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MAPPINGS OF FINITE DISTORTION: GAUGE DIMENSION
OF GENERALIZED QUASICIRCLES

DAVID A. HERRON AND PEKKA KOSKELA

Abstract. We determine the correct dimension gauge for measuring
generalized quasicircles (the images of a circle under so-called µ-homeo-

morphisms). We establish a sharp modulus of continuity estimate for
the inverse of a homeomorphism with finite exponentially integrable
distortion. We exhibit several illustrative examples.

1. Introduction

We continue the study of mappings f : Ω→ Rn with finite distortion. Thus
Ω is a domain in Rn (n ≥ 2), f belongs to the Sobolev space W 1,1

loc (Ω,Rn),
the Jacobian determinant Jf = det(Df) of f (Df being the differential of f)
is locally integrable in Ω, and there is a measurable function K ≥ 1 with K
finite almost everywhere and such that f satisfies the distortion inequality

|Df(x)|n ≤ K(x)Jf (x) for almost every x in Ω.

We also assume that f is a homeomorphism; thus, if we were to require
that K be (essentially) bounded, then f would be a quasiconformal mapping
(according to the analytic definition [Väi71, 34.4]). Instead of asking that
K be bounded, we require only that K be exponentially integrable: there
should exist a λ > 0 such that exp(λK) ∈ L1

loc(Ω). A number of recent papers
have established many important properties for (possibly non-homeomorphic)
mappings with finite exponentially integrable distortion including: continuity,
Lusin’s condition (N), preservation of Lebesgue null sets, etc. See [AIKM00],
[IKMS03], [IKO01], [KM03], [IM01] and the references mentioned therein.

In this article we investigate the ‘size’ of generalized quasispheres—these
are the images f(Sn−1) of the unit sphere under a homeomorphism f : Rn →
Rn which has finite exponentially integrable distortion. In contrast to the
quasiconformal case, it is not difficult to see that a generalized quasisphere
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may have Hausdorff dimension n. Thus our interest is in determining the cor-
rect dimension gauge for measuring f(Sn−1). We consider dimension gauges
of the form δ(t) = tn(log 1/t)p with p > 0; we let Λp = Λn,p denote the gener-
alized Hausdorff measure obtained by using such a dimension function δ. (See
Section 2 for basic definitions and terminology.)

While we do have some general results, we can only give a complete de-
scription for the plane case (dimension n = 2).

Theorem A. There exists an absolute constant k1 such that for any ho-
meomorphism f : R2 → R2 with finite distortion K and exp(λK) locally
integrable for some λ > 0, we have Λp(fS1) <∞ for all p < k1λ.

The sharpness of the linear relationship between p and λ displayed above
is a consequence of the following example.

Example A. There is an absolute constant k2 such that for any λ > 0,
there exists a homeomorphism f : R2 → R2 with finite distortion K, exp(λK)
locally integrable, and Λp(fS1) =∞ for all p > k2λ.

This naturally leads to the following problem.

Problem A. Determine the largest constant k such that for all homeo-
morphisms f : R2 → R2, with finite distortion K and exp(λK) locally inte-
grable, Λp(fS1) <∞ for all p < kλ.

The construction of the homeomorphism f in Example A is obtained by
first mapping a standard Cantor dust onto a generalized Cantor dust, and
this works in Rn. Our proof of the finiteness of the measure of a generalized
quasisphere/quasicircle involves two tools: a volume distortion estimate, and
the following modulus of continuity estimate.

Theorem B. Let Ω ⊂ Rn be a domain. Suppose that a homeomorphism
f : Ω → Rn has finite distortion K with exp(λK) locally integrable for some
λ > 0. Fix a point z ∈ Ω and 0 < R < dist(z, ∂Ω). Then for all |x−z| ≤ R/6,

|f(x)− f(z)| ≥ D exp
(
− C

λ1/(n−1)
logn/(n−1) ΛR

|x− z|

)
,

where C = C(n), D = (1/2) dist(fz, ∂fB(z;R/3)), and

Λ =

(∫
B(z;R)

exp(λK)

)1/n

.

Notice that the above inequality scales appropriately when we make either
change of variable g(x) = f(σx) or g(x) = σf(x). The following example
illustrates that our modulus of continuity estimate is of the correct order.
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Example B. Let λ > 0 be fixed and define

f(x) = ρ(|x|) x
|x|
, where ρ(t) = exp

(
− C

λ1/(n−1)
logn/(n−1) 1

t

)
.

Then f has finite distortion K with exp(λK) locally integrable provided C <
(n− 1)/n(n−2)/(n−1).

Again we are led to a natural question.

Problem B. Determine the smallest constant C so that the conclusion
of Theorem B remains valid with this constant.

The sharpness in Theorem A relies on David’s area distortion for µ-ho-
meomorphisms; see Fact 2.3. As indicated above, there is an Rn version of
Theorem A (in fact, the same proof works), and there exists an Rn analog
of Example A as well. However, when n ≥ 3 there is a lack of information
regarding the precise volume distortion permitted by finite (exponentially
integrable) distortion maps.

Problem C. Determine whether or not the volume distortion Fact 2.3
remains valid for small values of λ. Also, determine whether or not one can
take λ(s;n) to be a linear function of s. (Here we assume n ≥ 3.)

This paper is organized as follows. Section 2 contains preliminary infor-
mation including basic definitions and terminology descriptions as well as
elementary and/or well-known facts. In Section 3 we establish Theorem B
and present Example B. Section 4 is devoted to corroborating Theorem A.
We conclude with Section 5, where we explain and verify Example A.

We thank the referee for their careful reading of our paper and especially
the remarks in Subsection 5.C.

2. Preliminaries

2.A. General information. Our notation is relatively standard and con-
forms with that of [Väi71]. Throughout this paper Ω is a domain in Euclidean
space Rn with n ≥ 2 and |A| denotes the n-dimensional Lebesgue measure
of a measurable set A ⊂ Rn. We let uA =

∫
A
u = (1/|A|)

∫
A
u denote

the integral average of a (locally integrable) function u over A. We write
B(x; r) = {y : |x− y| < r} (resp., S(x; r) = ∂B(x; r) = {y : |x− y| = r}) for
the open ball (sphere) of radius r centered at the point x. We put Bn = B(0; 1)
(the unit ball), Sn−1 = S(0; 1) (the unit sphere), Ωn = |Bn| and let ωn−1 de-
note the measure of Sn−1. We write C = C(a, . . .) to indicate a constant
C which depends only on the parameters a, . . .; a . b means there exists a
positive finite constant C with a ≤ C b, and a ' b means a . b . a. Typ-
ically c, C will be constants (whose actual value may vary even in the same
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line) which depend on various parameters, and we try to make this as clear as
possible, often giving explicit values. We reserve the letter k for an absolute
constant.

Recall that the generalized Hausdorff measure, Gδ, is given by

Gδ(A) = lim
r→0

[
inf
{∑

δ(diamUi) : A ⊂
⋃
Ui,diam(Ui) ≤ r

}]
,

where δ is a dimension gauge (non-decreasing with δ(0) = 0). When δ(t) = tα

for some α ≥ 0, we write Hα = Gδ and call this the Hausdorff α-dimensional
measure. When δ(t) = tn(log 1/t)p with p > 0, we let Λp = Λn,p = Gδ. For
the most part, Hα and Λp will be the only Hausdorff measures of interest to
us. Mattila’s book [Mat95] is an excellent reference for this material.

Next we state a result which describes the integrability of the Jacobian for
certain mappings. This follows from the area formula in conjunction with the
fact that such mappings are essentially Lipschitz on large subsets; see [IKM02,
Thm 6.1], [IM01, Cor 6.3.1] and/or [Fed69, 3.1.8], [EG92, §§6.1.3,6.6.3].

2.1. Fact. Suppose a homeomorphism f belongs to the Sobolev space
W 1,1

loc (B,Rn), where B ⊂ Rn is a ball. Then for each non-negative measurable
function u : Rn → R,∫

A

u ◦ f |Jf | ≤
∫

Rn

u for all measurable A ⊂ B.

2.B. Mappings of finite distortion. Here we collect some information
about mappings of finite distortion.

2.2. Lemma. Let g, h be self-homeomorphisms of Rn, one of which is
quasiconformal and the other having finite exponentially integrable distortion.
Then f = h ◦ g also has finite exponentially integrable distortion.

Proof. Let Kg, Kh denote distortion functions for g, h, respectively. When
h is quasiconformal (so that Kh is essentially bounded), it is straightforward
to see that f has finite distortion Kf ≤ ‖Kh‖∞Kg, and also that exp(λKf ) is
locally integrable for λ ≤ µ/‖Kh‖∞ whenever exp(µKg) is locally integrable.

Assume that g is the quasiconformal homeomorphism (so Kg is essentially
bounded). Again, f has finite distortion Kf ≤ ‖Kg‖∞Kh ◦ g. To check the
exponential integrability, we use Hölder’s inequality to obtain∫

B

exp(λKf ) ≤
(∫

B

exp(nλKf/s)|Dg|n
)s/n(∫

B

|Dg|ns/(s−n)

)(n−s)/n

,

which is valid for any 0 < s ≤ n, with B any ball. The obvious change of
variables shows that the first integral on the right-hand side above is finite,
provided we choose λ ≤ (s/n)(µ/‖Kg‖∞) and exp(µKh) is locally integrable.

To handle the second integral on the right-hand side above, we estimate

1/|Dg|ns/(n−s) ≤ 1/Js/(n−s)g = (Jg−1 ◦ g)s/n−s,
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which, together with a similar change of variables, gives us∫
B

|Dg|ns/(s−n) ≤
∫
g(B)

J
n/(n−s)
g−1 .

According to Gehring’s lemma concerning higher integrability for quasiconfor-
mal maps ([Geh73], [IM01, 14.0.2]), there is an exponent p = p(n, ‖Kg‖∞) > n

such that Jp/ng−1 is locally integrable. Choosing s = n(p − n)/p = n(1 − n/p)
(so 0 < s < n) we obtain n/(n− s) = p/n and thus the above integral is finite
as desired.

Note that in the second case above, we demonstrated that exp(λKf ) is
locally integrable when λ ≤ (1− n/p)µ/‖Kg‖∞ and exp(µKh) is locally inte-
grable, where p = p(n, ‖Kg‖∞) > n is Gehring’s higher integrability exponent
(for the inverse of the quasiconformal map g). �

The following result gives a volume distortion estimate for mappings with
finite distortion; see [IKMS03, Cor 2], [AIKM00, Thm 6.1]. The improved
version for n = 2 is a consequence of David’s work [Dav88], and this is what
gives us the sharpness in Theorem A.

2.3. Fact. For each n ≥ 2 and s ≥ 0 there is a constant λ(s;n) ≥ 1 such
that for λ ≥ λ(s;n) we have

|f(E)| ≤ C/ logs
(

2 +
1
|E|

)
for all compact E ⊂ Bn

whenever f : B(0; 2) → Rn has finite distortion K with exp(λK) locally
integrable in B(0; 2). Here C is a constant which depends only on f , s, n.

When n = 2 and f is a homeomorphism, we can take λ(s; 2) = s/k0, where
k0 is some absolute constant.

2.C. Capacity. The (conformal) capacity of a compact set E ⊂ Ω, rela-
tive to Ω, is

cap(E; Ω) = inf
W

∫
Ω

|∇u|n,

where W is the family of all functions u which are continuous in Ω, possess
weak derivatives whose nth powers are integrable, have zero ‘boundary values’,
and satisfy u ≥ 1 on E. Standard arguments permit us to assume that
u ∈ C∞0 (Ω) with 0 ≤ u ≤ 1, and we call these latter functions admissible for
cap(E; Ω); see [HKM93, pp. 27–28].

Here is a result which can be proved using the Sobolev embedding theorem
on spheres, or alternatively by adapting the proof of [HK98, Theorem 5.9].
For the reader’s convenience, we outline the former argument.

2.4. Lemma. Let E be a continuum joining the origin to the unit sphere.
Suppose that u ∈ W 1,1(Bn,R) is continuous and satisfies: u ≥ 0, u ≥ 1 on
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E, and uBn ≤ 1/2. Then there is a constant C(p, n) > 0 such that for all
n− 1 < p < n, ∫

Bn
|∇u|p ≥ C(p, n).

Proof. First, the hypotheses on u guarantee that the set T of t ∈ (0, 1)
with max|x|=t u−min|x|=t u ≥ 1/4 has measure |T | ≥ 1− (2/3)1/n. Indeed,

1
2
≥ uBn =

1
Ωn

∫
Sn−1

∫ 1

0

u(rω)rn−1 dr dω ≥ 3
4
ωn−1

Ωn

∫
[0,1]\T

rn−1 dr,

so

|[0, 1] \ T |n ≤ n
∫

[0,1]\T
rn−1 dr ≤ 2

3
.

Fix n − 1 < p < n and assume that u ∈ W 1,p(Bn). Then by Fubini’s
theorem, u ∈ W 1,p(S(t)) for a.e. t ∈ (0, 1). The Sobolev embedding theorem
now permits us to assert that for a.e. t ∈ (0, 1) and all x, y ∈ S(t),

|u(x)− u(y)| ≤ C1(p, n) t

(∫
S(t)

|∇u|p
)1/p

.

Thus we have∫
S(t)

|∇u|ptn−1 dω ≥ C2(p, n) tn−p−1 for a.e. t ∈ T ,

which yields the desired conclusion∫
Bn
|∇u|p ≥ C2(p, n)

∫
T

tn−p−1 dt ≥ C(p, n)

with C(p, n) = C2/(n− p)[1− (2/3)1−p/n] and C2 = ωn−1/[4C1]p. �

2.5. Corollary. Let E be a continuum joining some point a to the
sphere S(a; r). Suppose that v ∈ W 1,1(B(a; r),R) is continuous and satis-
fies v ≥ 1 on E and vB(a;r) ≤ 1/2. Then for all n− 1 < p < n,∫

B(a;r)

|∇v|p ≥ C(p, n) r−p.

Proof. Apply Lemma 2.4 to u(x) = v(a+ rx). �

3. Modulus of continuity of f−1

In this section we establish Theorem B and present Example B.
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3.A. Proof of Theorem B. Let f : Ω→ Rn be a homeomorphism with
finite distortion K and exp(λK) ∈ L1

loc(Ω) for some λ > 0. Fix a point
z ∈ Ω and 0 < R < dist(z, ∂Ω). By considering the change of variables
x = z + (2/3)Rξ, we may assume that z = 0 and R = 3/2. We may further
assume that f(0) = 0. We now have D = (1/2) dist(0, ∂B′), where B′ = f(B),
B = B(0; 1/2), and we must demonstrate that for all |x| ≤ 1/4,

|f(x)| ≥ D exp
(
− C

λ1/(n−1)
logn/(n−1) 3Λ

2|x|

)
,

with C = C(n) and Λ = (
∫
B(0;3/2)

exp(λK))1/n.
Fix a point a with |a| ≤ 1/4. We may assume that a′ = f(a) satisfies

|a′| < D, for otherwise we are done. Then dist(a′, ∂B′) > D, so the line
segment E′ = [0, a′] lies in B′ and we have the capacity estimate

(3.1) cap(E′;B′) ≤ ωn−1/(logD/|a′|)n−1.

Note that if f were quasiconformal, then we could now finish our argument
by appealing to a capacity estimate in the original domain.

Let u be an admissible function for cap(E′;B′), so u is smooth with support
in B′, u ≥ 0, and u ≥ 1 on E′. Put v = u◦f ; since f belongs to W 1,1(B′,Rn),
we know that ∇v exists a.e., |∇v| = |Df ||∇u ◦ f | is locally integrable, and
v ∈W 1,1(B,R). Since f has finite exponentially integrable distortion, we can
use the distortion inequality together with Fact 2.1 to obtain the estimate

(3.2)
∫
B

|∇v|n

K
≤
∫
B

|∇u ◦ f |nJf ≤
∫
B′
|∇u|n.

Our final task is to establish the lower bound

(3.3)
∫
B

|∇v|n

K
≥ C(n)λ

(
log

3Λ
2|a|

)−n
.

Before we get into too many details, let us see why this finishes the proof.
Indeed, combining (3.3) with (3.2), then taking an infimum over all admissible
functions u and employing (3.1), we conclude that

C(n)λ
(

log
3Λ
2|a|

)−n
≤ ωn−1

(
log

D

|a′|

)1−n

,

and therefore

log
D

|a′|
≤ C(n)
λ1/(n−1)

logn/(n−1) 3Λ
2|a|

,

which gives the desired inequality. (Note that 3Λ/2|a| ≥ e.)
To validate (3.3), we consider two cases depending on whether or not the

average value of v over the ball A = B(0; |a|) exceeds 1/2. Define

L =
∫
B(0;3/2)

exp(λK), so
L

|A|
=
(

3Λ
2|a|

)n
.
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The case vA ≤ 1/2. Here we can appeal to Corollary 2.5 and assert that∫
A

|∇v|p ≥ c r−p for any n− 1 < p < n,

where r = |a| and c = c(p, n). Take p = n2/(n + 1) and apply Hölder’s
inequality to obtain

(3.4)
c

rp
≤
(∫

A

|∇v|n

K

)p/n(∫
A

Kn

)(n−p)/n

.

Our next goal is to obtain an upper bound for
∫
A
Kn. Consider the auxiliary

function
ϕ(t) = exp(λt1/n).

Certainly ϕ is increasing, and an easy calculation shows that ϕ(t)/t is also
increasing for all t ≥ (n/λ)n. As 3Λ/2|a| ≥ e, we get

τ =
(

1
λ

log
L

|A|

)n
≥
(n
λ

)n
.

Thus ϕ(t) and ϕ(t)/t are increasing for all t ≥ τ and we deduce that∫
A

Kn ≤
∫
{Kn≥τ}

Kn + τ |A| ≤ τ

ϕ(τ)

∫
{Kn≥τ}

ϕ(Kn) + τ |A|

≤ τ

ϕ(τ)

∫
B(0;3/2)

exp(λK) + τ |A| = 2τ |A|;

the equality just above is a consequence of the fact that ϕ(τ) = L/|A|. This
estimate can be written as(∫

A

Kn

)(n−p)/n

≤ C(n)
(

1
λ

log
L

|A|

)p/n
.

Employing this inequality in (3.4) yields∫
A

|∇v|n

K
≥ C(n)λ/ log

L

|A|
,

which in turns gives (3.3) (because 3Λ/2|a| ≥ e); in fact, here we obtain a
stronger inequality since there is no exponent n on the logarithm term.

The case vA ≥ 1/2. Here we utilize a chaining argument together with a
Poincaré inequality. In order to facilitate a technical calculation below, we now
rescale to get “L/Ωn = 1”. Consider the change of variable g(x) = f(x/σ).
Then Kg(x) = K(x/σ) is a finite distortion function for g with

Lg =
∫
B(0;3σ/2)

exp(λKg) = σnL,

so taking σ = (Ωn/L)1/n we obtain Lg = Ωn. Next, let w(x) = v(x/σ)
and note that wσA = vA and also

∫
σB
|∇w|n/Kg =

∫
B
|∇v|n/K. Thus we
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are still in the case wσA ≥ 1/2 searching for a lower bound for the integral∫
σB
|∇w|n/Kg.

Let m be the positive integer with 1/2m+1 < σ|a| ≤ 1/2m. Then m ≥ 2.
Let b = (1, 0, . . . , 0) and consider the balls Ai = B(ai; ri/2), Bi = B(bi; ri),
where ri = 1/2m−i+1, bi = 2rib, and ai = bi + (ri/2)b; here i ≥ 1. Also, put
B0 = B(0; 1/2m) and A0 = B(a0; r1/4), where a0 = (5/4)r1b. Then for i ≥ 1
we have Ai−1, Ai ⊂ Bi with each of ∂Ai−1, ∂Ai being tangent to ∂Bi and
2 diamAi−1 = diamAi = (1/2) diamBi; also, σA,A0 ⊂ B0.

Let ` be the smallest integer with 1/2m−` ≥ σ/2; so 1 ≤ ` ≤ m−1 as σ < 1.
Then A` lies in the complement of σB = B(0;σ/2), so wA` = 0 because the
support of w lies in σB. Thus we can write

1/2 ≤ wσA = (wσA − wA0) + (wA0 − wA1) + · · ·+ (wA`−1 − wA`).

Next, employing a Poincaré inequality, we can estimate the absolute value of
each of these terms, thereby obtaining

C(n) ≤
∑̀
i=0

diam(Bi)
∫
Bi

|∇w|.

Now we use Hölder’s inequality twice, first on each of the integrals, and
then on the sum itself, to get

C(n) ≤

(∑̀
i=0

(diam(Bi))n
∫
Bi

|∇w|n

Kg

)1/n(∑̀
i=0

∫
Bi

K1/(n−1)
g

)(n−1)/n

.

The first factor on the right-hand side above can be estimated from above by
(a constant times) (

∫
σB
|∇w|n/Kg)1/n; this is because Bi ∩ supp(w) ⊂ σB

and the balls Bi have bounded overlap. Thus, raising to the power n provides
us with

(3.5) C(n) ≤
(∫

σB

|∇w|n

Kg

)(∑̀
i=0

∫
Bi

K1/(n−1)
g

)n−1

.

It therefore remains to exhibit an upper bound for
(∑∫

Bi
K

1/(n−1)
g

)n−1

.
In fact, we verify that

(3.6)

(∑̀
i=0

∫
Bi

K1/(n−1)
g

)n−1

≤ C(n)
λ

mn.

Then, since m ' log(1/σ|a|), and recalling the definitions of σ and L, we see
that (3.3) is an immediate consequence of (3.6) in conjunction with (3.5).



1252 DAVID A. HERRON AND PEKKA KOSKELA

Notice that Bi ⊂ (3σ/2)Bn for 0 ≤ i ≤ `. Thus an application of Jensen’s
inequality, with the auxiliary function ϕ(t) = exp(λtn−1), yields

ϕ

(∫
Bi

K1/(n−1)
g

)
≤
∫
Bi

exp(λKg) ≤
1
|Bi|

∫
B(0;3σ/2)

exp(λKg)

=
Lg
|Bi|

= r−ni ;

recall the rescaling done above to ensure that Lg = Ωn. Since ϕ−1(s) =
[(1/λ) log s]1/(n−1) and ri = 1/2m−i+1, we deduce that∫

Bi

K1/(n−1)
g ≤

(
1
λ

log
1
rni

)1/(n−1)

= C(n)λ1/(1−n)(m− i+ 1)1/(n−1).

Now as i runs through the indices 0, 1, . . . , ` we have m− i+ 1 taking on the
values m+ 1,m, . . . ,m− `+ 1. Since m− `+ 1 ≥ 2, we have∑̀
i=0

(m− i+ 1)1/(n−1) =
m+1∑

j=m−`+1

j1/(n−1) ≤
m+1∑
j=1

j1/(n−1) ≤ C(n)mn/(n−1).

Combining the two inequalities displayed just above corroborates (3.6), thereby
completing our proof. �

3.B. Demonstration of Example B. Let

f(x) = ρ(|x|) x
|x|
, where ρ(t) = exp

(
− C

λ1/(n−1)
logn/(n−1) 1

t

)
;

here λ > 0 is a fixed parameter and C = C(n) a constant to be determined.
Since f is radial, there are only two directional derivatives to check, and we
conclude that

|Df(x)| = max{ρ′(r), ρ(r)/r} and Jf (x) = ρ′(r) (ρ(r)/r)n−1
,

where r = |x|. As

ρ′(t) =
C

λ1/(n−1)

n

n− 1
log1/(n−1) 1

t

ρ(t)
t
,

we find that |Df(x)| = ρ′(r), at least for r = |x| << 1. Then

K(x) =
|Df(x)|n

Jf (x)
=
(
rρ′(r)
ρ(r)

)n−1

= [(Cn/(n− 1))n−1/λ] log
1
r
.

We conclude that exp(λK) = exp(α log 1/r) = r−α, where α = (Cn/(n −
1))n−1. Thus exp(λK) will be locally integrable precisely when C < C(n) =
(n− 1)n−(n−2)/(n−1). �

We point out that the constant C(n) = (n− 1)n−(n−2)/(n−1) gives a lower
bound for Problem B.
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4. Generalized quasicircles

In this section we establish Theorem A and state a few observations con-
cerning its proof and higher dimensional analogs.

4.A. Proof of Theorem A. Suppose f : R2 → R2 is a homeomorphism
with finite distortion K and exp(λK) locally integrable for some λ > 0. As-
sume that f(0) = 0 and choose R > 6 so that dist(fz, ∂fB(z;R/3)) ≥ 2 for
all z ∈ S1. Consider any cover of f(S1) by disks B(fzi; r), where zi ∈ S1 and
r > 0 is small. Since f−1 is uniformly continuous (on f(S1))), we can assume
that f−1B(fzi; r) ⊂ B(zi; 1) for all zi. Appealing to Theorem B we find that
f(x) ∈ B(fzi; r) implies

r ≥ |f(x)− f(zi)| ≥ exp
(
−C
λ

log2 ΛR
|x− zi|

)
,

and therefore |x − zi| ≤ ΛR exp(−[(λ/C) log(1/r)]1/2). In particular, we see
that

⋃
B(fzi; r) ⊂ f(Aε), where

Aε = {x : 1− ε < |x| < 1 + ε} and log2 ΛR
ε

=
λ

C
log

1
r
.

Let N(E, r) denote the maximal number of disjoint disks with centers in E
and radii r. Then the above, in conjunction with Fact 2.3, yields

N(fS1, r)πr2 ≤ |f(Aε)| ≤ C log−s
1
|Aε|

= C log−s
1

4πε

provided s < k0λ. Thus for p ≤ s/2 < k0λ/2 we find that

lim sup
r→0

N(fS1, r) r2 logp
1
r
<∞,

which in particular gives Λp(fS1) <∞ (cf. [Mat95, pp. 76–79]). �

4.B. Remarks. (1) The above proof certainly works in Rn, but the vol-
ume distortion fact 2.3 requires that λ ≥ λ(s;n) be sufficiently large.

(2) The alert reader will no doubt see that our proof actually concerns
generalized Minkowski content obtained by using the dimension gauge δ(t) =
tn(log 1/t)p. We mention that in the quasiconformal category one knows that

sup dimHf(S1) = sup dimMf(S1) = 1 +
(
K − 1
K + 1

)2

,

where the supremum is taken over all K-quasiconformal self-homeomorphisms
of the plane and dimH, dimM stand for Hausdorff, Minkowski dimensions,
respectively. Astala [Ast88, Theorem 1.5] established the first identity and
conjectured the correct dimension, which has recently been corroborated by
Smirnov. It would be interesting to know whether or not one can say anything
at all like this for finite distortion homeomorphisms.
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(3) There are second order estimates which suggest a linear relationship
between λ and p even when n ≥ 3. Indeed, there is a volume distortion
estimate of the form

|f(E)| ≤ C/
(

log log
1
|E|

)p
for all compact E,

and this is valid for all p > 0 and all λ > 0 (see [IM01, p. 160], [AIKM00,
Thm. 6.1]). Using this in the above proof leads to the conclusion that for
any homeomorphism f having finite distortion K with exp(λK) locally in-
tegrable for some λ > 0, Gδ(fSn−1) < ∞ for every dimension gauge δ(t) =
tn(log log(1/t))p with p > 0.

5. Cantor dust example

Here we construct a natural self-homeomorphism of Rn which maps a stan-
dard Cantor dust onto a generalized one. We determine when this mapping
will have exponentially integrable distortion, and then utilize this to corrob-
orate Example A.

5.A. From dust to dust. We recall one of the ways to construct a ‘stan-
dard’ Cantor dust. Starting with the unit interval [0, 1], we select two inter-
vals, each of length σ, one from the middle of [0, 1/2] and one from the middle
of [1/2, 1]; here 0 < σ < 1/2 is some fixed parameter. This gives us our first
generation basic intervals. We now iterate this process: given a (k − 1)st
generation basic interval I, we select two intervals each of length σk, one from
the middle of each of the two halves of I. This will give us a total of 2k kth
generation intervals each of length σk. Then C = C(σ) is the intersection over
all generations of the unions of all kth generation basic intervals. Standard
arguments give the dimension of C as α = log 2/ log(1/σ), and show that C
has positive finite Hα-measure.

The above construction can be generalized by replacing the fixed parameter
σ with a sequence {τk}, where 0 < τk < 1/2. Here the kth generation basic
intervals have length tk = τ1 . . . τk. Again, standard arguments reveal that
C = C({τk}) has positive finite generalized Hausdorff measure Gδ(C) provided
our dimension gauge δ and parameter sequence {τk} satisfy δ(tk) ' 2−k. In
particular, if we take

τ1 =
1
2

1
(log 4)p

and τk =
1
2

(
1− 1

k

)p
for k = 2, 3, . . . ,

then we find that C = C({τk}) has positive finite generalized Hausdorff mea-
sure Gδ(C) for the gauge δ(t) = t(log(1/t))p, where p > 0. Since t <
t(log(1/t))p < tα as t → 0 (for any fixed 0 < α < 1), such a generalized
Cantor dust is ‘bigger’ than any standard Cantor dust.

We remark that in either of the above constructions we can form Cn =
C × · · · × C and obtain a Cantor dust in Rn, and this set has positive finite
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measure, either in dimension n log 2/ log(1/σ) for a ‘standard’ dust, or using
the gauge δ(t) = tn(log(1/t))pn for a generalized dust. We are now ready to
construct a self-homeomorphism of Rn, which maps such a ‘standard’ dust
onto a generalized one, and has finite exponentially integrable distortion pro-
vided the associated parameters satisfy a certain inequality. Our method here
has been utilized in [KKM01b, §4], [KKM01a, §5], [IM01, §6.5.6], as well as
other places.

5.1. Proposition. Let C = C(σ)n, C′ = C({τk})n be ‘standard’, resp.
generalized Cantor dusts in Rn constructed (as above) using parameters 0 <
σ < 1/2, resp. 0 < τk < 1/2. There is a finite distortion homeomorphism
h : Rn → Rn with the property that h(C) = C′. Moreover, if we take

τ1 =
1
2

1
(log 4)p

and τk =
1
2

(
1− 1

k

)p
for k = 2, 3, . . . ,

for some p > 0, then the distortion function Kh for h will have exp(µKh)
locally integrable provided µ < C(σ)p n, where C(σ) = log(1/2σ)/((1/2σ)−1).

Proof. Fix 0 < σ < 1/2, 0 < τk < 1/2 and let C = C(σ)n, C′ = C({τk})n
be the Cantor dusts in Rn as described above. There are 2kn cubes Qki,
of edge length 2rk = σk associated with each of the 2k kth generation basic
intervals for C, and similar cubes Q′ki, of edge length 2r′k = tk = τ1 . . . τk for C′.
There are also larger cubes Pki (concentric about Qki), of edge length 2Rk =
(1/2)σk−1, and P ′ki (concentric about Q′ki), of edge length 2R′k = (1/2)tk−1 =
(1/2)τ1 . . . τk−1. (Thus Qki, Q′ki are formed using the kth generation basic
intervals while Pki, P ′ki are formed using the halves of the (k−1)st generation
basic intervals.) Next we put Aki = Pki \Qki, A′ki = P ′ki \Q′ki; these ‘cubical
collars’ (or ‘frames’) are actually spherical rings when we work with the norm

‖x‖ = ‖x‖∞ = max{|x1|, . . . , |xn|},

because the cubes Pki, Qki, P ′ki, Q
′
ki are all just balls in this norm.

Now we describe how to produce a ‘natural’ self-homeomorphism of Rn

which maps C onto C′. We start by defining h1 : Rn → Rn as

h1 =


the identity outside all P1i,
a similarity of Q1i onto Q′1i,
a ‘radial stretching’ of A1i onto A′1i.

(The patient reader will see that we explain this ‘radial stretching’ in more
detail below.) Note that the only distortion for h1 is that from the ‘radial
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stretching’ and this all ‘lives’ in the cubical collars A1i. We iterate this con-
struction by defining hk : Rn → Rn via

hk =


hk−1 outside all Pki,
a similarity of Qki onto Q′ki,
a ‘radial stretching’ of Aki onto A′ki.

(The reader interested in more precise formulae for these maps is invited to
consult, e.g., [KKM01b, §4] or [KKM01a, §5] or [IM01, §6.5.6].) Again, the
only (new) distortion for hk ‘lives’ in the collars Aki. In the usual way we
now obtain a self-homeomorphism h = limk→∞ hk of Rn which maps the unit
cube onto itself, and satisfies h(C) = h(C′) too. Moreover, the distortion of h
‘lives’ in the union of all the cubical collars Aki, and since these collars are all
disjoint, the distortion of h in Aki is just that coming from the map hk, i.e.,
coming from the radial stretching of Aki onto A′ki.

Next we take a more careful look at these radial stretchings. Consider the
cubical collars (i.e., spherical rings)

A = {x : r < ‖x‖ < R} and A′ = {y : r′ < ‖y‖ < R′}

and the radial homeomorphism

y = ϕ(x) =
x

‖x‖
ρ(‖x‖), where ρ(t) = at+ b.

Since ‖x‖ = t maps to ‖y‖ = at + b, we see that A′ = ϕ(A) provided we
choose a, b to satisfy

r′ = ar + b , R′ = aR+ b ; so a =
R′ − r′

R− r
, etc.

Moreover, it is straightforward [KKM01b, 4.1] to obtain the estimates

|Dϕ(x)| ' a+
b

‖x‖
and Jϕ(x) = a

(
a+

b

‖x‖

)n−1

,

and thus ϕ has distortion

Kϕ(x) ' 1 +
b

a‖x‖
.

Now we examine the distortion of h in Aki. Recall that the cubical collar
Aki has inner, outer radii rk, Rk = σk−1/4 = rk/(2σ). Thus Rk ' rk and so
we deduce that h has distortion

Kh ' 1 +
b

ar
=
r′

r

R− r
R′ − r′

in Aki,

where r = rk, R = Rk, r′ = r′k, R′ = R′k and a = ak = (R′ − r′)/(R − r),
b = bk are chosen so that Aki is mapped onto A′ki. Writing r,R, r′, R′ in terms
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of our parameters and simplifying we find that

Kh '
τk
σ

1− 2σ
1− 2τk

in Aki.

Now we estimate the integral of exp(µKh) over the unit cube, which can
be found by summing over all cubical collars Aki. Since there are 2nk of these
collars, each of measure no larger than Rnk (the volume of Pki), the above
estimate for Kh yields∫

[0,1]n
exp(µKh) .

∞∑
k=1

2nkRnk exp
(
µ
τk
σ

1− 2σ
1− 2τk

)
.
∞∑
k=1

ckρ
k,

where

ck = exp
(
µ
τk
σ

1− 2σ
1− 2τk

)
and ρ = (2σ)n.

The venerable Ratio Test assures us that the above series converges provided

exp
(
µ

p

1− 2σ
2σ

)
= lim
k→∞

ck+1

ck
<

1
ρ

= (2σ)−n;

i.e., exp(µKh) will be locally integrable if µ < C(σ) p n. �

5.B. Demonstration of Example A. Let σ = 1/4 and construct a
‘standard’ Cantor set C ⊂ R2 as above using this parameter. There is a qua-
siconformal homeomorphism g : R2 → R2 with the property that g(S1) ⊃ C;
see [GV71], [Geh82, 3.2], [Bis99, 3.1]. Now g has (outer) dilatation (i.e., a
distortion function) bounded by some absolute constant, say K0, and appeal-
ing to Gehring’s higher integrability lemma ([Geh73], [IM01, 14.0.2]) there is
an exponent p0 = p0(2,K0) > 2 such that Jp0/2

g−1 is locally integrable. Put
k2 = 2p0K0/(p0 − 2) (an absolute constant).

Let λ > 0 be given, and set q = µ = (k2/2)λ. As in Subsection 5.A, we
construct a generalized Cantor dust C′ ⊂ R2 with Λ2q(C′) positive and finite.
(Note that Λp(C′) = ∞ for any p > 2q.) According to Proposition 5.1, there
is a finite distortion homeomorphism h : R2 → R2 with h(C) = C′. Also,
µ = q < 2C(σ)q (since C(σ) = C(1/4) = log 2), so we are guaranteed that
exp(µKh) is locally integrable, where Kh is a distortion function for h.

Put f = h ◦ g, a self-homeomorphism of R2 with f(S1) ⊃ h(C) = C′.
According to Lemma 2.2 and its proof, f has finite distortion Kf , and since
λ = (1 − 2/p0)µ/K0, we also know that exp(λKf ) is locally integrable (see
the last paragraph of the proof of this lemma). Finally, if p > k2λ = 2q, then
Λp(fS1) =∞ as asserted. �

5.C. Remark. Since we are restricting our attention to the plane R2,
results of Astala [Ast94, Cor 1.2] permit us to take p0 above arbitrarily close
to 2K0/(K0−1). In principle one can calculate K0 (e.g., by iterating a specific
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piecewise linear map) and thus obtain the estimate k ≤ 2K2
0 in connection

with Problem A.

Added in proof. Problem C has recently been solved by Faraco, Koskela,
and Zhong (Mappings of finite distortion: the degree of regularity, to appear).
In particular the n-dimensional analog of Theorem A is true.
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