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THE ROOT OPERATOR ON INVARIANT SUBSPACES OF
THE BERGMAN SPACE

RONGWEI YANG AND KEHE ZHU

Abstract. For an invariant subspace I of the Bergman space we study
an integral operator on I defined in terms of the reproducing kernel

of I. Such an operator will be called the root operator of I and its
associated integral kernel will be called the root function of I. We
obtain fundamental spectral properties of the root operator when the
invariant subspace I has finite index.

1. Introduction

The Bergman space A2 consists of analytic functions f in the unit disk D
such that

‖f‖2 =
∫
D

|f(z)|2 dA(z) <∞,

where dA is the normalized area measure on D. It is easy to see that A2 is
closed in L2(D, dA) and so is a Hilbert space with inner product

〈f, g〉 =
∫
D

f(z) g(z) dA(z), f, g ∈ A2.

For the general theory of Bergman spaces see [6] and [11].
The Bergman shift B is multiplication by the coordinate function z on A2.

A closed subspace of A2 is called an invariant subspace if it is invariant for B.
For any f ∈ A2 we let If denote the smallest invariant subspace containing f
and call it the invariant subspace generated by f . It is clear that If is simply
the closure in A2 of the set of polynomial multiples of f .

Throughout the paper we fix an invariant subspace I of A2 and let T denote
the restriction of the Bergman shift B to I. The operator T contains much
information about I and has been a subject of many studies. In particular,
we mention the hyponormality of T , that is, the self-commutator

[T ∗, T ] = T ∗T − TT ∗
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is a positive operator. It then follows from the Berger-Shaw theorem (see [4])
that [T ∗, T ] is in the trace class when I is finitely generated, or according to
[1], when

index(I) := dim(I 	 zI) <∞.
In fact, it is proved in [13] and [14] that the trace of [T ∗, T ] is equal to the
index of I.

We denote the reproducing kernel of I by KI(z, w). The superscript I
will remain throughout the paper, because we use K(z, w) to denote the full
Bergman kernel,

K(z, w) =
1

(1− zw)2
.

Since the reproducing kernel completely determines the underlying invariant
subspace, every piece of information about I is encoded in KI(z, w), and it is
therefore only a matter of how to decipher this information.

The reproducing kernel KI(z, w) is not easily computable, except in very
special situations. Therefore, it has not played a very important role in the
study of invariant subspaces until only recently, when a number of papers (see
[2], [7], [8], and [9]) exhibited certain structural properties of KI(z, w) and
showed how such structural properties can be applied to prove new theorems
and reprove some old theorems about I.

Although the boundary behavior of KI(z, w) is complicated in general,
many examples seem to suggest that KI(z, w) behaves like K(z, w) near those
boundary points where I does not have a singularity. So the factor (1− zw)2

can be used to tame KI(z, w) on the boundary. This observation led us to
the following definitions.

The root function RI of I is defined on D× D as

RI(z, w) :=
KI(z, w)
K(z, w)

,

and the associated root operator on I is defined as

CI(f)(z) :=
∫
D

KI(z, w)
K(z, w)

f(w) dA(w).

When no confusion is likely, we shall suppress the superscript I and simply
write R(z, w) for the root function and C for the root operator. One notes
that R(z, z) is the square of the so-called majorization function for I studied
in [2]. The origin of the root function and the root operator is in [4] where,
in the setting of the Hardy space over the bidisk, they were called the core
function and the core operator, respectively.

It will be shown in the next section that the root operator C is a bounded
linear operator on I. The main purpose of the paper is to study the basic
operator theoretic properties of C. More specifically, we obtain complete
results about when the operator C is compact, in the trace class, in the
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Hilbert-Schmidt class, or more generally, in the Schatten p-classes. We also
obtain partial results about when the root operator has finite rank.

We wish to thank the referee for several thoughtful remarks and sugges-
tions. In particular, the referee pointed out:

(1) The root operator can be written as

CI = P I −DI ,

where P I is the orthogonal projection from I onto I 	 zI and DI is
some positive operator on I that leaves zI invariant.

(2) If the index of I is one, then the root function can be written in the
form

RI(z, w) = G(z)G(w)(1− l(z, w)),

where l(z, w) is some positive-definite function and G is the extremal
function for I.

(3) The rank of CI in Proposition 13 has been precisely computed in the
recent paper [3].

2. The Bergman shift and the extremal function

Recall that T is the operator of multiplication by the coordinate function
z on the invariant subspace I. Most of our analysis is based on the following
explicit relationship between the operators C and T .

Lemma 1. For every invariant subspace I we have

C = 1− 2TT ∗ + T 2T ∗2,

where 1 denotes the identity operator.

Proof. Observe that if ϕ is any bounded analytic function in D, then the
operator of multiplication by ϕ, denoted by Mϕ, maps I boundedly into I.
In fact, it is easy to check that ‖Mϕ‖ = ‖ϕ‖∞. Furthermore, the adjoint of
Mϕ : I → I admits the following integral representation:

M∗ϕf(z) =
∫
D

KI(z, w)ϕ(w)f(w) dA(w), f ∈ I.

Since

Cf(z) =
∫
D

(1− zw)2KI(z, w)f(w) dA(w)

=
∫
D

(1− 2zw + z2w2)KI(z, w)f(w) dA(w),

the desired result then follows from the above observation. �
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A consequence of Lemma 1 is that C is a bounded self-adjoint operator on
every I. Also, setting I = A2, we conclude that the operator

1− 2BB∗ +B2B∗2,

where B is the Bergman shift, is the rank 1 operator which maps every f to
f(0).

In many situations it is more useful for us to rewrite the operator C as

(1) C = (1− TT ∗)− T (1− TT ∗)T ∗.

In particular, this suggests that the size of C is controlled by that of 1−TT ∗.
If {en} is any orthonormal basis for I, then

KI(z, z) =
∑
n

|en(z)|2.

Expanding {en} to an orthonormal basis for the full space A2, we see that
KI(z, z) ≤ K(z, z), so that

(2) 0 ≤ R(z, z) ≤ 1, z ∈ D.

This simple observation will be useful later when we calculate the trace of the
root operator C.

If m is the smallest non-negative integer such that f (m)(0) 6= 0 for some
f ∈ I, then the following extremal problem has a unique solution:

sup{Re f (m)(0) : f ∈ I, ‖f‖ ≤ 1}.

This solution will be called the extremal function for I and will be denoted
by G(z). It is easy to see that if m = 0, then

G(z) = KI(z, 0)/
√
KI(0, 0), z ∈ D.

Furthermore, if Q is the orthogonal projection from A2 onto I and 1 is the
constant function, then

KI(z, 0) = Q(1)(z), z ∈ D.

See [6] for more information about the extremal function.
The following estimate compares the root function on the diagonal to the

extremal function.

Lemma 2. For every invariant subspace I we have

(1− |z|2)|G(z)|2 ≤ R(z, z), z ∈ D.

If I has index 1, then we also have

R(z, z) ≤ |G(z)|2, z ∈ D.
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Proof. For the first inequality see the proof of Theorem 4.2 in [12]. The
second inequality follows from (5.2) of [2]. �

The following proposition provides more accurate information about the
spectrum σ(C) of the operator C. Here, for an eigenvalue λ of C, its corre-
sponding eigenspace is denoted by Eλ.

Proposition 3. The root operator C always has 1 as an eigenvalue. Fur-
thermore, ‖C‖ = 1, E1 = I 	 zI, and −1 is not an eigenvalue of C.

Proof. Since 1− TT ∗ is a positive contraction, equation (1) implies that

−T (1− TT ∗)T ∗ ≤ C ≤ 1− TT ∗,

from which it follows that ‖C‖ ≤ 1. Since

ker(T ∗) = I 	 zI,

Lemma 1 shows that Cf = f on I 	 zI. This shows that ‖C‖ = 1 and I 	 zI
is contained in the eigenspace E1.

If Cf = f for some f ∈ I, then by Lemma 1,

T (2− TT ∗)T ∗f = 0.

Since T is one-to-one, this gives

(2− TT ∗)T ∗f = 0.

But the operator 2− TT ∗ is invertible, so T ∗f = 0, or f ∈ I 	 zI. This along
with the last statement in the previous paragraph shows that E1 = I 	 zI.

If Cf = −f , then Lemma 1 gives

TT ∗f + T (1− TT ∗)T ∗f = 2f.

Taking the inner product with f on both sides, we get

‖T ∗f‖2 + ‖(1− TT ∗)1/2T ∗f‖2 = 2‖f‖2.

Since T ∗ and (1 − TT ∗)1/2 are both contractions, we easily deduce that
‖T ∗f‖ = ‖f‖. But the hyponormality of T implies ‖T ∗f‖ ≤ ‖Tf‖, so
‖f‖ ≤ ‖Tf‖, which happens only if f = 0. �

3. Preliminaries on Schatten ideals

If S is a self-adjoint compact operator on a Hilbert space H, then there
exists an orthonormal set {en} in H such that

Sx =
∑
n

λnen〈x, en〉, x ∈ H,

where {λn} is the eigenvalue sequence of S, counting multiplicity.
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For any 0 < p <∞, the Schatten p-class, or the Schatten p-ideal, consists
of all compact operators S on H such that the eigenvalue sequence {λn} of
(S∗S)1/2 satisfies

‖S‖p =

(∑
n

|λn|p
)1/p

<∞.

It is well known that for 1 ≤ p < ∞ the Schatten p-class is a Banach space
with the above norm. Furthermore, if S belongs to the Schatten p-class, then

‖ASB‖p ≤ ‖A‖‖S‖p‖B‖
for all bounded linear operators A and B on H, so that the Schatten p-class
is actually a two-sided ideal in the full algebra of bounded linear operators on
H.

If S is a self-adjoint compact operator with eigenvalue sequence {λn}, then

‖S‖pp =
∑
n

|λn|p,

because the eigenvalue sequence of (S∗S)1/2 is simply {|λn|}.
When p = 1, the Schatten p-class is called the trace class. If S is in the

trace class and {en} is an orthonormal basis for H, then the series∑
n

〈Sen, en〉

converges and the sum is independent of the choice of the orthonormal basis.
This sum is called the trace of S and is denoted by tr(S). It is easy to see that
if S is a self-adjoint operator in the trace class, and if the eigenvalue sequence
of S is {λn}, then

tr(S) =
∑
n

λn.

When p = 2, the Schatten p-class is called the Hilbert-Schmidt class. If
S is in the Hilbert-Schmidt class and if {en} is an orthonormal basis for H,
then the series ∑

n

‖Sen‖2

converges and the sum is independent of the choice of the orthonormal basis.
The square root of this sum is equal to the Hilbert-Schmidt norm ‖S‖2, or
the Schatten 2-norm, of S.

It is well known that if S is an integral operator on L2(µ),

Sf(x) =
∫
H(x, y)f(y) dµ(y),

then S is Hilbert-Schmidt if and only if∫∫
|H(x, y)|2 dµ(x) dµ(y) <∞.
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Furthermore, the above double integral equals ‖S‖22.
More details and references about the Schatten classes can be found in [11].

We now specialize to the case of operators on the invariant subspace I.
Recall that the zero set of I, denoted by ZI , consists of the common zeros

of all functions in I. For z ∈ D− ZI we define

kIz(w) =
KI(w, z)√
KI(z, z)

, w ∈ D,

and call it the normalized reproducing kernel of I at z.
For any bounded linear operator S on I we can define a bounded function

S̃ in L∞(D, dA) by

S̃(z) = 〈SkIz , kIz〉, z ∈ D− ZI .

This function is called the Berezin transform of S. See [11] and [6] for more
information about the Berezin transform.

Lemma 4. Let S be a bounded linear operator on I. If S is either positive
or in the trace class, then

tr(S) =
∫
D

S̃(z)KI(z, z) dA(z).

In particular, a positive operator S on I belongs to the trace class if and only
if the above integral is finite.

Proof. This is similar to the proof of Proposition 6.3.2 in [11]. �

Lemma 5. A bounded linear operator S on I is Hilbert-Schmidt if and
only if ∫

D

‖SkIz‖2KI(z, z) dA(z) <∞.

Furthermore, the square root of the above integral is equal to the Hilbert-
Schmidt norm of S.

Proof. The operator S is Hilbert-Schmidt if and only if the positive oper-
ator S∗S is in the trace class. The desired result then follows from Lemma 4.

�

Corollary 6. If the root operator C is in the trace class, then

tr(C) =
∫
D

R(z, z) dA(z),

and the Hilbert-Schmidt norm of C is

‖C‖2 =
[∫
D

∫
D

|R(z, w)|2 dA(z) dA(w)
]1/2

.
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In particular, if C is in the trace class, then 0 < tr(C) ≤ 1, and tr(C) = 1
holds only for I = A2.

Proof. For the root operator C on I one verifies by the reproducing prop-
erty of KI(z, w) that

CKI(−, z)(w) = R(w, z),
and hence

〈CKI(−, z), KI(−, z)〉 = R(z, z).
In particular, the Berezin transform of C is given by

C̃(z) =
R(z, z)
KI(z, z)

= (1− |z|2)2.

The trace formula then follows from Lemma 4, the formula for the Hilbert-
Schmidt norm of C follows from Lemma 5, and the estimates for tr(C) follow
from the inequalities in (2). �

Note that the above formula for the Hilbert-Schmidt norm of C also follows
from the general theory of integral operators. In fact, if

f ∈ L2(D, dA)	 I,
then ∫

D

KI(z, w)
K(z, w)

f(w) dA(w) = 0, z ∈ D.

Therefore, the Hilbert-Schmidt norm of C on I is the same as the Hilbert-
Schmidt norm of the integral operator

Sf(z) =
∫
D

KI(z, w)
K(z, w)

f(w) dA(w)

on L2(D, dA), which is the square root of the double integral of the integral
kernel.

Also note that the proof of Corollary 6 shows the Berezin transform of
the root operator C is independent of the underlying space I, and is always
vanishing on the boundary of the unit disk. Later in the paper we will see that
C is compact if and only if the index of I is finite. Since there exist invariant
subspaces of infinite index, this gives us examples of bounded operators that
are not compact but whose Berezin transforms vanish on the boundary.

4. Membership of C in Schatten classes

This section deals with the compactness and membership in Schatten classes
for the root operator C. It turns out that the index of I is the key to these
issues.

Lemma 7. The following conditions are equivalent.
(i) The operator 1− TT ∗ is Hilbert-Schmidt.
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(ii) The operator 1− TT ∗ is compact.
(iii) The index of I is finite.

Proof. First observe that the operator 1− T ∗T is always Hilbert-Schmidt,
regardless of the index of I. In fact, it is a Toeplitz-type operator, and its
integral representation is given by

(1− T ∗T )f(z) =
∫
D

(1− |w|2)KI(z, w)f(w) dA(w), f ∈ I.

Therefore, we have the following estimate for the Hilbert-Schmidt norm.

‖1− T ∗T‖22 ≤
∫
D

∫
D

(1− |z|2)2|KI(z, w)|2 dA(z) dA(w)

=
∫
D

(1− |z|2)2 dA(z)
∫
D

|KI(z, w)|2dA(w)

=
∫
D

(1− |z|2)2KI(z, z) dA(u)

=
∫
D

R(z, z) dA(z) ≤ 1.

Next observe that

(3) 1− TT ∗ = 1− T ∗T + [T ∗, T ].

If index(I) < ∞, then by [13] the self-commutator [T ∗, T ] is in the trace
class, and in particular, it is Hilbert-Schmidt. Thus equation (3) shows that
1− TT ∗ is Hilbert-Schmidt whenever I has finite index.

If 1− TT ∗ is Hilbert-Schmidt, then it is of course compact.
If 1− TT ∗ is compact, then the fact that

(1− TT ∗)f = f, f ∈ I 	 zI,
implies that I 	 zI is finite dimensional, or that I has finite index. �

The above proof actually gives us upper and lower bounds for the Hilbert-
Schmidt norm of 1− TT ∗.

Corollary 8. If n is the index of I, then
√
n ≤ ‖1− TT ∗‖2 ≤ 1 +

√
n.

Proof. Since 0 ≤ [T ∗, T ] ≤ I, all eigenvalues of [T ∗, T ] are between 0 and
1, we have

‖[T ∗, T ]‖22 ≤ tr[T ∗, T ].
It is shown in [13] that tr[T ∗, T ] = n, and it is shown in the proof of Lemma 7
that ‖1− T ∗T‖2 ≤ 1. So

‖1− TT ∗‖2 ≤ ‖1− T ∗T‖2 + ‖[T ∗, T ]‖2 ≤ 1 +
√
n.
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On the other hand, the operator 1− TT ∗ fixes every vector in I 	 zI, so

‖1− TT ∗‖22 ≥ dim(I 	 zI) = n,

completing the proof of the corollary. �

We mention in passing that the operators 1− TT ∗ and 1− T ∗T are never
in the trace class. In fact, by calculating the Berezin transform and using
Lemma 4, we see that the positive Toeplitz-type operator 1 − T ∗T is in the
trace class if and only if∫

D

(1− |z|2)KI(z, z) dA(z) <∞.

To see that this never happens, consider In = znI for n ≥ 1. By Lemma 2,

(4)
∫
D

(1− |z|2)KIn(z, z) dA(z) ≥
∫
D

|Gn(z)|2 dA(z) = 1,

where Gn is the extremal function for In. The inclusion In ⊂ I implies

KIn(z, z) ≤ KI(z, z), z ∈ D.

Also, the inclusion In ⊂ znA2 implies

lim
n→∞

KIn(z, z) = 0, z ∈ D;

see the proof of Proposition 12. So, if∫
D

(1− |z|2)KI(z, z) dA(z) <∞,

then we can let n→∞ in (4) and apply the dominated convergence theorem to
take the limit inside the first integral, which clearly results in a contradiction.
This proves that the operator 1− T ∗T is never in the trace class. Since

1− TT ∗ ≥ 1− T ∗T,

the same is true for 1− TT ∗.
In view of equation (1), the operator C is smaller than 1 − TT ∗ in some

sense, and so may well belong to the trace class. The next result tells us
exactly when this happens.

Theorem 9. The following conditions are equivalent.
(i) The index of I is finite.
(ii) The root operator C is in the trace class.
(iii) The root operator C is compact.

Proof. It is clear that (ii) implies (iii). That (iii) implies (i) follows from
the fact that I 	 zI is the eigenspace of C corresponding to the eigenvalue 1;
see Proposition 3.
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To show that (i) implies (ii), we observe that

C − (1− TT ∗)2 = T 2T ∗2 − TT ∗TT ∗ = −T [T ∗, T ]T ∗.

If the index of I is finite, then by [13] the self-commutator [T ∗, T ] is in the
trace class. Since the trace class is actually an ideal in the algebra of all
bounded linear operators on I, the operator T [T ∗, T ]T ∗ belongs to the trace
class as well. Also, by Lemma 7, the operator 1 − TT ∗ is Hilbert-Schmidt,
so the operator (1− TT ∗)2 is in the trace class. This proves that C is in the
trace class whenever the index of I is finite. �

Combining Theorem 9 and Corollary 6, we see that if I has finite index,
then 0 < tr(C) ≤ 1, and equality holds only when I = A2.

For 0 < p < ∞, let Sp denote the Schatten p-class of I. If 1 < p < ∞,
then Sp contains the trace class and is contained in the set of all compact
operators. It follows that for any p ∈ [1,∞) the root operator C belongs to
Sp if and only if the index of I is finite. In particular, C is Hilbert-Schmidt if
and only if the index of I is finite. Combining this with Corollary 6, we see
that the double integral∫

D

∫
D

|R(z, w)|2 dA(z) dA(w)

is finite if and only if the index of I is finite. This demonstrates that the
root function R(z, w), as opposed to KI(z, w), has a much better boundary
behavior.

The next result gives lower and upper bounds for the Hilbert-Schmidt norm
of C, and so it also gives lower and upper bounds for the double integral in
the previous paragraph.

Corollary 10. If I has finite index n, then
√
n ≤ ‖C‖2 ≤ 2(1 +

√
n).

Proof. By equation (1),

‖C‖2 ≤ ‖1− TT ∗‖2 + ‖T (1− TT ∗)T ∗‖2.
Since

‖T (1− TT ∗)T ∗‖2 ≤ ‖T‖‖1− TT ∗‖2‖T ∗‖ = ‖1− TT ∗‖2,
we obtain

‖C‖2 ≤ 2‖1− TT ∗‖2.
This along with Corollary 8 shows that

‖C‖2 ≤ 2(1 +
√
n).

The inequality n ≤ ‖C‖22 follows from the fact that C fixes every function in
I 	 zI; see Proposition 3. �
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5. The rank of the root operator

In this section we look at some examples of the root operator. We pay
particular attention to the rank of C, which is the dimension of the range of
C. First note that when I = A2, the root operator becomes evaluation at the
origin and so has rank 1.

Proposition 11. If I 6= A2, then the rank of C is at least 2n, where n is
the index of I.

Proof. The desired result is obvious when the rank of C is infinite.
If I 6= A2 and C has finite rank, then by Corollary 6,

tr(C) =
∑
n

λn

is strictly less than 1, where {λn} is the eigenvalue sequence of C, with each
distinct eigenvalue repeated according to multiplicity. Since the eigenspace
corresponding to the eigenvalue 1 is I 	 zI (see Proposition 3), the positive
terms in the above series add up to at least n. Therefore, the negative terms
must add up to something less than 1 − n. But Proposition 3 also tells us
that each negative eigenvalue of C has absolute value strictly less than 1, so
the trace formula above must contain at least n negative terms. This shows
that

rank(C) ≥ 2 index(I)
whenever I 6= A2. �

Proposition 12. If I is the invariant subspace generated by (z − a)N ,
where a is a point in D and N is a positive integer, then the root function of
I is

R(z, w) = (N + 1)ϕa(z)Nϕa(w)
N
−Nϕa(z)N+1ϕa(w)

N+1
,

where
ϕa(z) =

a− z
1− az

.

In particular, the root operator C has rank 2. Moreover, the two eigenvalues
of C are 1 and

λ = −1 +
∫
D

|ϕa(z)|2N (N + 1−N |ϕa(z)|2) dA(z).

Proof. If a = 0, then the reproducing kernel of I is given by

KI(z, w) =
1

(1− zw)2
−
N−1∑
k=0

(k + 1)zkwk

=
zNwN

(1− zw)2
(N + 1−Nzw).
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In general, we use the above formula and the Möbius invariance of the repro-
ducing kernel to obtain

KI(z, w) =
ϕa(z)Nϕa(w)

N

(1− zw)2

(
N + 1−Nϕa(z)ϕa(w)

)
,

where
ϕa(z) =

a− z
1− az

, z ∈ D.

It follows that the root function for I is

R(z, w) = (N + 1)ϕa(z)Nϕa(w)
N
−Nϕa(z)N+1ϕa(w)

N+1
,

and hence the root operator C has rank two.
Let λ be the other eigenvalue of C. Since C is self-adjoint, we have

1 + λ = tr(C) =
∫
D

R(z, z) dA(z).

It follows that

λ = −1 +
∫
D

|ϕa(z)|2N (N + 1−N |ϕa(z)|2) dA(z). �

If a = 0, the negative eigenvalue of C above can be simplified to

λ = −N/(N + 2),

and the corresponding eigenfunctions are just constant multiples of zN+1.
If a 6= 0, the space I 	 zI is spanned by the function KI(z, 0), so the

eigenvectors of C corresponding to the eigenvalue 1 are of the form

f(z) = cϕa(z)N
(

1 +N
1− |a|2

1− az

)
,

where c is any nonzero constant. To obtain the eigenvectors of C correspond-
ing to the other eigenvalue λ, note that the range of C consists of all linear
combinations of ϕNa and ϕN+1

a . Also note that eigenvectors of a self-adjoint
operator corresponding to distinct eigenvalues are perpendicular. So, if a
function

f(z) = c1ϕ
N
a (z) + c2ϕ

N+1
a (z)

is an eigenvector of C with respect to λ, then f must be perpendicular to
KI(z, 0). It then follows easily that the eigenvectors of C corresponding to
the negative eigenvalue λ are of the form

f(z) = c
z

1− az
ϕNa (z),

where c is any nonzero constant.
When N = 1 and a 6= 0, the negative eigenvalue of C is

λ = −(1− |a|2)2

∫
D

(1− |z|2)2

|1− az|4
dA(z).
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A calculation using Taylor expansion gives

λ = −2(1− |a|2)2

|a|6

[
(2− |a|2) log

1
1− |a|2

− 2|a|2
]
.

We also observe that if b = eiθa, then the root operator for (z − b)A2 is
unitarily equivalent to the root operator for (z−a)A2, although the restrictions
of the Bergman shift to the respective invariant subspaces are not unitarily
equivalent.

We now consider the case where I has finite codimension in A2, that is,

N = dim(A2 	 I) <∞.
Let {e1, · · · , eN} be an orthonormal basis for A2 	 I. Then

KI(z, w) = K(z, w)−
N∑
k=1

ek(z)ek(w),

and so the root function is given by

R(z, w) = 1− (1− zw)2
N∑
k=1

ek(z)ek(w).

It follows that the root operator is given by

Cf(z) = f(0) +
N∑
k=1

[
2zek(z)〈f,Bek〉 − z2ek(z)〈f,B2ek〉

]
,

where B is the Bergman shift on A2. If Q is the orthogonal projection from
A2 onto I, then projecting the above result to I leads to

Cf = KI(0, 0)〈f,G〉G+ 2
N∑
k=1

〈f, ϕk〉ϕk +
N∑
k=1

〈f, ψk〉ψk,

where G is the extremal function for I and

ϕk = Q(Bek), ψk = Q(B2ek), 1 ≤ k ≤ N.
This shows that C is a finite rank operator, and its rank is less than or equal
to 2N + 1. The following result improves this upper bound a little bit.

Proposition 13. Suppose

N = dim(A2 	 I) <∞.
Then the rank of C is at most 2N .

Proof. We prove the result by induction on N . It is well known that I
has finite codimension in A2 if and only if it is generated by a finite Blaschke
product B(z), and the codimension of I in A2 is equal to the number of zeros
of B(z), counting multiplicity. So the case N = 1 follows from Proposition 12.
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For any fixed N , we assume I ⊂ J are two invariant subspaces with

dim(A2 	 J) = N, dim(A2 	 I) = N + 1,

so that
dim(J 	 I) = 1.

If e is a unit vector in J 	 I, then we can write

KI(z, w) = KJ(z, w)− e(z)e(w),

and hence

RI(z, w) = RJ(z, w)− (1− 2zw + z2w2)e(z)e(w).

It then follows that for every f ∈ I ⊂ J

CIf(z) = CJf(z)−
∫
D

(1− 2zw + z2w2)e(z)e(w)f(w) dA(w)

= CJf(z) + 2ze(z)〈f,Be〉 − z2e(z)〈f,B2e〉,

where B is the Bergman shift. If we write φ = Q(Be) and ψ = Q(B2e), where
Q is the orthogonal projection from A2 onto I, then

CIf = QCJf + 2φ〈f, φ〉 − ψ〈f, ψ〉, f ∈ I.

This shows that if the rank of CJ is at most 2N , then the rank of CI is at
most 2N + 2 = 2(N + 1). The desired result is thus proved by induction. �

Two natural questions arise here. First, does the root operator have rank
two whenever the invariant subspace I is generated by a finite Blaschke prod-
uct? We know the answer is yes when there is only one zero with any mul-
tiplicity; we do not know what happens in general, because the reproducing
kernel is not readily computable. Second, it is tempting to conjecture that the
operator C has finite rank if and only if the invariant subspace I is generated
by a finite Blaschke product. It turns out that this is not the case. In fact, if

S(z) = exp
(
−1 + z

1− z

)
and I = IS , then by [10]

KI(z, w) =
S(z)S(w)
(1− zw)2

(
1 +

1 + z

1− z
+

1 + w

1− w

)
,

and so

R(z, w) =
2S(z)
1− z

S(w) + S(z)S(w)
1 + w

1− w
.

This clearly shows that the corresponding root operator C has rank two.
It will be interesting to obtain a characterization of the invariant subspaces

such that the associated root operator has finite rank. We do not even have
a reasonable guess.
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