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OPTIMAL CONTROL SYSTEMS GOVERNED BY
SECOND-ORDER ODES WITH DIRICHLET BOUNDARY

DATA AND VARIABLE PARAMETERS

URSZULA LEDZEWICZ, HEINZ SCHÄTTLER, AND STANISLAW WALCZAK

Abstract. Optimal control systems governed by second-order ODEs
with boundary data and variable parameters are considered. Using vari-

ational methods a theorem on existence of optimal processes is proven
and a sufficient condition for continuous (or semicontinuous) dependence

of optimal trajectories and controls on parameters is given.

1. Introduction

In this paper we consider stability results for solutions to optimal control
problems governed by second-order ODEs with boundary data and variable
parameters. Specifically, we are interested in results which guarantee the con-
vergence of optimal controls and corresponding solutions in a suitable topology
if initial and terminal data and some time varying parameter in the model
converge.

Let I be the interval [0, π] and denote by H1 the Sobolev space of absolutely
continuous vector-valued functions x : I → R

n on I with values in Rn that
have a square-integrable derivative ẋ. This space is endowed with the norm

(1.1) ‖x‖2H1 =
∫
I

|x(t)|2 + |ẋ(t)|2 dt,

where | · | denotes the Euclidean norm on Rn. Furthermore, let H1
0 denote the

subspace of all functions which vanish at the endpoints of I. It follows from
the Poincaré inequality that H1

0 can be equipped with the norm

(1.2) ‖x‖2H1
0

=
∫
I

|ẋ(t)|2 dt.
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Also let Lp, 1 ≤ p < ∞, denote the standard space of Lebesgue integrable
vector valued functions on the interval I with values in some space Rk.

We consider the following optimal control problem P = Pω,a,b: minimize
the objective

(1.3) Jω,a,b(x, u) =
∫
I

Φ(t, ω(t), x(t), ẋ(t), u(t))dt+ l(a, b)

over all solutions x ∈ H1 of the two-point boundary value problem

(1.4) ẍ(t) = ϕ(t, ω(t), x(t), u(t)), x(0) = a, x(π) = b,

with controls

(1.5) u ∈ U =
{
u ∈ L2 : u(t) ∈M a.e.

}
,

where M is a non-empty, compact and convex set in Rm. In the formulation
ω : I → Q ⊂ Rr is a time-varying parameter in Lp with values in some set Q.
We make the following assumptions on the objective and dynamics:

(A) The function ϕ : I × Rr × Rn × Rm → R
n is affine in the control,

(1.6) ϕ(t, ω, x, u) = f(t, ω, x) + 〈g(t, ω, x), u〉 ,

and the vector fields f and g are potential fields with respect to x,
i.e., there exist functions F = F (t, ω, x) and G = G(t, ω, x) such that

(1.7) f = F ′x and g = G′x.

The functions F , G, F ′x = f , and G′x = g are measurable with respect
to t ∈ I for each ω ∈ Q, Borel-measurable in ω, and satisfy the
following conditions:

(growth): For every r > 0 there exist a function h̄ ∈ L1 and a
constant C > 0 such that for a.e. t ∈ I, ω ∈ Q and |x| ≤ r each
of the functions

|F (t, ω, x)| , |F ′x(t, ω, x)| , |G(t, ω, x)| , |G′x(t, ω, x)|

is bounded by

(1.8) C(1 + |ω|p) + h̄(t).

(coercive): There exist functions β ∈ L2, γ ∈ L1 and a constant
α < 1/2 such that for a.e. t ∈ I, ω ∈ Q, u ∈ M and x ∈ Rn we
have

(1.9) F (t, ω, x) + 〈G(t, ω, x), u〉 ≥ −α |x|2 − 〈β(t), x〉 − γ(t).

The function l : Rn × Rn → R is continuous.
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(B) The integrand Φ : I × Rr × Rn × Rn × Rm → R also is affine in the
control of the form

(1.10) Φ(t, ω, x, ẋ, u) = Φ1(t, ω, x, ẋ) +
〈
Φ2(t, ω, x, ẋ), u

〉
.

The functions Φi, i = 1, 2, are measurable with respect to t ∈ I
for each (ω, x, ẋ) ∈ Q × Rn × Rn and are continuous in (ω, x, ẋ) on
Q × Rn × Rn for a.e. t ∈ I. Furthermore, they satisfy the following
growth assumption:

(growth): For every r > 0 there exist a constant C > 0 and a
function h̆ ∈ L1 such that for a.e. t ∈ I, all ω ∈ Q, all x ∈ Rn
which satisfy |x| ≤ r, and all ẋ ∈ Rn we have

(1.11)
∣∣Φi(t, ω, x, ẋ)

∣∣ ≤ C(1 + |ω|p + |ẋ|2) + h̆(t).

In this paper we give conditions under which the problem Pω,a,b has an
optimal solution and then investigate whether the sets of optimal processes
depend continuously (or semicontinuously) on the parameters (ω, a, b). The
existence of a solution is established under suitable convexity assumptions:
By (1.7), the system (1.4) can be rewritten as

(1.12) ẍ(t) = F ′x(t, ω(t), x(t)) + 〈G′x(t, ω(t), x(t)), u(t)〉 ,

with boundary data

(1.13) x(0) = a, x(π) = b.

It is well-known that the system (1.12) is the Euler-Lagrange equation for the
functional

(1.14) Aωu(x) =
∫
I

[
|ẋ(t)|2

2
+ F (t, ω(t), x(t)) + 〈G(t, ω(t), x(t)), u(t)〉

]
dt

acting from H1
0 to R. If the functional Aωu is convex, then, using properties

of the functional of action and the growth conditions above, it can be shown
that the sets of possible initial and terminal values of solutions for (1.12), now
also including the values of the derivative, are in fact bounded, and then the
existence of optimal solutions for the problem P readily follows from standard
results. We therefore also make the following assumption:

(C) The functional Aωu is convex for all u ∈ U .

This condition is fulfilled, for example, in the following two cases which
often are easy to verify:

(a) The function F (t, ω, ·) is convex and G(t, ω, ·) is linear for a.e. t ∈ I,
ω ∈ Q, or, more generally:
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(b) The function

(1.15) x 7−→ |x|
2

2
+ F (t, ω, x) + 〈G(t, ω, x), u〉

is convex on Rn for all ω ∈ Q, u ∈M and a.e. t ∈ I.

Once the existence of optimal solutions is established, we are interested in
their behavior if the parameters and initial and terminal conditions converge
to some limit. Specifically, suppose that the sequence of parameters

{
ωk
}+∞
k=1

converges to some ω̄ in Lp and that the sequence of boundary conditions{
(ak, bk)

}+∞
k=1

converges to a limit (ā, b̄) in Rn × Rn and let Ξ∗(ωk, ak, bk)
denote the set of optimal pairs (x∗, u∗) for the corresponding optimal control
problems Pk = Pωk,ak,bk , k ∈ N. We are investigating whether in a suitable
topology the sequence

{
Ξ∗(ωk, ak, bk)

}+∞
k=1

converges to a limit as ωk → ω̄

and (ak, bk)→ (ā, b̄) for k →∞. This is a question about stability of optimal
control systems. In short, our main theorem given in Section 3 says that
if the functional Aω̄u corresponding to the limit is strictly convex for every
u ∈ U , then every accumulation point (x̄, ū) of a sequence of optimal pairs{

(xk∗, u
k
∗)
}+∞
k=1

taken in the weak topologies is an optimal pair for P ω̄,ā,b̄ and
the corresponding optimal values Jωk,ak,bk(xk∗, u

k
∗) converge to the optimal

value Jω̄,ā,b̄(x̄, ū). Hence the optimal control system is stable with respect
to these topologies. The proof of this result is an application of Berge’s
Theorem [2]. The set-valued map which describes the feasible set will be lower
semicontinuous at the limit if equation (1.12) with boundary conditions (1.13)
has a unique solution for every u ∈ U . This is guaranteed if the functional
Aω̄u is not only convex, but strictly convex for every u ∈ U . We will give an
example which shows that in general this condition cannot be weakened.

Similar problems for a system described by second order PDE’s of the el-
liptic type with homogeneous Dirichlet boundary data were investigated by
us earlier in [13] and [14] using direct variational methods, by Papageorgiou
in [18] and [19] using relaxation methods, and also in a broader context in the
monograph [8], [9] by Hu and Papageorgiou. The question of existence of op-
timal solutions to control systems described by semilinear second-order equa-
tions was investigated by Idczak. Leaning on methods of spectral analysis, in
[10] Idczak demonstrates that trajectories of the system depend continuously
on controls and then shows directly that optimal solutions exist. A similar
problem for superlinear second order ordinary equations was considered by
Nowakowski and Rogowski in [17]. Necessary conditions of optimality for
second-order systems of ordinary differential equations with Dirichlet bound-
ary conditions were given by Goebel and Raitums in [7] and by Idczak in [11]
(see also the references therein).

As mentioned before, the main results of this paper are sufficient condi-
tions for optimal processes of second-order systems with Dirichlet boundary
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conditions to depend continuously (or semicontinuously) on parameters and
boundary data. To the authors’ knowledge this problem was not studied
before. Related results concerning first-order differential systems and math-
ematical programming can be found in the monograph [6] and in the papers
[4], [15], and [21] (see also the references therein).

2. Existence of an optimal solution

In this section we consider problem Pω,a,b for a fixed parameter ω ∈ Lp

and fixed boundary values (a, b). Given a control u ∈ U , denote by Xu the set
of all solutions to the boundary value problem (1.12)–(1.13). In general Xu

need not be a singleton. Also let X =
⋃
u∈U Xu denote the set of all solutions

to (1.12)–(1.13) for arbitrary controls u ∈ U . We call the set

(2.1) Ξ(ω, a, b) = {(x, u) ∈ H1 × L2 : u ∈ U , x ∈ Xu}

the feasible set of the control system and a pair (x, u) ∈ Ξ(ω, a, b) is called
admissible. Also let Ξ∗(ω, a, b) ⊂ Ξ(ω, a, b) denote the set of optimal processes
for problem Pω,a,b; i.e., (x∗, u∗) ∈ Ξ∗(ω, a, b) iff u∗ ∈ U , x∗ ∈ Xu∗ and

(2.2) Jω,a,b(x∗, u∗) = inf {Jω,a,b(x, u) : (x, u) ∈ Ξ(ω, a, b)} .

Theorem 2.1. If conditions (A)–(C) are satisfied for problem Pω,a,b,
then:

(a) For each admissible control u ∈ U the set Xu is nonempty, i.e., there
exists at least one solution x ∈ H1 to (1.12)–(1.13).

(b) The set X of all solutions is bounded in H1, i.e., there exists a con-
stant ρ > 0 such that whenever xu is a solution of (1.12)–(1.13)
corresponding to any u ∈ U , then ‖xu‖H1 ≤ ρ.

(c) There exists an optimal process (x∗, u∗) for system Pω,a,b, i.e., the set
Ξ∗(ω, a, b) is nonempty.

Proof. Let u ∈ U be an arbitrary admissible control. To prove that the
corresponding equation (1.12) has a solution it suffices to show that the func-
tional of action in (1.14) has a critical point in the space H1. For this purpose
we shall show that the functional Aωu attains its lower bound. Since ω, a and
b are fixed in this proof, for the moment we drop them in the notation. Due
to the Poincaré inequality it is more convenient to consider the problem in
the space H1

0 . Let

(2.3) c =
b− a
π

, µ(t) =
b− a
π

t+ a, x(t) = y(t) + µ(t)
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and

Āu(y) =
∫
I

[
|ẏ(t) + c|2

2
+ F (t, ω(t), y(t) + µ(t))+(2.4)

+ 〈G(t, ω(t), y(t) + µ(t)), u(t)〉
]
dt,

where y ∈ H1
0 . The functional Āu given by (2.4) is continuously differentiable

on H1 [16, Thm. 1.4] and as the sum of a convex, continuous functional and a
weakly continuous functional is also weakly lower semicontinuous on H1 [16,
Section 1.5]. It is easy to see that if y ∈ H1

0 is a minimizer of Āu on the space
H1

0 , then x = y + µ is a minimizer of Au on H1 with boundary conditions
x(0) = a and x(π) = b. It thus suffices to show that Āu has a minimizer in
H1

0 for any u ∈ U .
By assumption (A, coercive) we have that

(2.5) Āu(y) ≥
∫
I

|ẏ(t) + c|2

2
− α |y(t) + µ(t)|2 − 〈β(t), y(t) + µ(t)〉 − γ(t)dt.

It then follows from the Poincaré and Hölder inequalities that there exist
constants C1 and C2 such that

(2.6) Āu(y) ≥
(

1
2
− α

)
‖y‖2H1

0
+ C1 ‖y‖H1

0
+ C2 = p(y)

(Recall that α < 1/2.) For r > 0 sufficiently large, assumption (A, growth)
implies that

(2.7) Āu(0) =
∫
I

(
|c|2

2
+ F (t, ω(t), µ(t)) + 〈G(t, ω(t), µ(t)), u(t)〉

)
dt

is bounded, say Āu(0) ≤ C3 < ∞. Hence for any u ∈ U minimizers of Āu
necessarily lie in the set{

y ∈ H1
0 : Āu(y) ≤ C3

}
⊂
{
y ∈ H1

0 : p(y) ≤ C3
}
.

But the latter set is bounded in H1
0 . Hence there exists a bounded minimizing

sequence. This sequence is weakly compact in H1
0 and thus, since the func-

tional Āu is weakly lower semicontinuous, there exists a minimizer y ∈ H1
0

of Āu for any u ∈ U . The function x = y + µ then is a minimizer of the
functional Au given by (1.14) and x solves the differential equation (1.12).
This proves assertion (a).

Condition (b) also is a direct consequence of the relations (2.6) and (2.7):
As was just shown, there exists a ρ̄ > 0 such that for any u ∈ U the set
of minimizers of the functional Āu on H1

0 is contained in the ball B(0, ρ̄) ={
y ∈ H1

0 : ‖y‖H1
0
≤ ρ̄
}

. Using the Poincaré inequality, it follows that

‖x‖2H1 ≤ 4 ‖y‖2H1
0

+ 2 ‖µ‖2H1 ,
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and thus the set X of all minimizers of the functional Au on H1 (for any
u ∈ U) is contained in the ball

{
x ∈ H1 : ‖x‖2H1 ≤ 4ρ̄2 + 2 ‖µ‖2H1

}
.

Now we shall prove assertion (c). The system given by equation (1.12)–
(1.13) can be represented in the equivalent form

ẋ(t) = y(t), x(0) = a, x(π) = b,

ẏ(t) = Fx(t, ω(t), x(t)) + 〈Gx(t, ω(t), x(t)), u(t)〉 , y(0), y(π) free.
(2.8)

For any admissible control u ∈ U let xu denote a solution to (1.12). We
have just shown that there exists a constant ρ > 0 such that ‖xu‖H1 ≤ ρ.
Hence there exists a constant C̃ such that for all t ∈ I and all u ∈ U we have
|xu(t)| ≤ C̃ (e.g., C̃ = a +

√
πρ). Assumption (A, growth) and (1.12) then

imply that there exist C > 0 and h̄ ∈ L1 such that we have for a.e. t ∈ I and
all u ∈ U

(2.9) |ẍu(t)| ≤ C(1 + |ω(t)|p) + h̄(t).

Suppose that the set {ẋu(0), u ∈ U} is unbounded. Then there exists a se-
quence {us} ⊂ U such that ẋius(0)→ ±∞ for some i ∈ {1, 2, . . . , n}. Assume
that the ith coordinate ẋius(0) tends to +∞ as s → ∞. Let L be a positive
number. Then for s sufficiently large we have the estimate

ẋius(t) = ẋius(0) +
∫ t

0

ẍius(τ)dτ

≥ ẋius(0)−
∫ π

0

[
C(1 + |ω(t)|p) + h̄(t)

]
dt > L

and thus

xius(t) = ai +
∫ t

0

ẋius(τ)dτ ≥ ai +
∫ t

0

Ldτ = ai + Lt,

where ai denotes the ith coordinate of the initial vector a. Since ai and bi are
fixed and L may be arbitrarily large, we obtain

xius(π) ≥ ai + Lπ > bi

for s sufficiently large. Thus we have a contradiction with the boundary
condition xus(π) = b. This means that the set

{
ẋius(0), u ∈ U

}
⊂ R

n is
bounded. In a similar way one can show that the set

{
ẋius(π), u ∈ U

}
⊂ Rn

is bounded.
Let B0 and B1 be compact sets in Rn such that {ẋus(0) : u ∈ U} ⊂ B0 and

{ẋus(π) : u ∈ U} ⊂ B1. In this situation the optimal control problem P can
be represented in the following equivalent form: minimize

(2.10) J̃ (x, y, u) =
∫
I

Φ(t, ω(t), x(t), y(t), u(t))dt+ l(a, b)
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subject to

ẋ(t) = y(t), x(0) = a, x(π) = b,(2.11)

ẏ(t) = f(t, ω(t), x(t)) + 〈g(t, ω(t), x(t)), u(t)〉 ,(2.12)

y(0) ∈ B0, y(π) ∈ B1,(2.13)

u ∈ U =
{
u ∈ L2(I) : u(t) ∈M a.e.

}
,(2.14)

with B0 and B1 compact subsets of Rn. To this optimal control problem
well-known classical theorems on existence of solutions apply (for example,
see [3, Thm. 5.1 and Cor. 5.1]) and we thus get the existence of an optimal
solution (x∗, u∗), completing the proof of the theorem. �

Corollary 2.1. Let Ω ⊂ Lp and A ⊂ R
n and B ⊂ R

n be bounded
sets. There exists a constant ρ > 0 such that whenever ω ∈ Ω, a ∈ A and
b ∈ B, then for any control u ∈ U a corresponding solution xu of (1.12)–(1.13)
satisfies ‖xu‖H1 ≤ ρ, i.e., the set of all solutions is bounded.

Proof. As above, xu is a critical point of the functional Au. If a and b lie
in bounded sets, then the constants C1 and C2 in the inequality (2.6) can
be chosen depending only on the bounds for the sets A and B, but not on
the individual points. Also, the H1 norms of the transforming functions µ in
(2.3) will be uniformly bounded with a ∈ A and b ∈ B. Similarly, for ω in
a bounded set the constant C3 which bounds Āωu(0) can be chosen only to
depend on the bound for Ω. Thus the proof is as in the proof of assertion (b)
of the theorem. �

3. Continuous and semi-continuous dependence of optimal controls
and trajectories on variable parameters and boundary data

We now consider the solutions of the optimal control problem Pω,a,b for a
sequence of time varying parameters ωk ∈ Lp and boundary values (ak, bk) ∈
R
n×Rn, k ∈ N. Let Ξk = Ξ(ωk, ak, bk) denote the corresponding feasible sets

and Ξk∗ = Ξ∗(ωk, ak, bk) the sets of optimal processes. By Theorem 2.1 each
of these sets is nonempty and thus the value

(3.1) Vk = Vωk,ak,bk = min
{
Jωk,ak,bk(x, u) : (x, u) ∈ Ξk

}
, k ∈ N,

of the optimal control problem Pk = Pωk,ak,bk is well-defined and will be
attained. We shall prove that if ωk → ω̄ in Lp and (ak, bk)→ (ā, b̄) in Rn×Rn,
then the values Vk converge to the value V̄ of the limiting problem and the
sets Ξk∗ of optimal processes converge to the set Ξ̄∗ of optimal processes for
the limiting problem in the sense of the Painlevé-Kuratowski upper limit of
sets (e.g., see [1]), provided the functional Aω̄u corresponding to the limit is
strictly convex for all u ∈ U .
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Definition 3.1. Let
{
Ak
}+∞
k=1

be a sequence of subsets of a topological
space Z. The set of all cluster points of the sequences

{
zk
}∞
k=1
⊂ Z, such

that zk ∈ Ak, k = 1, 2, . . ., is called the upper limit of the sequence of sets{
Ak
}

and denoted by lim supAk.

Theorem 3.1. Suppose conditions (A)–(C) are satisfied for the optimal
control problem P. Let ωk → ω̄ in Lp and (ak, bk) → (ā, b̄) in R

n × Rn
and suppose that for the limiting problem the functional Aω̄u defined in (1.14)
is strictly convex for all u ∈ U . Then lim sup Ξk∗ taken with respect to the
strong topology of H1 in x and with respect to the weak topology of L2 in u is
a nonempty set and lim sup Ξk∗ ⊂ Ξ̄∗. Furthermore, the sequence of optimal
values converges, limk→∞ Vk = V̄ .

Remark. If the optimal processes (xk∗, u
k
∗), k ∈ N, are unique, i.e., the

sets Ξk∗ are singletons, then by (a) and (b)
{
xk∗
}+∞
k=1

converges to x̄∗ strongly

in H1 (i.e., xk∗ → x̄∗ uniformly on I and ẋk∗ → ẋ0
∗ in L2) and

{
uk∗
}+∞
k=1

tends
to ū∗ weakly in L2.

The proof of the theorem follows from an application of Berge’s theorem
[2] and we first set up the required pieces. Following the notation already
introduced, we define a set-valued map or correspondence Ξ : X → Y which
associates to the data of the problem the feasible set, i.e., the set of possible
solutions of the system. Specifically, let X = Lp × Rn × Rn, Y = L2 × H1

and let Ξ(ω, a, b) be the set of all pairs (u, xu), where u ∈ U and xu is a
solution to the boundary value problem (1.12) with parameter given by ω and
boundary conditions x(0) = a and x(π) = b. We fix the strong topology in
X , i.e., the strong topology in Lp and the standard (Euclidean) topology in
R
n. In the spaces L2 ⊃ U and H1 we typically consider the corresponding

weak topologies, but for the reader’s convenience we specify the convergence
concepts used since at times we also consider the strong topologies.

Lemma 3.1. Under assumptions (A) and (C), the correspondence Ξ is
upper semicontinuous (with respect to the weak topologies in L2 and H1).

Proof. Recall that Ξ is upper semicontinuous in the chosen topology if and
only if the following statement holds (cf. [1, Def. 1.4.1]): Whenever ωk → ω̄
in Lp, ak → ā and bk → b̄ in Rn, and (uk, xk) ∈ Ξ(ωk, ak, bk) is a pair in the
corresponding feasible set such that uk → ū weakly in L2, and xk → x̄ weakly
in H1, then (ū, x̄) ∈ Ξ(ω̄, ā, b̄), i.e., x̄ is a solution of (1.12) corresponding to
ū with parameter ω̄ and boundary data (ā, b̄).

The set U is weakly compact in L2 and thus ū ∈ U . We need to show that
x̄ is an admissible trajectory of the system corresponding to ū ∈ U . In fact,
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since xk ∈ Xuk we have for all h ∈ H1
0 and all k ∈ N that

0 =
∂

∂x
Aω

k

uk (xk)h(3.2)

=
∫
I

[〈
ẋk(t), ḣ(t)

〉
+ Fx(t, ωk(t), xk(t))h(t)

+
〈
Gx(t, ωk(t), xk(t))h(t), uk(t)

〉]
dt.

Consider the integral functional∫
I

〈
Gx(t, ωk(t), xk(t))h(t), uk(t)

〉
dt(3.3)

=
∫
I

〈
(Gx(t, ωk(t), xk(t))−Gx(t, ω̄(t), x̄(t)))h(t), uk(t)

〉
(3.4)

+
∫
I

〈
Gx(t, ω̄(t), x̄(t))h(t), uk(t)

〉
dt.(3.5)

We show that for a suitable subsequence {kj} each of the integrals in (3.4)
and (3.5) converges to zero. Since xk tends to x̄ weakly in H1, it follows that
xk tends to x̄ uniformly on I [16, Prop. 1.2] and thus there exists a constant
r such that |xk(t)| ≤ r for all t ∈ I. Hence by (A, growth) the function
t 7→ Gx(t, ω̄(t), x̄(t))h(t) lies in L1. Furthermore, since uk → ū weakly in
L2, there exists a subsequence {ukj} which converges to ū a.e. on I. Since
the controls take values in a compact set, it therefore follows from Lebesgue’s
Dominated Convergence theorem that

lim
j→∞

∫
I

〈
Gx(t, ω̄(t), x̄(t))h(t), uk(t)

〉
dt(3.6)

=
∫
I

〈Gx(t, ω̄(t), x̄(t))h(t), ū(t)〉 dt.

Similarly, there exists a constant K such that∣∣∣∣∫
I

〈
(Gx(t, ωk(t), xk(t))−Gx(t, ω̄(t), x̄(t)))h(t), uk(t)

〉∣∣∣∣
≤ K

∫
I

∣∣Gx(t, ωk(t), xk(t))−Gx(t, ω̄(t), x̄(t))
∣∣ dt,

and for a suitable subsequence, {ωkj} converges to ω̄ a.e. on I. By condition
(A, growth) we have that∣∣Gx(t, ωkj (t), xk(t))−Gx(t, ω̄(t), x̄(t))

∣∣
≤ C(2 +

∣∣ωkj (t)∣∣p + |ω̄(t)|p) + 2h̄(t).

Since ωkj converges to ω̄ in Lp, if necessary by taking another subsequence,
it follows that there exists a v ∈ Lp such that

∣∣ωkj (t)∣∣ ≤ v(t) a.e. on I (for
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example, see [5, Thm. IV.9]). Hence for this subsequence the integral in (3.4)
converges to zero by Lebesgue’s Dominated Convergence Theorem.

Thus for each h ∈ H1
0 there exists a subsequence {kj} such that

lim
j→+∞

∫
I

〈
Gx(t, ωkj (t), xkj (t))h(t), ukj (t)

〉
dt

=
∫
I

〈Gx(t, ω̄(t), x̄(t))h(t), ū(t)〉 dt.

Similarly it follows that, taking another subsequence if necessary,

lim
j→∞

∫
I

[〈
ẋkj (t), ḣ(t)

〉
+ Fx(t, ωkj (t), xkj (t))h(t)

]
dt

=
∫
I

[〈
˙̄x(t), ḣ(t)

〉
+ Fx(t, ω̄(t), x̄(t))h(t)

]
dt.

Thus we have proven that (cf. (3.2))

(3.7) 0 = lim
j→∞

∂

∂x
Aω

kj

ukj
(xkj )h =

∂

∂x
Aω̄ū(x̄)h

for each h ∈ H1
0 . Hence (x̄, ū) is an admissible pair for the control system,

i.e., (x̄, ū) ∈ Ξ(ω̄, ā, b̄). This proves the lemma. �

Note that this argument also implies the following result:

Corollary 3.1. The feasible sets Ξ(ω, a, b) are compact in the weak
topologies on Y = L2 ×H1.

The following is a useful technical statement for addressing lower semiconti-
nuity properties of the relation Ξ and continuity of the functional Jω,a,b(x, u),
which we state separately.

Lemma 3.2. Suppose assumptions (A) and (C) are satisfied and let ωk →
ω̄ in Lp, ak → ā and bk → b̄ in Rn. Let xk be a solution of (1.12) correspond-
ing to the control uk ∈ U for the parameter ωk and boundary data (ak, bk). If
uk → ū weakly in L2 and xk → x̄ weakly in H1, then in fact xk → x̄ strongly
in H1.

Proof. Define a function αk on [0, π] by

(3.8) αk(t) =
1
π

[
(xk(π)− x̄(π))− (xk(0)− x̄(0))

]
t+ (xk(0)− x̄(0))

and set

(3.9) hk = xk − x̄− αk.

Note that hk ∈ H1
0 . It is easy to verify that αk → 0 strongly in H1 and hence

hk → 0 weakly in H1
0 . A direct calculation, using (3.2) and (3.7) and the
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same notation, verifies that

0 =
〈
∂

∂x
Aω

k

uk (xk)− ∂

∂x
Aω̄ū(x̄), hk

〉
(3.10)

=
∫
I

∣∣ẋk(t)− ˙̄x(t)
∣∣2 dt− ∫

I

〈
ẋk(t)− ˙̄x(t), αk(t)

〉
+
∫
I

〈
Fx(t, ωk(t), xk(t))− Fx(t, ω̄(t), x̄(t)), hk(t)

〉
+
∫
I

〈
Gx(t, ωk(t), xk(t))hk(t), uk(t)

〉
dt

−
∫
I

〈
Gx(t, ω̄(t), x̄(t))hk(t), ū(t)

〉
dt.

Since hk → 0 weakly in H1, it follows that hk → 0 uniformly on I. As in the
proof of Lemma 3.1 it can be shown that condition (A, growth) implies that
each of the integrands in the last three integrals converges to zero pointwise
and is dominated by one L1-function for all k. Hence each of these terms
converges to zero. Moreover, αk → 0 strongly in H1. Since ωk → ω̄ in Lp and
ak → ā and bk → b̄ in Rn, the sequences {ωk}∞k=1, {ak}∞k=1 and {bk}∞k=1 lie
in bounded sets Ω, A and B, respectively, and thus by Corollary 2.1 all the
solutions {xk}∞k=1 lie in a ball in H1. Thus

(3.11)
∫
I

〈
ẋk(t)− ˙̄x(t), αk(t)

〉
→ 0.

Hence

(3.12) lim
k→∞

∫
I

∣∣ẋk(t)− ˙̄x(t)
∣∣2 dt = 0.

Moreover, since xk → x̄ uniformly on I, it also follows that

(3.13) lim
k→∞

∫
I

∣∣xk(t)− x̄(t)
∣∣2 dt = 0

and thus xk → x̄ strongly in H1. �

Lemma 3.3. Under assumptions (A) and (C), the correspondence Ξ is
lower semicontinuous with respect to the weak topology for u ∈ L2 and the
strong topology for x ∈ H1 at every point (ω̄, ā, b̄) ∈ X where the functional
Aω̄ū is strictly convex for every ū ∈ U . More generally, this holds whenever
the solution xū of (1.12) corresponding to ū with parameter ω̄ and boundary
data (ā, b̄) is unique for every ū ∈ U .

Proof. Recall that Ξ is lower semicontinuous in the chosen topology if and
only if the following statement holds [1, Def. 1.4.2]: Whenever ωk → ω̄ in Lp,
ak → ā and bk → b̄ in Rn, and (ū, x̄) ∈ Ξ(ω̄, ā, b̄) is a pair in the feasible
set corresponding to the parameter ω̄ and boundary data (ā, b̄), then there
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exists a sequence {(uk, xk)}k∈N ⊂ Y, (uk, xk) ∈ Ξ(ωk, ak, bk), the feasible
set corresponding to the parameter ωk and boundary data (ak, bk), such that
uk → ū weakly in L2 and xk → x̄ strongly in H1.

Pick an arbitrary sequence {uk}k∈N ⊂ U such that uk → ū weakly in L2.
By Theorem 2.1 there exist corresponding solutions xk such that (uk, xk) ∈
Ξ(ωk, ak, bk). As above, the sequences {ωk}∞k=1, {ak}∞k=1 and {bk}∞k=1 lie in
bounded sets Ω, A and B, respectively. By Corollary 2.1 all the solutions
{xk}∞k=1 lie in a ball in H1 and thus this sequence is weakly compact. Hence
there exist convergent subsequences, say xkj → x̂. By Lemma 3.1, x̂ is a
solution of (1.12) corresponding to ū with parameter ω̄ and boundary data
(ā, b̄). But this equation has a unique solution and thus we have x̂ = x̄. Hence
every convergent subsequence converges to x̄. Furthermore, by Lemma 3.2,
these subsequences all converge strongly to x̄. Hence the original sequence
itself, {xk}∞k=1, converges strongly to x̄ in H1. This proves the lemma. �

We now show that the objective is continuous on X × Y. Recall that

Jω,a,b(x, u) = l(a, b) +
∫
I

Φ1(t, ω(t), x(t), ẋ(t))(3.14)

+
〈
Φ2(t, ω(t), x(t), ẋ(t)), u(t)

〉
dt.

Lemma 3.4. Under assumptions (A)–(C), the objective Jω,a,b(x, u) is con-
tinuous on X × Y with respect to the weak topologies in X and Y .

Proof. Suppose ωk → ω̄ in Lp, ak → ā and bk → b̄ in Rn, (uk, xk) ∈
Ξ(ωk, ak, bk), uk → ū weakly in L2 and xk → x̄ weakly in H1. It then follows
from Lemma 3.1 that x̄ is a solution to (1.12) for ū with parameter ω̄ and
boundary data (ā, b̄), and we need to show that

(3.15) lim
k→∞

Jωk,ak,bk(xk, uk) = Jω̄,ā,b̄(x̄, ū).

Write

Jωk,ak,bk(xk, uk)− Jω̄,ā,b̄(x̄, ū) = l(ak, bk)− l(ā, b̄)

+
∫
I

Φ1(t, ωk(t), xk(t), ẋk(t))− Φ1(t, ω̄(t), x̄(t), ˙̄x(t))dt(3.16)

+
∫
I

〈
Φ2(t, ωk(t), xk(t), ẋk(t))− Φ2(t, ω̄(t), x̄(t), ˙̄x(t)), uk(t)

〉
dt(3.17)

+
∫
I

〈
Φ2(t, ω̄(t), x̄(t), ˙̄x(t)), uk(t)− ū(t)

〉
dt.(3.18)

Since l is continuous, l(ak, bk)→ l(ā, b̄). We first show that the integral (3.16)
converges to zero. Suppose it does not. Then, by considering a subsequence
if necessary, we may assume that

(3.19)
∣∣∣∣∫
I

Φ1(t, ωk(t), xk(t), ẋk(t))− Φ1(t, ω̄(t), x̄(t), ˙̄x(t))dt
∣∣∣∣ > ε
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for all k. We have xk → x̄ uniformly on I, and, again by choosing a subse-
quence if necessary, we may assume that ωk → ω̄ and ẋk → ˙̄x a.e. on I. But
then there exist functions v1 ∈ Lp and v2 ∈ L2 such that |ωk(t)| ≤ v1(t) and
|ẋk(t)| ≤ v2(t) a.e. on I [5, Thm IV.9]. It then follows from assumption (B)
that ∣∣Φ1(t, ωk(t), xk(t), ẋk(t))

∣∣ ≤ C(1 + v1(t)p + v2(t)2) + h̆(t)
and ∣∣Φ1(t, ω̄(t), x̄(t), ˙̄x(t))

∣∣ ≤ C(1 + ω̄(t)p + ˙̄x(t)2) + h̆(t).
Since the upper bounds lie in L1, by Lebesgue’s Dominated Convergence
Theorem

lim
k→∞

∫
I

Φ1(t, ωk(t), xk(t), ẋk(t))dt =
∫
I

Φ1(t, ω̄(t), x̄(t), ˙̄x(t))dt,

violating (3.19). Since the control set M is bounded, the same reasoning
shows that the integral in (3.17) converges to zero. For the integral in (3.18),
let ϕ denote the L1 function t 7→ Φ2(t, ω̄(t), x̄(t), ˙̄x(t)). For any ε > 0 there
exists an L2 function ψ so that∫

I

|ϕ(t)− ψ(t)|dt < ε.

Now ∫
I

〈
ϕ(t), uk(t)− ū(t)

〉
dt =

∫
I

〈
ϕ(t)− ψ(t), uk(t)− ū(t)

〉
dt

+
∫
I

〈
ψ(t), uk(t)− ū(t)

〉
dt.

Since uk → ū weakly in L2, the last integral converges to zero. The second
integral is bounded by a constant times ε since M is bounded. Since ε is
arbitrary, the limit of the integral in (3.18) is zero as well. This proves the
result. �

The value V : X → R of the optimal control problems Pω,a,b is defined as

(3.20) Vω,a,b = inf{Jω,a,b(x, u) : u ∈ U , x ∈ Xu}.
By Theorem 2.1, under assumptions (A)–(C) for each ω ∈ Lp and arbitrary
boundary conditions (a, b) ∈ Rn×Rn there exists an optimal solution (x∗, u∗),
i.e., Vω,a,b = Jω,a,b(x∗, u∗). Hence we have

(3.21) Vω,a,b = min{Jω,a,b(x, u) : (u, x) ∈ Ξ(ω, a, b)}.
Now define the set-valued map or correspondence Ξ∗ : X → Y by assigning
to each (ω, a, b) ∈ X the set Ξ∗(ω, a, b) of optimal pairs (x∗, u∗) for the prob-
lem Pω,a,b. It then more generally follows from Berge’s Theorem [2] that the
function V is continuous at every point (ω, a, b) ∈ X where the correspon-
dence Ξ is lower semi-continuous and that the correspondence Ξ∗ is upper
semicontinuous at (ω, a, b). Thus, in particular, we have:
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(*) Suppose ωk → ω̄ in Lp, ak → ā and bk → b̄ in Rn, and let (xk∗, u
k
∗)

be optimal solutions for the problems Pωk,ak,bk . If for every ū ∈ U
the solution xū of (1.12) corresponding to ū with parameter ω̄ and
boundary data (ā, b̄) is unique, then every accumulation point (x̄, ū)
of the sequence {(xk∗, uk∗)}k∈N is an optimal solution for the problem
P ω̄,ā,b̄ and Vωk,ak,bk → Vω̄,ā,b̄ as k →∞.

Finally, since any such sequence {(xk∗, uk∗)}k∈N is weakly compact, accumu-
lation points exist and by Lemma 3.2 the sequence is strongly convergent in
H1. This proves the theorem.

4. Examples

We give two examples to illustrate the results.

Example 1. Let

(4.1) v(p) =


0 for |p| ≤ 1,
(p+ 1)2 for p < −1,
(p− 1)2 for p > 1,

so that the function v is continuously differentiable on R. Consider the optimal
control problem to minimize the functional

(4.2) J (x, u) =
∫
I

x(t)u(t)dt

subject to

(4.3) ẍ(t) = ωkx(t)u(t) + vx(x(t)), x(0) = x(π) = 0,

where ωk = 1 − 1
k , k ∈ N, ω̄ = 1, u(t) ∈ [0, 1], and the function v is given

by formula (4.1). The functional of action related to (4.3) is of the form (cf.
(1.14))

(4.4) Aku(x) =
∫
I

[
1
2
|ẋ(t)|2 − ωk

2
|x(t)|2 u(t) + v(x(t))

]
dt.

For k ∈ N the functional Aku is strictly convex on H1
0 . Thus (4.3) has exactly

one solution, namely x = 0, for each u ∈ U =
{
u ∈ L2 : u(t) ∈ [0, 1]

}
. This

implies that Ξk = {(0, u) : u ∈ U} = Ξk∗ and Vk = Vωk,0,0 = 0 for all k ∈ N. In
the limit case, for ω̄ = 1 the functional Aω̄u in (4.4) is convex and nonnegative
for each u ∈ U . If ū is less than 1 on a set E ⊂ [0, 1] of positive measure, then
the functional (4.4) is strictly convex and equation (4.3) with ω̄ = 1 has only
the one solution x̄ = 0 corresponding to u = ū. However, if u ≡ 1, then also
the pairs (c sin t, 1), |c| ≤ 1, are admissible for the control system (4.3). It is
easy to see that Ξ∗(ω̄, 0, 0) = {(− sin t, 1)} and Vω̄,0,0 = −2. Thus Vk 9 Vω̄,0,0.
Clearly, the set-valued map Ξ is not lower semicontinuous at (ω̄, 0, 0) since
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the admissible pairs (c sin t, 1), |c| ≤ 1, cannot be approximated by admissible
pairs along the sequence. The optimal control problem (4.2)–(4.3) is ill-posed.

Example 2. Consider the optimal control system with perturbations

(4.5) ẍ(t) = −1
2
ωk(t)x(t)u(t) + 2(ωk(t))2x(t)ex

2(t) + u(t),

boundary conditions x(0) = x(π) = 0 and performance index

(4.6) J k(x, u) =
∫
I

[
x(t) + ωk(t)x2(t)u(t) + u(t)

]
dt,

where ωk ∈ Lp takes values in [0, 1] and tends to zero in Lp(R) as k → ∞.
The control set is M = [0, 1]. Using Theorem 2.1 one can easily show that
the optimal control system Pk given by (4.5) and (4.6) possesses at least one
optimal process (xk∗, u

k
∗) for k = 1, 2, . . . , but it seems difficult to find this

process effectively for k = 1, 2, . . . In the limit case we get the linear system
P̄ given by

ẍ(t) = u(t), x(0) = x(π) = 0,(4.7)

J̄ (x, u) =
∫
I

(x(t) + u(t))dt,(4.8)

with u ∈ [−1, 1]. We can apply the extremum principle (cf. [12]) to the system
P̄ and look effectively for an optimal process. In fact, the Lagrange function
for the problem P̄ takes the form

(4.9) L(λ0, ψ, x, u) = λ0

∫
I

(x(t) + u(t))dt+
∫
I

〈ψ(t), ẍ(t)− u(t)〉 dt

with λ0 ≥ 0 and ψ ∈ L2. Using Theorem 2.1 it is easy to show that the
problem P̄ possesses an optimal process (x∗, u∗). By the extremum principle
we get

(4.10) Lx(λ0, ψ, x∗, u∗)h =
∫
I

[
λ0h(t) + ψ(t)ḧ(t)

]
= 0

for each h ∈ H2
0 . Moreover,

(4.11) L(λ0, ψ, x∗, u∗) = inf
u∈U
L(λ0, ψ, x∗, u),

where U =
{
u ∈ L2 : u(t) ∈ [−1, 1]

}
. Integrating (4.10) by parts we obtain

(4.12)
∫
I

[∫ t

0

∫ t1

0

λ0dτdt1 + ψ(t)
]
ḧ(t)dt = 0.

Applying the fundamental lemma of the second order (cf. [22]) to (4.12) we
get

1
2
λ0t

2 + ψ(t) = c1t+ c0,
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where c0 and c1 are constants. Thus ψ(t) = −(1/2)λ0t
2 + c1t + c0 and the

infimum condition (4.11) takes the form∫
I

[
λ0 −

(
−1

2
λ0t

2 + c1t+ c0

)]
u∗(t)dt

= inf
u∈U

∫
I

[
λ0 −

(
−1

2
λ0t

2 + c1t+ c0

)]
u(t)dt.

The switching function ϕ(t) = (1/2)λ0t
2 − c1t + c̄0, c̄0 = −c0 + λ0, has no

more than two roots. Thus the optimal control ū∗ is piecewise constant, takes
only the values −1 or +1 and has no more than two jump points. By a direct
calculation we can show that ū∗(t) = −1, x̄∗(t) = − 1

2 t
2 + π

2 t for t ∈ [0, π] and
V̄ = 1

12π
3 − π ≈ −0.56.

Let us return to the perturbed system Pk. By Theorem 2.1 the set of
optimal processes Xk

∗ × Uk∗ for the system Pk, k ∈ N, is nonempty. Let{
(xk∗, u

k
∗)
}∞
k=1

be a sequence of optimal processes, i.e., (xk∗, u
k
∗) ∈ Ξk∗ and xk∗ is

a trajectory of the system (4.5) corresponding to the optimal control uk∗ and
to the parameter ωk. Since the optimal process for the system P̄ is uniquely
determined, i.e., the set Ξ̄∗ is the singleton (x̄∗, ū∗), Theorem 3.1 implies that
xk∗ tends to x̄∗(t) = − 1

2 t
2 + π

2 t uniformly on I = [0, π], d
dtx

k
∗(t) tends to

d
dt x̄∗(t) = −t+ π

2 weakly in L2, uk∗(t) tends to ū∗ ≡ −1 weakly in L2 and the
sequence of the optimal values

{
V k
}+∞
k=1

converges to V̄ = π3

12 − π.

Acknowledgement. We would like to thank an anonymous referee for
pointing out Berge’s theorem to us. This has greatly streamlined the reason-
ings of the paper.

References

[1] J.-P. Aubin and H. Frankowska, Set-valued analysis, Systems & Control: Foundations
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