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BESOV FUNCTIONS AND VANISHING EXPONENTIAL
INTEGRABILITY

DAVID R. ADAMS AND RITVA HURRI-SYRJÄNEN

Abstract. We prove a general vanishing exponential integrability re-
sult for Besov functions. In a basic case, this allows us to improve the

known O(1) estimate to a o(1) estimate. It also leads to improvements
of differentiability results for Besov functions.

1. Introduction

A non-negative function v(x) , x ∈ Rn, is said to satisfy the vanishing ex-
ponential integrability condition if there is a constant β > 0, independent of
v and the radius r of the Euclidean n-ball Bn(x0, r), such that

(1.1) lim
r→0

∫
Bn(x0,r)

(
eβv(x) − 1

)
dx = 0

for all x0 ∈ Rn\E, where E is an exceptional set for some universal set
function σ strictly stronger than Lebesgue measure on Rn. The set function
σ might be a Hausdorff capacity (content) or an Lp-capacity. In (1.1), the bar
on the integral sign denotes the integral average over Bn(x0, r). In our basic
case, Theorem 1.3, v(x) will be |u(x) − u(x0)|q/(q−1), where u ∈ Λp,qα (Rn),
the standard class of Besov functions on Rn. The set function σ is given
by σ = [Hp,q,h, Aα,p,q], the Neugebauer bracket of the two capacities (see
Definition 2.7), where Aα,p,q is the Besov capacity associated with the space
Λp,qα (Rn), αp = n, and Hp,q,h is a certain Hausdorff capacity with the measure
function h(t) = (log 1/t)1−q,

(1.2) Hp,q,h =

{
Hhp/q , if q < p,
(Hh)p/q , if p ≤ q,

1 < p, q < ∞. For the definitions of these capacities see Definition 2.3 and
Remark 2.8. We now state our main theorem.
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1.3. Theorem. Let u ∈ Λp,qα (Rn) and αp = n. Then there exists a
constant β > 0 independent of u and r > 0 such that∫

Bn(x0,r)

(
exp(β|u(x)− u(x0)|q/(q−1))− 1

)
dx = o(1)

as r → 0 for [Hp,q,h, Aα,p,q]-a.e. x0 ∈ Rn, where the Hausdorff capacity Hp,q,h

with the measure function h(t) = (log 1/t)1−q is defined in (1.2).

In our general case, Theorem 6.1, v(x) is (r−m|u(x)−Pmx0
(x)|)q/(q−1), where

Pmx0
is the mth order Taylor polynomial for u centered at x0. Here m ∈ [1, α)

and σ = [Hp,q,h, Aα−m,p,q], (α −m)p = n. It is remarkable that the integral
average in (1.1) of the exponential function is o(1) as r → 0 when v(x) =
|u(x) − u(x0)|q/(q−1). Previously, C. J. Neugebauer [8, Proof of Theorem
2] showed that the integral in (1.1) over the exponential function with this
function v(x) was merely O(1) as r → 0. Even in the paper [2, Theorem
2] by the first author the result is O(1). As an application of Theorem 6.1
some earlier differentiability results by J. R. Dorronsoro [7] for functions in
the Besov space Λp,qα , 1 ≤ p < ∞, 1 ≤ q < ∞, (α −m)p = n, are improved;
see Section 7.

The definitions and previously known results which we need are recalled
in Section 2. A capacitary average result is shown in Section 3 and lower
bounds for the Besov capacity are proved in Section 4. The proof for Theorem
1.3 is presented in Section 5. The result for the general case, when v(x) =
(r−m|u(x) − Pmx0

(x)|)q/(q−1), is proved in Section 6. Differentiability results
for Besov functions are briefly considered in Section 7.

2. Preliminaries

Let α > 0, 1 < p <∞, and 1 < q <∞ throughout the paper. Recall that
a function sequence f = {fk}∞0 is in lq(Lp) if

‖f‖lq(Lp) =

( ∞∑
k=0

‖fk‖qLp(Rn)

)1/q

<∞ .

Let η ∈ C∞0 (Rn). Set ηk(x) = 2nkη(2kx) for k = 0, 1, 2, . . .. A representation
theorem for Besov spaces, [4, Theorem 4.1.7], states that a function u belongs
to a Besov space Λp,qα if and only if there is a function sequence f = {fk}∞0 ∈
lq(Lp) such that

(2.1) u = Hαf =
∞∑
k=0

2−αkηk ∗ fk .

Further,
‖f‖lq(Lp) ∼ ‖Hαf‖Λp,qα ,

where the norm ‖ ∗ ‖Λp,qα is the Besov norm (see [4, Chapter 4]).
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2.2. Remark. The notation ∼ means ‘is comparable to’.

The potential representation can be used to define the Besov capacity
Aα,p,q(∗).

2.3. Definition ([4, Definition 4.4.2 and Remark]). Let 1 < p < ∞,
1 < q <∞, and 0 < α <∞. Let E ⊂ Rn be arbitrary. Then

Aα,p,q(E) = inf
{
‖f‖plq(Lp) : f ≥ 0,Hαf(x) ≥ 1 on E

}
.

Let Bn(x0, r) be a ball in Rn with a center x0 and radius r > 0. The Besov
capacity for a ball Bn(x0, r) is given in the following lemma whenever the
radius is sufficiently small.

2.4. Lemma ([3, Theorem 3.5]). Let 1 < p < ∞, 1 < q < ∞, and
0 < α <∞. For sufficiently small r, and any x0 ∈ Rn,

Aα,p,q(Bn(x0, r)) ∼
(

log
1
r

)p(1−q)/q
,

whenever αp = n.

We use the following notation:

(2.5) s =

{
q/p , if p ≤ q,
1 , if p > q.

The strong type estimates for the Besov capacity are also needed.

2.6. Theorem ([5, Theorem1]). Let u ∈ Λp,qα (Rn), 1 < p, q < ∞, and
0 < α <∞. There is a constant c = c(α, p, q, n) such that∫ ∞

0

(Aα,p,q({x ∈ Rn : |u(x)| ≥ t}))s dtsp ≤ c‖u‖sp
Λp,qα

,

where s is defined in (2.5).

Next, we introduce Neugebauer’s bracket of two capacities.

2.7. Definition ([9, p. 304], [1, V.4]). Let E ⊂ Rn. Given two capacities
cap1 and cap2, set

[cap1, cap2](E) = inf{cap1(E1) + cap2(E2)},
where the infimum is over all disjoint partitions E1, E2 of E = E1 ∪ E2.

2.8. Remark. The Hausdorff capacity is denoted by Hh. Here h = h(t)
is a monotone increasing function of t ≥ 0, and

Hh(K) = inf
∞∑
j=0

h(rj),
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where the infimum is over all countable coverings of K by balls and rj denotes
the radius of the jth ball of such a cover.

2.9. Remark ([6, Chapter 4, Definition 4.1, Proposition 4.2]). We recall
the equivalent norm for the Lorentz spaces L(p, q):(∫ ∞

0

(tp|{x : |f(x)| > t}|)q/p dt
t

)1/q

∼ ‖f‖L(p,q) <∞ .

Note that ‖f‖L(p,p) = ‖f‖Lp and L(p, p) = Lp is the classical Lebesgue space.
One always has L(p, q1) ⊂ L(p, q2) if q1 < q2.

Throughout the paper, the letter c will denote various constants which may
differ from one formula to the next even within a single string of estimates.

3. Capacitary averages

Let αp = n throughout this section. We define s as in (2.5). For a Besov
function v ∈ Λp,qα (Rn) we consider the maximal function

Mα,s(v)(x0)(3.1)

= sup
r>0

Aα,p,q(Bn(x0, r))−s
∫ ∞

0

(Aα,p,q(Bn(x0, r) ∩ [v > t]))s dtsp,

where v = Hαf with f ≥ 0. The set {x : v(x) > t} is abbreviated by [v > t].
For a function u ∈ Λp,qα (Rn) we write

(3.2) Et(r) = Bn(x0, r) ∩ {x : |u(x)− u(x0)| > t}.

To show (in Theorem 3.8 below) that the capacity average satisfies

Aα,p,q(Bn(x0, r))−s
∫ ∞

0

(Aα,p,q(Et(r)))
s
dtsp → 0

when r goes to zero, we need the following lemma.

3.3. Lemma. Let αp = n. Then

[(Hh)p/q, Aα,p,q]
(
{x :Mα,q/p(Hαf)(x) > tq}

)
≤ c

tp
‖f‖plq(Lp) , 1 < p ≤ q,

and

[Hhp/q , Aα,p,q] ({x :Mα,1(Hαf)(x) > tp}) ≤ c

tp
‖f‖plq(Lp) , q < p,

where h(t) = (log 1/t)1−q.

Proof. We write fr = {frk}, where frk = fk · χB(x0,2r) and g = {gk},
gk = fk − frk ; here χB(x0,2r) is the characteristic function of a ball B(x0, 2r).
Then

Hαf(x) = Hαfr(x) +Hαg(x) .
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So

(3.4) Mα,s(Hαf)(x) ≤ cMα,s(Hαfr)(x) + cMα,s(Hαg)(x) ,

where s is defined in (2.5). By Lemma 2.4 and Theorem 2.6,

Aα,p,q(Bn(x0, r))−s
∫ ∞

0

(Aα,p,q(Bn(x0, r) ∩ [Hαfr > t]))s dtsp

≤ c
(

log
1
r

)ps(q−1)/q

‖Hαfr‖spΛpqα

∼ c
(

log
1
r

)ps(q−1)/q
( ∞∑
k=0

‖frk‖
q
Lp(Rn)

)ps/q

= c

(
log

1
r

)ps(q−1)/q
 ∞∑
k=0

(∫
Bn(x0,2r)

fk(y)p dy

)q/pps/q .
Now set, for t > 0,

Kt =

x : sup
r>0

(
log

1
r

)ps(q−1)/q
 ∞∑
k=0

(∫
Bn(x,r)

fk(y)p dy

)q/pps/q > tsp

 .

For each x ∈ Kt there exists a ball Brx centered at x and of radius rx such
that (

log
1
rx

)ps(1−q)/q
<

1
tsp

 ∞∑
k=0

(∫
Brx

fk(y)p dy

)q/pps/q .
By a standard covering argument there exists a sequence of disjoint balls {Bj}
with radius rj such that {5Bj} covers Kt:

(3.5)
∞∑
j=0

(
log

1
rj

)ps(1−q)/q
≤ 1
tsp

∞∑
j=0

 ∞∑
k=0

(∫
Bj

fk(y)p dy

)q/pps/q .
When s = q/p in (3.5), then q/p ≥ 1 and hence

∞∑
j=0

(
log

1
rj

)1−q

≤ 1
tq

∞∑
k=0

 ∞∑
j=0

∫
Bj

fk(y)p dy

q/p

.

This then gives the estimate

Hh1(Kt) ≤
c

tq
‖f‖qlq(Lp) ,

which means

(3.6) (Hh1(Kt))p/q ≤
c

tp
‖f‖plq(Lp) ,
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for p ≤ q, h1(t) = (log 1/t)1−q.
When s = 1 in (3.5), we have

∞∑
j=0

(
log

1
rj

)p(1−q)/q
≤ 1
tp

∞∑
j=0

 ∞∑
k=0

(∫
Bj

fk(y)p dy

)q/pp/q

≤ 1
tp

 ∞∑
k=0

 ∞∑
j=0

∫
Bj

fk(y)p dy

q/p

p/q

by the generalized Minkowski inequality, [10, p. 271]. This gives

(3.7) Hh2(Kt) ≤
c

tp
‖f‖plq(Lp),

where h2(t) = (log 1/t)p(1−q)/q.
On the other hand,

Mα,s(Hαg)(x0) ≤ cHαf(x0)sp .

Hence, by (3.4) we have

{x :Mα,s(Hαf)(x) > tsp} ⊂ Kct ∪ {x : (Hαf(x))sp > ctsp} ,

where Kct is estimated in terms of Hhi , i = 1, 2, as in (3.6) and (3.7). The set
{x : (Hαf(x))sp > tsp} can be estimated in terms of Aα,p,q via a weak-type
capacity estimate by the definition, Definition 2.3. We have from Definition
2.7 the estimates

[(Hh)p/q, Aα,p,q]
({
x :Mα,q/p(Hαf)(x) > tq

})
≤ c

tp
‖f‖plq(Lp) , 1 < p ≤ q,

and

[Hhp/q , Aα,p,q] ({x :Mα,1(Hαf)(x) > tp}) ≤ c

tp
‖f‖plq(Lp) , q < p,

where h(t) = (log 1/t)1−q. �

We are now in a position to prove a key result.

3.8. Theorem. Let u ∈ Λp,qα (Rn) with αp = n. Let h(t) = (log 1/t)1−q.
If Et(r) = Bn(x0, r) ∩ {x : |u(x)− u(x0)| > t}, then

(3.9) lim
r→0

Aα,p,q(Bn(x0, r))−s
∫ ∞

0

(Aα,p,q(Et(r)))
s
dtsp = 0

for [(Hh)p/q, Aα,p,q]-a.e. x0 whenever s = q/p and p ≤ q. If s = 1 and p > q,
(3.9) holds for [Hhp/q , Aα,p,q]-a.e. x0.
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Proof. We consider only the case s = q/p ≥ 1; the case s = 1 is similar.
Denote C = [(Hh)p/q, Aα,p,q] for convenience. By the triangle inequality,∫ ∞

0

C (Bn(x0, r) ∩ {x : |u(x)− u(x0)| > t})s dtps

≤
∫ ∞

0

C (Bn(x0, r) ∩ {x : |u(x)|+ |u(x0)| > t})s dtps

≤
∫ ∞

0

C (Bn(x0, r) ∩ ({x : |u(x)| > t/2} ∪ {x : |u(x0)| > t/2}))s dtps

≤ c

(∫ ∞
0

C (Bn(x0, r) ∩ {x : |u(x)| > t/2})s dtps

+
∫ ∞

0

C (Bn(x0, r) ∩ {x : |u(x0)| > t/2})s dtps
)
.

We introduce the notation

(3.10) avC(u, r)(x0) = C(Bn(x0, r))−s
∫ ∞

0

C(Et(r))s dtps ,

where Et(r) is defined as in (3.2). Hence, for u = Hαf , assuming, without
loss of generality, f ≥ 0, u ≥ 0, we have

avC(u, r)(x0) ≤ c(Mα,s(Hαf)(x0) + (Hαf(x0))ps) .

Thus,

lim
r→0

avC(u, r)(x0) ≤ c(Mα,s(Hαf)(x0) + (Hαf(x0))ps) .

We have to show that

C({x0 : lim
r→0

avC(u, r)(x0) > λps}) = 0

for any λ > 0. By the above estimate and the previous lemma

C
(
{x0 : lim

r→0
avC(u, r)(x0) > λps}

)
≤ c

λp
‖f‖plq(Lp) + C ({x0 : (Hαf(x0))ps > (λ/2)ps}) .

By Definition 2.3 the weak type estimate

C({x0 : (Hαf(x0))ps > (λ/2)ps}) ≤ c

λp
‖f‖plq(Lp)

holds. We use the standard argument. Sequences of C∞0 functions are dense
in lq(Lp). Let f = f − ψ + ψ, where f = {fk}∞0 ∈ lq(Lp) and ψ = {ψk}∞0
with ψk ∈ C∞0 , and fk a sequence {ψjk} with ‖fk − ψjk‖Lp → 0 as j → ∞.
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Then, for any λ > 0,

C({x0 : lim
r→0

avC(Hαf, r)(x0) > λps})

≤ C({x0 : lim
r→0

avC(Hαf −Hαψ, r)(x0) > λps})

≤ c

λp
‖f − ψ‖plq(Lp) < c

ε

λp
,

where ε > 0 can be taken arbitrary small. Hence,

C({x0 : lim
r→0

avC(Hαf, r)(x0) > λps}) = 0

for all λ > 0, and thus

C({x0 : lim
r→0

avC(Hαf, r)(x0) > 0}) = 0 ,

and the claim follows. �

4. Lower bounds for Aα,p,q-capacity

When αp = n, by [2, Theorem 4] there exist constants a > 0 and c < ∞
independent of a ball B1 and a function u such that∫

B1

exp(a|u(x)|q/(q−1)) dx ≤ c

with ‖u‖Λp,qα ≤ 1. See [8, Theorem 2].

4.1. Lemma. Let αp = n. There are constants a and c > 0 independent
of the set E such that

Aα,p,q(E) ≥ a
(

log
c

|E|

)p(1−q)/q
,

for all E b B1, where B1 is some fixed ball in Rn and |E| is small enough.

Proof. We use the estimate (27) in [2, Theorem 4] for a function u =
g/‖g‖Λp,qα . Let g(x) ≥ 1 on E, so E ⊂ {x ∈ B1 : |g(x)| ≥ 1}, and hence

c ≥
∫
B1

exp

(
a

(
|g(x)|
‖g‖Λp,qα

)q/(q−1)
)
dx

≥
∫
{x∈B1:|g(x)|≥1}

exp

(
a

(
1

‖g‖Λp,qα

)q/(q−1)
)
dx

≥ |E| exp

(
a

‖g‖q/(q−1)

Λp,qα

)
.

Thus

‖g‖Λp,qα ≥
(
a log

c

|E|

)p(1−q)/q
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and

Aα,p,q(E) ≥
(
a log

c

|E|

)p(1−q)/q
.

4.2. Remark. According to (3.10) we can write briefly

(4.3) avAα,p,q(u, r)(x0) = Aα,p,q(Bn(x0, r))−s
∫ ∞

0

Aα,p,q(Et(r))s dtsp .

(Recall the definition of s from (2.5).)

4.4. Lemma. Let u ∈ Λp,qα (Rn) with αp = n. Then there exists a number
r0 > 0 and a constant c = c(n, r0, x0) > 0, such that for [Hp,q,h, Aα,p,q]-a.e.
x0 and all r < r0, when r and t are related by

(4.5) avAα,p,q(u, r)(x0)1/2sp < t,

we have

(4.6) Aα,p,q(Et(r)) ≥ c
(

log
|Bn(x0, r)|
|Et(r)|

)p(1−q)/q
,

where Hp,q,h is defined in (1.2).

Proof. By Lemma 2.4 and Lemma 4.1 we have for sufficiently small r

Aα,p,q(Et(r))
Aα,p,q(Bn(x0, r))

≥ c

(
log 1
|Et(r)|

log 1
|Bn(x0,r)|

)p(1−q)/q
(4.7)

= c

 log |B
n(x0,r)|
|Et(r)| + log 1

|Bn(x0,r)|

log 1
|Bn(x0,r)|

p(1−q)/q

= c

1 +
log |B

n(x0,r)|
|Et(r)|

log 1
|Bn(x0,r)|

p(1−q)/q

.(4.8)

By (4.3),

(4.9) avAα,p,q(u, r)(x0) ≥ Aα,p,q(Et(r))s

Aα,p,q(Bn(x0, r))s
tsp

for all r, t > 0. For all r and t satisfying avAα,p,q(u, r)(x0)1/2sp < t,

avAα,p,q(u, r)(x0)1/2 ≥ Aα,p,q(Et(r))s

Aα,p,q(Bn(x0, r))s
.

Since by Theorem 3.8 for [Hp,q,h, Aα,p,q]-a.e. x0 we have avAα,p,q(u, r)(x0)→
0 as r tends to zero,

Aα,p,q(Et(r))s

Aα,p,q(Bn(x0, r))s
→ 0
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uniformly for t > avAα,p,q(u, r)(x0)1/2sp . By (4.7) also1 +
log |B

n(x0,r)|
|Et(r)|

log 1
|Bn(x0,r)|

sp(1−q)/q

→ 0 as r → 0 .

Hence, for [Hp,q,h, Aα,p,q]-a.e. x0 there is r0 > 0 such that for all r < r0 and
all t > avAα,p,q(u, r)(x0)1/2sp,

Aα,p,q(Et(r)) ≥ cAα,p,q(Bn(x0, r))

 log |B
n(x0,r)|
|Et(r)|

log 1
|Bn(x0,r)|

p(1−q)/q

,

and by Lemma 2.4 there is r1 > 0 such that for all r < r1 ≤ r0 and all
t > avAα,p,q(u, r)(x0)1/2sp,

Aα,p,q(Et(r)) ≥ c
(

log
|Bn(x0, r)|
|Et(r)|

)p(1−q)/q
. �

5. Vanishing exponential integrability

We are ready to prove our main result.

Proof of Theorem 1.3. We take σ := avAα,p,q(u, r)(x0)1/sp as in (4.3). Us-
ing the elementary inequality log t ≤ kt1/k, for all t and k > 0, we can estimate
(4.6) below by

(5.1)
(

log
|Bn(x0, r)|
|Et(r)|

)p(1−q)/q
≥

[
k

(
|Bn(x0, r)|
|Et(r)|

)1/k
]p(1−q)/q

.

Let p > q. Thus using (4.3), Lemma 2.4, (4.6) and (5.1) we have

σsp ≥ ckp(1−q)/q
(

log
1
r

)p(q−1)/kq

|Bn(x0, r)|p(1−q)/kq
∫ ∞
σ

|Et(r)|p(q−1)/kq dtsp.

Here, ∫ ∞
σ1/2
|Et(r)|p(q−1)/kq dtsp =

∫ ∞
σ1/2

(
tkq/(q−1)|Et(r)|

)p(q−1)/kq dt

t
.

If the integration were extended to [0,∞), then the above integral would be
the classical L(qk/(q−1), p)-Lorentz norm of |u−u(x0)| over the ball Bn(x0, r)
to the power p. Recall that L(qk/(q − 1), p) ⊂ L(qk/(q − 1), qk/(q − 1)) as
soon as p < qk/(q− 1), which is equivalent to k > p(q− 1)/q; see [6, Chapter
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4, Proposition 4.2]. Hence for Eσ(r) (see (3.2)),∫ ∞
σ

|Et(r)|p(q−1)/kq dtsp ≥ ‖u− u(x0)‖pL(kq/(q−1),p)(Eσ(r))

≥ ‖u− u(x0)‖pL(kq/(q−1),kq/(q−1))(Eσ(r))

= ‖u− u(x0)‖p
Lkq/(q−1)(Eσ(r))

=

(∫
Eσ(r)

|u(x)− u(x0)|kq/(q−1) dx

)p(q−1)/kq

.

Hence, for p > q and s = 1,

|Bn(x0, r)|−1

∫
Eσ(r)

|u(x)− u(x0)|kq/(q−1) dx ≤ c
(

log
1
r

)−1

kkσspkq/p(q−1) .

We use this to estimate the terms of the series expansion of the exponentials.
Thus we write∫

Bn(x0,r)

(
exp(β|u(x)− u(x0)|q/(q−1))− 1

)
dx(5.2)

=
∞∑
j=1

βj

j!

∫
Bn(x0,r)

|u(x)− u(x0)|jq/(q−1) dx .

We now break up this integral into two parts, corresponding to the sets Eσ(r)
and Bn(x0, r)\Eσ(r). In the latter case, (5.2) does not exceed

(5.3)
∞∑
j=1

βj

j!
σjq/(q−1) .

In the former case with k = j, we obtain for the series the bound

(5.4)
∞∑

j=[p(q−1)/q]

βj

j!
jj(cσ)jq/(q−1)

for all r < r0. The case j < p(q − 1)/q is handled by the Hölder inequality.
Thus, since (5.3) and (5.4) tend to zero with σ, the vanishing exponential
integrability results are valid when p > q.

The case p ≤ q is handled in a similar manner. �

6. Vanishing exponential integrability: the general case

The mth order Taylor polynomial of a function u ∈ Λp,qα at x0 is denoted
by Pmx0

.
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6.1. Theorem. Let u ∈ Λp,qα (Rn), 0 < α < n. Let m ∈ Z+ be such that
1 ≤ m < α, and suppose further that (α − m)p = n. Then there exists a
constant β > 0 independent of u and r > 0 such that∫

Bn(x0,r)

(
eβ(r−m|u(y)−Pmx0

(y)|)q/(q−1)

− 1
)
dy = o(1)

as r → 0 for [Hp,q,h, Aα−m,p,q]-a.e. x0 ∈ Rn, where Hp,q,h is the Hausdorff
capacity with the measure function h(t) = (log 1/t)1−q as in (1.2).

Proof. From Taylor’s formula for Cm-functions u,

u(y) = Pm−1
x0

(y)+m
∑
|γ|=m

1
γ!

[∫ 1

0

(1− t)m−1Dγu((1− t)x0 + ty) dt
]

(y−x0)γ .

If u = Hαf with f ∈ C∞0 (Rn), then

|Hαf(y)− Pm−1
x0

(y)| ≤ m
∑
|γ|=m

1
γ!

∣∣∣∣∫ 1

0

DγHαf((1− t)x0 + ty) dt
∥∥∥∥ y − x0|m .

By (2.1),
|DγHαf(y)| ≤ cHα−mf(y),

where the function η occurring in the representation of Hα−mf is different
from the one used in the Hαf -case. This is an abuse of notation, but it is
acceptable since the estimates we give depend only on f , and not on η. Let
y ∈ Bn(x0, r). By the mean value theorem there is a point t0 = t0(y) ∈ (0, 1)
such that

|Hαf(y)− Pm−1
x0

(y)| < cHα−mf(x0 + t0(y − x0))rm .

We may assume s = 1. Thus∫ ∞
0

Aα−m,p,q

(
Bn(x0, r) ∩

[ |Hαf(y)− Pm−1
x0

(y)|
rm

> λ

])
dλp

≤ c
∫ ∞

0

Aα−m,p,q (Bn(x0, r) ∩ [Hα−mf(x0 + t0(y)(y − x0)) > λ]) dλp

≤ c
∫ ∞

0

Aα−m,p,q (Bn(x0, r) ∩ [Hα−mf > λ]) dλp ,

where |x0 + t0(y)(y − x0)| ≤ t0(y)|y − x0| < r. Write briefly

Kλ(r;Hαf − Pm−1
x0

) = Bn(x0, r) ∩ {y : |Hαf(y)− Pm−1
x0

(y)| > λ}.

Taking the supremum over r > 0 we obtain

sup
r>0

r−mp
1

Aα−m,p,q(Bn(x0, r))

∫ ∞
0

Aα−m,p,q(Kλ(r;Hαf − Pm−1
x0

)) dλp

≤Mα−m,1(Hα−mf)(x0).
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This reduces the general case to the basic one: We are able to apply Lemma
3.3 as in the proof of Theorem 3.8 to obtain

lim
r→0

r−mpAα−m,p,q(Bn(x0, r))
∫ ∞

0

Aα−m,p,q(Kλ(r;Hαf − Pmx0
)) dλp = 0 .

This is used in the same way as Theorem 3.8 was used in the proof of Theorem
1.3 to obtain the claim. The case s = 1 is complete. The case s = q/p is proved
in a similar manner. �

7. Differentiability for Besov functions

The (s,m)-differentiability means(∫
Bn(x0,r)

|u(y)− Pmx0
(y)|s dy

)1/s

= o(rm) as r → 0 .

Here, Pmx0
denotes the [m]th order Taylor polynomial of u at x0. We refer also

to [11, Section 3.5]. J. R. Dorronsoro [7] proved differentiability results for
functions in the Besov spaces; one of his theorems is as follows.

7.1. Theorem ([7, Theorem 2]). If u ∈ Λp,qα , 1 ≤ p < ∞, αp ≤ n,
1 ≤ q ≤ p and β with 0 ≤ β < α is given, u has an (np/(n − αp), β)-
differential [Hn−(α−β)p, Aα−β,p,q]-a.e.

Theorems 1.3 and 6.1 imply the following result.

7.2. Theorem. Let u ∈ Λp,qα (Rn), 1 < p <∞, 1 < q <∞, (α−m)p = n
with m ∈ [0, α) given. Then for any s < ∞, u has an (s,m)-differential
[Hp,q,h, Aα−m,p,q]-a.e. x ∈ Rn, where Hα,p,q is defined as in (1.2).
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