22) and completes the proof of Lemma 3.16.
It follows from Lemma 3.16 and (3.6) that

$$
\left|\left\{\frac{1}{\varphi(\cdot, 1)}\right\}^{\vee}(\mathbf{x})\right| \leq \begin{cases}\frac{C}{|\mathbf{x}|}, & \text { if } d=3 \tag{3.23}\\ C \ln \left(1+\frac{1}{|\mathbf{x}|}\right), & \text { if } d=2\end{cases}
$$

This, together with (3.3) and (3.5), implies that

$$
\left|f_{\rho}(\mathbf{x})\right| \leq \begin{cases}C\left\{\frac{1}{\rho}+\frac{1}{|\mathbf{x}|}\right\}, & \text { if } d=3 \tag{3.24}\\ C\left\{\frac{1}{\rho}+\ln \left(1+\frac{1}{|\mathbf{x}|}\right)\right\}, & \text { if } d=2\end{cases}
$$

Thus, by (2.16), for any $\mathbf{x} \in \mathbb{R}^{d}$,

$$
\left|F_{\rho}(\mathbf{x})\right|=\rho^{d-2}\left|f_{\rho}(\rho \mathbf{x})\right| \leq \begin{cases}C\left\{1+\frac{1}{|\mathbf{x}|}\right\}, & \text { if } d=3 \tag{3.25}\\ C\left\{\frac{1}{\rho}+\ln \left(1+\frac{1}{\rho|\mathbf{x}|}\right)\right\}, & \text { if } d=2\end{cases}
$$

The estimate (3.1) now follows from (3.25), and the proof of (3.2) is complete.

4. Proof of the Main Theorem

Suppose $V \in K_{d}$. It is well known that, for any $\varepsilon>0$, there exists a constant $C_{\varepsilon, V}>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}|g|^{2}|V| d \mathbf{x} \leq \varepsilon \int_{\mathbb{R}^{d}}|\nabla g|^{2} d \mathbf{x}+C_{\varepsilon, V} \int_{\mathbb{R}^{d}}|g|^{2} d \mathbf{x} \tag{4.1}
\end{equation*}
$$

for any $g \in H^{1}\left(\mathbb{R}^{d}\right)$; see [7], [18]. It follows from (4.1) that the quadratic form associated with $\mathbf{D} A \mathbf{D}^{T}+V$ generates a unique self-adjoint operator on $L^{2}\left(\mathbb{R}^{d}\right)$, which we also denote by $\mathbf{D} A \mathbf{D}^{T}+V$.

Let $\psi \in H^{1}\left(\mathbb{T}^{d}\right)$, where

$$
H^{1}\left(\mathbb{T}^{d}\right)=\left\{\phi \in L^{2}\left(\mathbb{T}^{d}\right): \phi(\mathbf{x})=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} a_{\mathbf{n}} e^{i\langle\mathbf{x}, \mathbf{n}\rangle} \text { and } \sum_{\mathbf{n} \in \mathbb{Z}^{d}}|\mathbf{n}|^{2}\left|a_{\mathbf{n}}\right|^{2}<\infty\right\}
$$

Extending ψ by periodicity to \mathbb{R}^{d} and then applying (4.1) to $\psi \widetilde{\eta}$, where $\widetilde{\eta}$ is a C^{∞} cut-off function such that $\widetilde{\eta}=1$ on Ω, we obtain

$$
\begin{equation*}
\int_{\Omega}|\psi|^{2}|V| d \mathbf{x} \leq \varepsilon \int_{\Omega}|\nabla \psi|^{2} d \mathbf{x}+\widetilde{C}_{\varepsilon, V} \int_{\Omega}|\psi|^{2} d \mathbf{x} \tag{4.2}
\end{equation*}
$$

for any $\varepsilon>0$. This implies that, for any $\mathbf{k} \in \mathbb{C}^{d}$, the quadratic form associated with $(\mathbf{D}+\mathbf{k}) A(\mathbf{D}+\mathbf{k})^{T}+V$ on \mathbb{T}^{d} defines a unique closed operator on $L^{2}\left(\mathbb{T}^{d}\right)$, which we denote by $\mathbb{H}_{V}(\mathbf{k})$. Moreover,

Domain $\left(\mathbb{H}_{V}(\mathbf{k})\right)=\left\{\psi \in H^{1}\left(\mathbb{T}^{d}\right): \mathbb{H}_{V}(0) \psi=\left(\mathbf{D} A \mathbf{D}^{T}+V\right) \psi \in L^{2}\left(\mathbb{T}^{d}\right)\right\}$.
Let $\mathbf{a} \in \mathbb{R}^{d}$ be a vector satisfying (2.1) and

$$
\begin{equation*}
L=\left\{\mathbf{b} \in \mathbb{R}^{d}:\langle\mathbf{b}, \mathbf{a}\rangle=0 \text { and }|\mathbf{b}| \leq \sqrt{d}\right\} \tag{4.4}
\end{equation*}
$$

Proposition 4.5. If, for every $\mathbf{b} \in L$, the family of operators $\left\{\mathbb{H}_{V}(z \mathbf{a}+\right.$ $\mathbf{b}): z \in \mathbb{C}\}$ has no common eigenvalue, then the spectrum of the operator $\mathbf{D} A \mathbf{D}^{T}+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ is purely absolutely continuous.

Proof. See [13] and [16].
Fix $\mathbf{b} \in L$ and let

$$
\delta=\frac{1}{a_{1}}\left(\frac{1}{2}-b_{1}\right),
$$

as in (2.2). We will show that the family of operators $\left\{\mathbb{H}_{V}((\delta+i \rho) \mathbf{a}+\mathbf{b})\right.$: $\rho \geq 1\}$ has no common eigenvalue under the assumption of our main theorem.

We need the following estimate on the norm of $\left\{\mathbb{H}_{0}((\delta+i \rho) \mathbf{a}+\mathbf{b})\right\}^{-1}$ on $L^{1}\left(\mathbb{T}^{d}\right)$.

Theorem 4.6. There exists a constant $C>0$ such that

$$
\left\|\left\{\mathbb{H}_{0}((\delta+i \rho) \mathbf{a}+\mathbf{b})\right\}^{-1}\right\|_{L^{1}\left(\mathbb{T}^{d}\right) \rightarrow L^{1}\left(\mathbb{T}^{d}\right)} \leq \begin{cases}\frac{C \ln (\rho+1)}{\rho^{1 / 2}}, & \text { if } d=3 \\ \frac{C}{\rho^{1 / 2}}, & \text { if } d=2\end{cases}
$$

Proof. In view of (2.8), it suffices to show that

$$
\int_{\Omega}\left|G_{\rho}(\mathbf{x})\right| d \mathbf{x} \leq \begin{cases}\frac{C \ln (\rho+1)}{\rho^{1 / 2}}, & \text { if } d=3 \tag{4.7}\\ \frac{C}{\rho^{1 / 2}}, & \text { if } d=2\end{cases}
$$

To this end, note that, by Hölder's inequality, (2.9), and the Plancherel theorem, we have

$$
\begin{aligned}
\int_{\Omega}\left|G_{\rho}(\mathbf{x})\right| d \mathbf{x} & \leq|\Omega|^{1 / 2}\left\{\int_{\Omega}\left|G_{\rho}(\mathbf{x})\right|^{2} d \mathbf{x}\right\}^{1 / 2} \\
& =C\left\{\sum_{\mathbf{n} \in \mathbb{Z}^{d}} \frac{1}{\left|(\mathbf{n}+\mathbf{k}) A(\mathbf{n}+\mathbf{k})^{T}\right|^{2}}\right\}^{1 / 2} \\
& \leq C\left\{\sum_{\mathbf{n} \in \mathbb{Z}^{d}} \frac{1}{\left\{\left|(\mathbf{n}+\mathbf{b}) A(\mathbf{n}+\mathbf{b})^{T}-\rho^{2} a_{1} s_{0}\right|+\rho\left|n_{1}+\frac{1}{2}\right|\right\}^{2}}\right\}^{1 / 2}
\end{aligned}
$$

The desired estimate (4.7) follows from the proof of Lemma 3.2 in [16] (see the estimate (3.11) in [16]). We omit the details.

The next theorem is a consequence of the pointwise estimate (3.2) of the kernel function G_{ρ}.

Theorem 4.8. There exists a constant $C>0$ such that

$$
\begin{array}{ll}
\left\|V\left\{\mathbb{H}_{0}((\delta+i \rho) \mathbf{a}+\mathbf{b})\right\}^{-1}\right\|_{L^{1}\left(\mathbb{T}^{d}\right) \rightarrow L^{1}\left(\mathbb{T}^{d}\right)} \\
& \leq \begin{cases}C \sup _{\mathbf{x} \in \Omega} \int_{\Omega} \frac{|V(\mathbf{y})|}{|\mathbf{y}-\mathbf{x}|} d \mathbf{y}, & \text { if } d=3, \\
C \sup _{\mathbf{x} \in \Omega} \int_{\Omega}|V(\mathbf{y})|\{1+|\ln | \mathbf{y}-\mathbf{x}| |\} d \mathbf{y}, & \text { if } d=2\end{cases}
\end{array}
$$

Proof. Recall that, if $\psi \in C^{\infty}\left(\mathbb{T}^{d}\right)$, then

$$
\left\{\mathbb{H}_{0}((\delta+i \rho) \mathbf{a}+\mathbf{b})\right\}^{-1} \psi(\mathbf{x})=\int_{\Omega} G_{\rho}(\mathbf{x}-\mathbf{y}) \psi(\mathbf{y}) d \mathbf{y}
$$

It follows that

$$
\begin{aligned}
\left\|V\left\{\mathbb{H}_{0}((\delta+i \rho) \mathbf{a}+\mathbf{b})\right\}^{-1} \psi\right\|_{1} & \leq \int_{\Omega}|V(\mathbf{x})|\left\{\int_{\Omega}\left|G_{\rho}(\mathbf{x}-\mathbf{y})\right||\psi(\mathbf{y})| d \mathbf{y}\right\} d \mathbf{x} \\
& \leq \sup _{\mathbf{y} \in \Omega} \int_{\Omega}|V(\mathbf{x})|\left|G_{\rho}(\mathbf{x}-\mathbf{y})\right| d \mathbf{x}\|\psi\|_{1}
\end{aligned}
$$

The desired estimate now follows easily from (3.2).
Proof of Main Theorem. We give the proof for the case $d=3$. The case $d=2$ can be handled in the same manner.

To show that $\left\{\mathbb{H}_{V}((\delta+i \rho) \mathbf{a}+\mathbf{b}): \rho \geq 1\right\}$ has no common eigenvalue, we argue by contradiction. Suppose that there exists $E \in \mathbb{R}$ such that, for every $\rho \geq 1$, there exists $\psi_{\rho} \in \operatorname{Domain}\left(\mathbb{H}_{V}((\delta+i \rho) \mathbf{a}+\mathbf{b})\right)$ such that $\left\|\psi_{\rho}\right\|_{2}=1$ and

$$
\mathbb{H}_{V}((\delta+i \rho) \mathbf{a}+\mathbf{b}) \psi_{\rho}=E \psi_{\rho}
$$

Since $\psi_{\rho} \in H^{1}\left(\mathbb{T}^{d}\right)$, by the Cauchy inequality and (4.2), we have

$$
\int_{\Omega}\left|\psi_{\rho}\right||V| d \mathbf{x} \leq\left\{\int_{\Omega}|V| d \mathbf{x}\right\}^{1 / 2}\left\{\int_{\Omega}\left|\psi_{\rho}\right|^{2}|V| d \mathbf{x}\right\}^{1 / 2}<\infty
$$

It follows that $(\mathbf{D}+\mathbf{k}) A(\mathbf{D}+\mathbf{k})^{T} \psi_{\rho}=E \psi_{\rho}-V \psi_{\rho} \in L^{1}\left(\mathbb{T}^{d}\right)$.
Let

$$
V_{N}(\mathbf{x})= \begin{cases}V(\mathbf{x}), & \text { if }|V(\mathbf{x})|>N \\ 0, & \text { if }|V(\mathbf{x})| \leq N\end{cases}
$$

Then,

$$
\begin{equation*}
\left\|(\mathbf{D}+\mathbf{k}) A(\mathbf{D}+\mathbf{k})^{T} \psi_{\rho}\right\|_{1} \leq\{|E|+N\}\left\|\psi_{\rho}\right\|_{1}+\left\|V_{N} \psi_{\rho}\right\|_{1} \tag{4.9}
\end{equation*}
$$

By Theorem 4.8,

$$
\begin{equation*}
\left\|V_{N} \psi_{\rho}\right\|_{1} \leq C \sup _{\mathbf{x} \in \Omega} \int_{\Omega} \frac{\left|V_{N}(\mathbf{y})\right|}{|\mathbf{y}-\mathbf{x}|} d \mathbf{y} \cdot\left\|(\mathbf{D}+\mathbf{k}) A(\mathbf{D}+\mathbf{k})^{T} \psi_{\rho}\right\|_{1} \tag{4.10}
\end{equation*}
$$

Note that

$$
\sup _{\mathbf{x} \in \Omega} \int_{\Omega} \frac{\left|V_{N}(\mathbf{y})\right|}{|\mathbf{y}-\mathbf{x}|} d \mathbf{y} \leq \sup _{\mathbf{x} \in \Omega} \int_{|\mathbf{y}-\mathbf{x}| \leq r} \frac{|V(\mathbf{y})|}{|\mathbf{y}-\mathbf{x}|} d \mathbf{y}+\frac{1}{r} \int_{\Omega}\left|V_{N}(\mathbf{y})\right| d \mathbf{y} .
$$

It follows that

$$
\lim _{N \rightarrow \infty} \sup _{\mathbf{x} \in \Omega} \int_{\Omega} \frac{\left|V_{N}(\mathbf{y})\right|}{|\mathbf{y}-\mathbf{x}|} d \mathbf{y} \leq \lim _{r \rightarrow 0} \sup _{\mathbf{x} \in \Omega} \int_{|\mathbf{y}-\mathbf{x}| \leq r} \frac{|V(\mathbf{y})|}{|\mathbf{y}-\mathbf{x}|} d \mathbf{y}=0
$$

This implies that, if N is sufficiently large,

$$
\begin{equation*}
\left\|V_{N} \psi_{\rho}\right\|_{1} \leq \frac{1}{2}\left\|(\mathbf{D}+\mathbf{k}) A(\mathbf{D}+\mathbf{k})^{T} \psi_{\rho}\right\|_{1} . \tag{4.11}
\end{equation*}
$$

In view of (4.9) and (4.11), we obtain

$$
\left\|(\mathbf{D}+\mathbf{k}) A(\mathbf{D}+\mathbf{k})^{T} \psi_{\rho}\right\|_{1} \leq 2(|E|+N)\left\|\psi_{\rho}\right\|_{1} .
$$

This, together with Theorem 4.6, gives

$$
\frac{C \rho^{1 / 2}}{\ln (\rho+1)}\left\|\psi_{\rho}\right\|_{1} \leq 2(|E|+N)\left\|\psi_{\rho}\right\|_{1}
$$

or

$$
\frac{C \rho^{1 / 2}}{\ln (\rho+1)} \leq 2(|E|+N)
$$

for any $\rho \geq 1$. This is impossible if we let $\rho \rightarrow \infty$.

References

[1] M. Sh. Birman and T. A. Suslina, Two-dimensional periodic magnetic Hamiltonian is absolutely continuous, Algebra i Analiz 9 (1997), 32-48; English translation in St. Petersburg Math. J. 9 (1998), 21-32.
[2] _, Absolute continuity of the two-dimensional periodic magnetic Hamiltonian with discontinuous vector-valued potential, Algebra i Analiz 10 (1998), 1-36; English translation in St. Petersburg Math. J. 10 (1999), 579-601.
[3] _, A periodic magnetic Hamiltonian with a variable metric. The problem of absolute continuity, Algebra i Analiz 11 (1999), 1-40, English transl. in St. Petersburg Math. J. 11(2) (2000).
[4] L. Danilov, On the spectrum of the Dirac operator with periodic potential in \mathbb{R}^{n}, Theor. and Math. Phys. 85 (1990), 1039-1048.
[5] R. Hempel and L. Herbst, Strong magnetic fields, Dirichlet boundaries, and spectral gaps, Comm. Math. Phys. 164 (1995), 237-259.
[6] _ Bands and gaps for periodic magnetic Hamiltonians, Partial differential operators and mathematical physics (Holzhau, 1994), Oper. Theory Adv. Appl., vol. 78, Birkhäuser Verlag, Basel, 1995, pp. 175-184.
[7] T. Kato, Schrödinger operators with singular potentials, Israel J. Math. 13 (1972), 135-148.
[8] , Perturbation theory for linear operators. Second edition, Springer-Verlag, New York, 1976.
[9] C.E. Kenig, Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation, Harmonic analysis and partial differential equations (El Escorial, 1987), Lecture Notes in Math., vol. 1384, Springer-Verlag, Berlin, 1989, pp. 69-90.
[10] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., vol. 60, Birkhäuser Verlag, Basel, 1993.
[11] N.N. Lebedev, Special functions and their applications, Dover Publications, New York, 1972.
[12] A. Morame, Absence of singular spectrum for a perturbation of a two-dimensional Laplace-Beltrami operator with periodic electro-magnetic potential, J. Phys. A 31 (1998), 7593-7601.
[13] M. Reed and B. Simon, Methods of modern mathematical physics, vols. II and IV, Academic Press, 1978.
[14] E. Saff and A. Snider, Fundamentals of complex analysis for mathematics, science, and engineering, 2nd ed., Prentice Hall, 1993.
[15] E. Sawyer, Unique continuation for Schrödinger operators in dimension three or less, Ann. Inst. Fourier (Grenoble) 33 (1984), 189-200.
[16] Z. Shen, On absolute continuity of the periodic Schrödinger operators, Intern. Math. Res. Notices 2001, 1-31.
[17] , The periodic Schrödinger operator with potentials in the Morrey class, J. Funct. Analysis, to appear.
[18] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447-526.
[19] A. V. Sobolev, Absolute continuity of the periodic magnetic Schrödinger operator, Invent. Math 137 (1999), 85-112.
[20] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971.
[21] L. E. Thomas, Time dependent approach to scattering from impurities in a crystal, Comm. Math. Phys. 33 (1973), 335-343.

Department of Mathematics, University of Kentucky, Lexington, Ky 40506
E-mail address: shenz@ms.uky.edu

[^0]: Received July 3, 2000; received in final form October 25, 2000.
 2000 Mathematics Subject Classification. Primary 35J10.
 Research supported in part by the NSF grant DMS-9732894.

