
Illinois Journal of Mathematics
Volume 47, Number 4, Winter 2003, Pages 1115–1136
S 0019-2082

APPROXIMATION ON THE BOUNDARY AND SETS OF
DETERMINATION FOR HARMONIC FUNCTIONS

STEPHEN J. GARDINER AND JORDI PAU

Abstract. Let E be a subset of a domain Ω in Euclidean space. This
paper deals with the representation, or approximation, of functions on

the boundary of Ω by sums of Poisson, Green or Martin kernels asso-
ciated with the set E, and with the related issue of whether E can be
used to determine the suprema of certain harmonic functions on Ω. The
results address several questions raised by Hayman.

1. Main results

Let A be a collection of harmonic functions on the open unit disc D, and
let E ⊆ D. We call E a set of determination for A if supE h = supD h for all
h in A. Bonsall [6] and Hayman and Lyons [14], respectively, have established
Theorems A and B below connecting this notion with the representation of
appropriate functions on ∂D in terms of the Poisson kernel

P (x, y) =
1

2π
1− ‖x‖2

‖x− y‖2
(x ∈ D; y ∈ ∂D) .

Let h∞(Ω) denote the collection of bounded harmonic functions on an open
set Ω in Rn (n ≥ 2), and h1(Ω) the collection of functions of the form h1−h2,
where h1 and h2 are positive and harmonic on Ω. We consider only spaces of
real-valued functions in this paper, and use C+(K) to denote the collection of
all (strictly) positive continuous functions on a compact set K. The assertion
“f =

∑
fk in L1” will mean that the series converges to f in the L1 norm.

Theorem A. Let E ⊆ D. The following are equivalent:
(a) For each f ∈ L1(∂D) and ε > 0 there exist sequences (λk) in R and

(xk) in E such that

(1) f =
∑

λkP (xk, ·) in L1(∂D) and
∑
|λk| < ‖f‖L1(∂D) + ε.

(b) supE h = supD h whenever h ∈ h∞(D).
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(c) Almost every point of ∂D is the nontangential limit of some sequence
in E.

We write B(x, r) for the open ball of centre x and radius r in Rn (n ≥ 2).

Theorem B. Let E ⊆ D. The following are equivalent:
(a) For each f ∈ C+(∂D) there exist sequences (λk) in [0,+∞) and (xk)

in E such that

(2) f(y) =
∑

λkP (xk, y) (y ∈ ∂D).

(b) supE h = supD h whenever h ∈ h1(D).
(c)

∫
E∂D
‖x− y‖−2

dx = +∞ for each y ∈ ∂D, where

E∂D =
⋃
x∈E

B

(
x,

1− ‖x‖
2

)
.

Hayman [13] subsequently raised the following questions.
(I) Condition (a) of Theorem B implies condition (a) of Theorem A in

view of the obvious relationship between the corresponding conditions
(b). Now let µ be a measure on a compact set K and let A ⊆ C+(K).
Is it true generally that, if there is a decomposition of the form (2)
for every f ∈ C+(K) in terms of members of A, then there is a
decomposition of the form (1) for every f ∈ L1(µ) in terms of A?

(II) The decomposition (2) implies (using Dini’s theorem and writing f
as (δ + f+) − (δ + f−), where δ > 0) that any f ∈ C(∂D) can
be uniformly approximated by finite sums of the form

∑
λkP (xk, y),

where λk ∈ R and xk ∈ E (and, given ε > 0, we can even arrange
that

∑
|λk| < ‖f‖L1(∂D) + ε). Is there a converse result?

The first question is answered positively below. In the context of The-
orem A the set A of the next result is {P (x, ·) : x ∈ E} and, of course,
‖P (x, ·)‖L1(∂D) = 1 for all x. By a measure we always mean a nonnegative
Borel measure which assigns a finite value to each compact set.

Theorem 1. Let µ be a measure on a compact Hausdorff space K and let
A ⊆ C+(K). Suppose that, for each f ∈ C+(K), there exist sequences (λk) in
[0,+∞) and (fk) in A such that f =

∑
λkfk. Then, for each f ∈ L1(µ) and

ε > 0, there exist sequences (λk) in R and (fk) in A such that f =
∑
λkfk in

L1(µ) and
∑
|λk| ‖fk‖L1(µ) < ‖f‖L1(µ) + ε.

We will address Question II shortly in the light of the next result. In
what follows Ω will denote a domain in Rn which possesses a Green function
GΩ(·, ·); that is, Ω is connected and, in the case where n = 2, the complement
of Ω must be nonpolar. Let ν0 be a measure with compact support, supp ν0,
contained in Ω. In order to state our results in a general form we will use the
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notion of the Martin boundary ∆ of Ω, an account of which may be found in
Chapter 8 of [4]. We denote by ∆1 the set of minimal boundary points and
by M(·, ·) the Martin kernel

M(x, y) = lim
z→y

GΩ(x, z)
GΩν0(z)

(x ∈ Ω; y ∈ ∆),

where GΩν0 is the potential on Ω associated with ν0. (If Ω = D and ν0 is
the unit measure on {0}, then M(x, y) = 2πP (x, y).) Each positive harmonic
function h on Ω has a unique representation of the form h = Mµ, where

Mµ(x) =
∫
M(x, y) dµ(y) (x ∈ Ω)

and µ is a measure on ∆ such that µ(∆\∆1) = 0. In the case where Ω is
a Lipschitz domain (or, more generally, a nontangentially accessible domain
[16]), ∆ can be identified with ∂Ω and all boundary points are minimal.

If X and Y are normed linear spaces, then we write X ↪→ Y to indicate
that there is a continuous injective linear mapping from X into Y .

Theorem 2. Let H = Mµ, where µ is a non-zero measure with compact
support K ⊆ ∆1, and let (X, ‖·‖X) be a Banach space such that C(K) ↪→
X ↪→ L1(µ) and C(K) is dense in (X, ‖·‖X). The following conditions on a
set E ⊆ Ω are equivalent:

(a) For each f ∈ X and ε > 0, there exist λ1, . . . , λm ∈ R and x1, . . . , xm ∈
E such that∥∥∥∥∥f −

m∑
k=1

λkM(xk, ·)

∥∥∥∥∥
X

< ε and
m∑
k=1

|λk|H(xk) ≤ ‖f‖L1(µ) .

(b) sup
x∈E

|T (M(x, ·))|
H(x)

= sup
x∈Ω

|T (M(x, ·))|
H(x)

for each T in the dual space X∗.

Our first application of Theorem 2 involves taking X to be C(∆) and
making a particular choice of µ.

Corollary 1. Let µ1 be the unique measure on ∆1 such that Mµ1 ≡ 1,
and suppose that suppµ1 = ∆ = ∆1. The following conditions on a set E ⊆ Ω
are equivalent:

(a) For each f ∈ C(∆) and ε > 0, there exist λ1, . . . , λm ∈ R and
x1, . . . , xm ∈ E such that∣∣∣∣∣f −

m∑
k=1

λkM(xk, ·)

∣∣∣∣∣ < ε on ∆ and
m∑
k=1

|λk| ≤ ‖f‖L1(µ1) .

(b) supE |h| = supΩ |h| whenever h ∈ h1(Ω).
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In the case where Ω = D we thus see that any f ∈ C(∂D) can be uniformly
approximated by finite sums of the form

∑
λkP (xk, ·), with xk ∈ E and∑

|λk| ≤ ‖f‖L1(∂D), if and only if

(3) sup
E
|h| = sup

D
|h| whenever h ∈ h1(D).

The following example answers Question II negatively in this context by show-
ing that (3) is strictly weaker than condition (b) of Theorem B. It would be
interesting to obtain an explicit description of the sets E which satisfy (3).

Example 1. Let z ∈ ∂D and

Eα =
{
x ∈ D : 1− ‖x‖2 < ‖z − x‖α

}
(α ≥ 1).

Then condition (c) of Theorem B holds if and only if α = 1, whereas (3) holds
if and only if α < 2. (Details may be found in Section 3.3.)

The punctured disc Ω = D\{0} is an obvious example of where the hy-
pothesis in Corollary 1 fails, since suppµ1 = ∂D but ∆ can be identified with
∂Ω. The equivalence of conditions (a) and (b) breaks down in this case since,
if E = Ω, then (b) trivially holds but (a) fails (consider the function f valued
1 at 0, and 0 elsewhere on ∂Ω). However, if µ1 were augmented by the unit
mass at 0, then Theorem 2 would show that condition (a) of Corollary 1 is
equivalent to

sup
x∈E

|h(x)|
1 + log ‖x‖

= sup
x∈Ω

|h(x)|
1 + log ‖x‖

whenever h ∈ h1(Ω).

Our second application of Theorem 2 involves choosing X to be L1(µ) . It
generalizes the equivalence of the first two conditions in Theorem A.

Corollary 2. Let µ be a non-zero measure with compact support con-
tained in ∆1 and let H = Mµ. The following conditions on a set E ⊆ Ω are
equivalent:

(a) For each f ∈ L1(µ) and ε > 0, there exist sequences (λk) in R and
(xk) in E such that

f =
∞∑
k=1

λkM(xk, ·) in L1(µ) and
∞∑
k=1

|λk|H(xk) < ‖f‖L1(µ) + ε.

(b) supE
h

H
= supΩ

h

H
for each harmonic function h on Ω such that h/H

is bounded.

If K is a compact subset of ∆1, then we write h+
K(Ω) (resp. hK(Ω)) for the

collection of harmonic functions on Ω of the form Mν, where ν is a non-zero
measure (resp. a signed measure) such that supp ν ⊆ K.
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Theorem 3. Let K be a compact subset of ∆1, and let E ⊆ Ω. The
following are equivalent:

(a) For each f ∈ C+(K) there exist sequences (λk) in [0,+∞) and (xk)
in E such that f =

∑∞
1 λkM (xk, ·) on K.

(b) There exists H ∈ h+
K(Ω) such that supE

h

H
= supΩ

h

H
whenever h ∈

hK(Ω).

(c) supE
h

u
= supΩ

h

u
whenever h ∈ hK(Ω) and u ∈ h+

K(Ω).

Aikawa (see Theorem 3 of [1]) has given a different version of Theorem 3
for nontangentially accessible domains Ω. Assuming that E is contained in a
suitable nontangential approach region for the set K (and that K has more
than one point), he asserts that (a) is equivalent to (b) with H ≡ 1. This
is incorrect, as we explain in Section 4.4: quotients, where the denominator
belongs to h+

K(Ω), play an essential role here.
If K ⊂ Rn is compact and E ⊆ Rn\K, then we define

EK =
⋃
x∈E

B

(
x,

1
2
dK(x)

)
, where dK(x) = dist(x,K).

(This is consistent with our previous use of the notation E∂D.) The Poisson
kernel for the unit ball B in Rn is given by

P (x, y) =
1
σn

1− ‖x‖2

‖x− y‖n
(x ∈ B; y ∈ ∂B),

where σn is the surface area of ∂B. We write Pµ(x) for the Poisson integral,∫
P (x, ·)dµ, of a measure µ on ∂B.

Corollary 3. Let K be a compact subset of ∂B that contains more than
one point and let E ⊆ B. Then conditions (a)–(c) of Theorem 3 (with B and
P (·, ·) in place of Ω and M(·, ·)) are equivalent to:

(d)
∫
EK∩B ‖x− y‖

−n
dx = +∞ for all y ∈ K.

If we take K to be ∂B in Corollary 3, we obtain a generalization of Theorem
B (cf. [11]). For other choices of K, the use of EK , rather than E∂B , is a new
and crucial element. In the case of the disc, Theorem 2(a) of Essén [10] asserts
(in view of Lemma C in Section 4.2 below) that condition (d), strengthened
by the use of E∂D in place of EK , is sufficient for condition (b) to hold with
H ≡ 1. This is again incorrect (see Section 4.4).

Theorem 3 can also be used to obtain the main result of [12], concerning
the representation of continuous functions as sums of Green functions, in the
same manner that Corollary 5 is deduced from Theorem 4 below.
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Theorem 4. Let H = Mµ, where µ is a non-zero measure with compact
support K ⊆ ∆1, and let E ⊆ Ω. The following are equivalent:

(a) For each positive lower semicontinuous function f on K there exist se-
quences (λk) in [0,+∞) and (xk) in E such that f =

∑∞
1 λkM(xk, ·)

almost everywhere (µ).

(b) supE
h

H
= supΩ

h

H
whenever h ∈ hK(Ω) and h/H is bounded above.

Theorem 4 is clearly intermediate between Corollary 2 and Theorem 3.
When Ω = B and H ≡ 1, conditions (b) of Theorem 4 and Corollary 2 are
known to be equivalent (see [6], [11]).

Corollary 4. Let H = Pµ, where µ is a measure with compact support
K ⊆ ∂B such that K contains more than one point, and let E ⊆ B. Then
conditions (a) and (b) of Theorem 4 are equivalent to:

(c)
∫
EK∩B ‖x− y‖

−n
dx = +∞ for µ-almost every point y ∈ ∂B.

Corollary 4 improves Corollary 1 in [11], which asserts that a stronger form
of condition (c) (that is, with E∂B in place of EK) implies a weaker form of
condition (a) (namely, condition (a) of Corollary 2).

Our final result in this section relies on the notion of thinness of a set, an
account of which may be found in Chapter 7 of [4].

Corollary 5. Let µ be a non-zero measure with compact support K ⊂
Ω such that K is polar and contains more than one point. The following
conditions on a set E ⊆ Ω\K are equivalent:

(a) For each positive lower semicontinuous function f on K there exist se-
quences (λk) in [0,+∞) and (xk) in E such that f =

∑∞
1 λkGΩ(xk, ·)

almost everywhere (µ).
(b) For µ-almost every point y the set EK is non-thin at y.

Theorems 1–4, together with their associated corollaries, will be established
in Sections 2–5, respectively. Section 6 contains some concluding remarks and
open questions.

Acknowledgement. This work was supported by EU Research Training
Network Contract HPRN-CT-2000-00116. The second author is also partially
supported by DGICYT grant BFM2002-00571.

2. Proof of Theorem 1

Theorem 1 is an immediate consequence of the lemma below.

Lemma 1. Let µ be a measure on a compact Hausdorff space K and let
A ⊆ C+(K). Suppose that, for each f ∈ C+(K), there exist sequences (λk) in
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[0,+∞) and (fk) in A such that f =
∑
λkfk almost everywhere (µ). Then,

for each f ∈ L1(µ) and ε > 0, there exist sequences (λk) in R and (fk) in A
such that f =

∑
λkfk in L1(µ) and

∑
|λk| ‖fk‖L1(µ) < ‖f‖L1(µ) + ε.

To prove the lemma we first observe that, under the stated hypotheses,
any positive lower semicontinuous function on K can be expressed almost
everywhere (µ) as

∑
λkfk where λk ≥ 0 and fk ∈ A for each k. This follows

from the fact that such a function can be expressed as the limit of a sequence
in C+(K) which is pointwise strictly increasing. Next we note that, by writing
f = f+− f−, where f+ = max{f, 0} and f− = max{−f, 0}, it is sufficient to
establish the result for non-negative members of L1(µ).

Now let ε > 0 and f ∈ L1(µ), where f takes values in [0,+∞). By the
Vitali-Carathéodory theorem (see, for example, Theorem 2.24 in [18]) there
is a positive lower semicontinuous function v1 on K such that

v1 ≥ f and
∫

(v1 − f) dµ <
ε

22
.

Similarly, there exists a positive lower semicontinuous function u1 on K such
that

u1 ≥ v1 − f and
∫

(u1 − v1 + f) dµ <
ε

23
.

Again, there are positive lower semicontinuous functions v2 and u2 on K such
that

v2 ≥ u1 − v1 + f and
∫

(v1 + v2 − u1 − f) dµ <
ε

24

and

u2 ≥ v1 + v2 − u1 − f and
∫
{(u1 + u2)− (v1 + v2) + f} dµ < ε

25
.

Proceeding inductively in this way we obtain sequences (uk) and (vk) of pos-
itive lower semicontinuous functions on K satisfying∫ { m∑

1

vk −
m−1∑

1

uk − f

}
dµ <

ε

22m
(m ≥ 1)

and ∫ { m∑
1

uk −
m∑
1

vk + f

}
dµ <

ε

22m+1
(m ≥ 1),

the integrands being non-negative in each case. Adding, we see that∫
umdµ <

ε

22m
+

ε

22m+1
(m ≥ 1),

whence∫ m∑
1

uk dµ <
2m∑
1

ε

2k+1
and

∫ { m∑
1

vk − f

}
dµ <

2m−1∑
1

ε

2k+1
(m ≥ 1).
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It follows that the sums u =
∑∞

1 uk and v =
∑∞

1 vk, which are positive lower
semicontinuous functions on K, satisfy

(4) f = v − u in L1(µ), ‖u‖L1(µ) <
ε

2
and ‖v − f‖L1(µ) <

ε

2
.

By the observation in the opening paragraph there exist sequences (λk), (κk)
in [0,+∞) and (fk), (gk) in A such that v =

∑
λkfk and u =

∑
κkgk almost

everywhere (µ), and clearly

‖v‖L1(µ) =
∑

λk ‖fk‖L1(µ) and ‖u‖L1(µ) =
∑

κk ‖gk‖L1(µ) .

The lemma now follows since
∞∑
1

{
λk ‖fk‖L1(µ) + κk ‖gk‖L1(µ)

}
≤ ‖v − f‖L1(µ) + ‖f‖L1(µ) + ‖u‖L1(µ)

< ‖f‖L1(µ) + ε,

by (4).

3. Proof of Theorem 2 and corollaries

3.1. Let H,µ,K and X be as in Theorem 2. Suppose first that condition
(a) holds and let x0 ∈ Ω and ε > 0. Since M(x0, ·) ∈ C(K), there exist
λ1, . . . , λm ∈ R and x1, . . . , xm ∈ E such that

(5)

∥∥∥∥∥M(x0, ·)−
m∑
k=1

λkM(xk, ·)

∥∥∥∥∥
X

< ε

and

(6)
m∑
k=1

|λk|H(xk) ≤ ‖M(x0, ·)‖L1(µ) = H(x0).

Let T ∈ X∗. From (5) we see that∣∣∣∣∣T (M(x0, ·))− T

(
m∑
k=1

λkM(xk, ·)

)∣∣∣∣∣ < ε ‖T‖X∗ ,

whence

|T (M(x0, ·))| <
m∑
k=1

|λk| |T (M(xk, ·))|+ ε ‖T‖X∗

≤
(

sup
x∈E

|T (M(x, ·))|
H(x)

) m∑
k=1

|λk|H(xk) + ε ‖T‖X∗

≤
(

sup
x∈E

|T (M(x, ·))|
H(x)

)
H(x0) + ε ‖T‖X∗ ,

by (6). Since ε > 0 and x0 ∈ Ω were arbitrary, condition (b) follows.
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Conversely, suppose that condition (b) holds, and let A denote the closure
in (X, ‖·‖X) of the set of finite sums of the form

∑
λkM(xk, ·), where λk ∈ R,

xk ∈ E and
∑
|λk|H(xk) ≤ 1. Thus A is ‖·‖X -closed and convex. Let

g ∈ X\A. By a well-known separation theorem there exist T ∈ X∗ and a ∈ R
such that

(7) T (f) ≤ a for all f ∈ A and T (g) > a.

Since ±M(x, ·)/H(x) ∈ A whenever x ∈ E,

(8) |T (M(x, ·))| ≤ aH(x)

whenever x ∈ E. By hypothesis this inequality therefore holds for all x ∈ Ω.
Since T ∈ X∗, and the inclusion map from C(K) into X is continuous, T

∣∣
C(K)

is a bounded linear functional on C(K). Thus, by the Riesz representation
theorem, there is a signed measure ν on K such that T (f) =

∫
f dν for all

f ∈ C(K). In particular, by (8), the harmonic function Mν satisfies |Mν| ≤
aMµ on Ω. It follows from the uniqueness of the Martin representation, and
the fact that K ⊆ ∆1, that −aµ ≤ ν ≤ aµ, and so

|T (f)| ≤ a ‖f‖L1(µ) for all f ∈ C(K).

Since C(K) is dense in (X, ‖·‖X) and X ↪→ L1(µ), we thus have T (g) ≤
a ‖g‖L1(µ) which, together with (7), shows that ‖g‖L1(µ) > 1. Thus we con-
clude that

(9)
{
f ∈ X : ‖f‖L1(µ) ≤ 1

}
⊆ A.

Finally, suppose that f ∈ X\{0} and ε > 0. Then ‖f‖L1(µ) 6= 0. In view
of (9), there exist λ′1, . . . , λ

′
m ∈ R and x1, . . . , xm ∈ E such that∥∥∥∥∥ f

‖f‖L1(µ)

−
m∑
k=1

λ′kM(xk, ·)

∥∥∥∥∥
X

<
ε

‖f‖L1(µ)

and
∑m

1 |λ′k|H(xk) ≤ 1. Hence condition (a) holds with λk = λ′k ‖f‖L1(µ) .

3.2. Corollary 1 follows on taking µ = µ1 and X = C(∆) in Theorem
2, whence H ≡ 1 and X∗ can be identified with the collection of all signed
measures on ∆.

3.3. The first assertion of Example 1 is easily verified by direct calculation,
so it remains to deal with the second assertion. If α ≥ 2, then (3) clearly fails
for h = P (·, z). Suppose, on the other hand, that α < 2. If h ∈ h1(D) and
supE |h| < +∞, then h must be of the form h1 + cP (·, z), where h1 ∈ h∞(D)
and c ∈ R. Since P (·, z) is unbounded on E, we have c = 0 and (3) now
follows (for example, by Theorem A).
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3.4. For Corollary 2 we take X = L1(µ), whence X∗ can be identified with
L∞(µ) and condition (b) of Theorem 2 can be reformulated as condition (b)
of the corollary. It remains to compare the corresponding conditions (a).

First suppose that condition (a) of Theorem 2 holds, let f ∈ L1(µ) and
ε > 0. Then there exist λ1,1, . . . , λ1,m1 ∈ R and x1,1, . . . , x1,m1 ∈ E such that

‖f − g1‖L1(µ) <
ε

2
and

m1∑
k=1

|λ1,k|H(x1,k) ≤ ‖f‖L1(µ) ,

where g1 =
∑m1
k=1 λ1,kM(x1,k, ·). Applying our hypothesis to f − g1, we then

see that there exist λ2,1, . . . , λ2,m2 ∈ R and x2,1, . . . , x2,m2 ∈ E such that

‖f − (g1 + g2)‖L1(µ) <
ε

22
and

m2∑
k=1

|λ2,k|H(x2,k) <
ε

2
,

where g2 =
∑m2
k=1 λ2,kM(x2,k, ·). Considering next f − (g1 + g2) and then

proceeding inductively, we obtain a sequence (gj), where gj is of the form∑mj
k=1 λj,kM(xj,k, ·) and xj,k ∈ E, such that∥∥∥∥∥∥f −

l∑
j=1

gj

∥∥∥∥∥∥
L1(µ)

<
ε

2l
and

ml∑
k=1

|λl,k|H(xl,k) <
ε

2l−1
(l ≥ 2).

Thus

f =
∞∑
j=1

mj∑
k=1

λj,kM(xj,k, ·) in L1(µ)

and
∞∑
j=1

mj∑
k=1

|λj,k|H(xj,k) < ‖f‖L1(µ) + ε,

so condition (a) of Corollary 2 holds.
Conversely, suppose that condition (a) of Corollary 2 holds, and let f ∈

L1(µ)\{0} and ε ∈ (0, ‖f‖L1(µ)). Then there exist sequences (λk) in R and
(xk) in E such that(

1− ε

2 ‖f‖L1(µ)

)
f =

∞∑
1

λkM(xk, ·) in L1(µ)

and
∞∑
1

|λk|H(xk) <

(
1− ε

2 ‖f‖L1(µ)

)
‖f‖L1(µ) +

ε

2
= ‖f‖L1(µ) .

Thus we can choose m such that∥∥∥∥∥
(

1− ε

2 ‖f‖L1(µ)

)
f −

m∑
1

λkM(xk, ·)

∥∥∥∥∥
L1(µ)

<
ε

2
,
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whence ∥∥∥∥∥f −
m∑
1

λkM(xk, ·)

∥∥∥∥∥
L1(µ)

< ε,

and condition (a) of Theorem 2 holds.

4. Proof of Theorem 3 and Corollary 3

4.1. Bonsall and Walsh (see the proof of Theorem 10 (ii)⇒(i) in [7]) have
used the Hahn-Banach theorem to show that (b) implies (a) in Theorem B,
and their argument is easily adapted to show that (b) implies (a) in Theorem
3. Since (c) clearly implies (b), it remains to check that (a) implies (c).

To do this, let h = Mν ∈ hK and u = Mτ ∈ h+
K , let x0 ∈ Ω and suppose

that h/u ≤ a on E. Assuming condition (a), there exist sequences (λk) in
[0,+∞) and (xk) in E such that

M(x0, y) =
∞∑
1

λkM(xk, y) (y ∈ K).

Integration of this equation with respect to each of ν and τ yields

h(x0) =
∞∑
1

λkh(xk) ≤ a
∞∑
1

λku(xk) = au(x0),

and condition (c) follows from the arbitrary nature of x0.

4.2. Before turning to the proof of Corollary 3 we present some lemmas.
We will use C(a, b, . . . ) to denote a positive constant, depending at most on
a, b, . . . , not necessarily the same on any two occurrences.

Lemma A. Let z ∈ ∂B, r ∈ (0, 2) and ρ ∈ (0, 1). Then there is a positive
constant C(n, ρ) with the following property: if g, h are positive harmonic
functions on B(z, r) ∩B that tend to 0 at all points of B(z, r) ∩ ∂B, then

g(x)
h(x)

≤ C(n, ρ)
g(y)
h(y)

(x, y ∈ B(z, ρr) ∩B).

Further, C(n, ρ)→ 1 as ρ→ 0 + .

Lemma A is a special case of the uniform boundary Harnack principle (see
Aikawa [2]). An elementary proof of its halfspace analogue, from which it may
be deduced using the Kelvin transform, can be found in Lemma 8.5.1 of [4].
Actually, we will use it in the following modified form.

Lemma A
′
. Let x0 ∈ B and ρ ∈ (0, 1). Then there is a positive constant

C(n, ρ) with the following property: if g, h ∈ h+
K(B), then

(10)
g(x)
h(x)

≤ C(n, ρ)
g(y)
h(y)

(x, y ∈ B(x0, ρdK(x0)) ∩B).
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Further, C(n, ρ)→ 1 as ρ→ 0 + .

It is enough to verify Lemma A′ when 0 < ρ < 1/3, since iterative appli-
cation then yields the general case. For such ρ, (10) follows from the classical
Harnack inequality if dK(x0) < 3(1 − ‖x0‖), while if dK(x0) ≥ 3(1 − ‖x0‖),
then

B(x0, dK(x0)/3) ⊂ B (x0/ ‖x0‖ , 2dK(x0)/3) ⊂ Rn\K
and we can instead appeal to Lemma A with z = x0/ ‖x0‖ .

If K ⊂ Rn is compact and E ⊆ Rn\K, then we define

EKρ =
⋃
x∈E

B (x, ρdK(x)) (0 < ρ ≤ 1).

Thus EK = EK1/2.

Lemma B. Let K ⊂ Rn be compact and E ⊆ Rn\K be bounded, and let
0 < ρ < 1. Then there is a countable subset A = {xk : k ≥ 1} of E such that
the constituent balls of AKρ/5 are disjoint and EKρ/5 ⊆ A

K
ρ .

Lemma B is a well-known covering lemma (see, for example, pp. 9,10 of
[20]).

The next result is due to Dahlberg [8] (see also Beurling [5], Maz’ya [17]
and Section 7.4 of the book [3]).

Lemma C. Let E ⊆ B be Borel measurable and z0 ∈ ∂B. If there is a
positive superharmonic function u on B such that

inf
E

u

P (·, z0)
> inf

B

u

P (·, z0)
,

then ∫
E

‖x− z0‖−n dx < +∞.

Lemma 2. Let K ⊆ ∂B be compact, let z0 be a limit point of K and
0 < ρ < 1. The following conditions on a set E ⊆ B are equivalent:

(a) There is a measure ν on K such that ν({z0}) = 0 and Pν ≥ P (·, z0)
on E.

(b)
∫
EKρ ∩B

‖x− z0‖−n dx < +∞.

To prove Lemma 2, we first suppose that condition (a) holds. From Lemma
A′ we see that Pν ≥ C(n, ρ)P (·, z0) on EKρ ∩ B, and since ν({z0}) = 0,
condition (b) follows, by Lemma C.

Conversely, suppose that condition (b) holds. By Lemma B there is a
countable subset A = {xk : k ≥ 1} of E such that the constituent balls of
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AKρ/5 are disjoint and EKρ/5 ⊆ A
K
ρ . For each k we can choose zk ∈ K\{z0} such

that

(11) ‖xk − zk‖ < 2dK(xk),

since z0 is a limit point of K. We now define

µ =
∑ {dK(xk)}n

‖xk − z0‖n
δzk ,

where δz denotes the unit mass at z. Since AKρ/5 ⊆ E
K
ρ , we see from condition

(b) that ∑
k

{ρdK(xk)/5}n

{‖xk − z0‖+ ρdK(xk)/5}n
< +∞,

and so µ is a finite measure. Further,

Pµ(xk) ≥ 1
σn

1− ‖xk‖2

‖xk − zk‖n
{dK(xk)}n

‖xk − z0‖n
> 2−nP (xk, z0) (k ≥ 1),

by (11). Hence Pµ ≥ C(n, ρ)P (·, z0) on AKρ ∩B by Lemma A′. Since E ⊆ AKρ
and µ({z0}) = 0, condition (a) follows easily. Lemma 2 is now proved.

We note that, because condition (a) of Lemma 2 is independent of the value
of ρ, the same must be true of condition (b).

4.3. We now prove Corollary 3. Suppose firstly that condition (d) holds,
let h1, h2, u ∈ h+

K(B) and h = h1 − h2, and suppose that h/u ≤ a on E.
Further, let 0 < ρ < 1. It follows from Lemma A′ that

(12) (a+ |a|)u+ h2 ≥ C(n, ρ)(h1 + |a|u)

on EKρ ∩ B. Condition (d) and Lemma C together imply that EK ∩ B, and
hence EKρ ∩B, is not minimally thin at any point of K (we refer to Chapter
9 of [4] for this concept and the associated topology). Using the prefix “mf”
to indicate that a limit concept is taken with respect to this minimal fine
topology, we thus have

mf lim sup
x→y

(a+ |a|)u+ h2

h1 + |a|u
≥ C(n, ρ) (y ∈ K),

and it now follows from a general minimum principle (Theorem 9.3.7 of [4])
that (12) holds on all of B. Since C(n, ρ) → 1 as ρ → 0+, we conclude that
h/u ≤ a on B, and condition (c) is established.

Conversely, suppose that condition (d) fails. Then there exists z0 ∈ K such
that

(13)
∫
EKρ ∩B

‖x− z0‖−n dx < +∞.
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If z0 is an isolated point of K, then (13) implies that z0 /∈ E. If we take u =
P (·, z0) and h = −P (·, z1), where z1 ∈ K\{z0}, then u ∈ h+

K(Ω), h ∈ hK(Ω)
and we see that condition (c) also fails, since

inf
E

P (·, z1)
P (·, z0)

> 0 whereas inf
B

P (·, z1)
P (·, z0)

= 0.

On the other hand, if z0 is not an isolated point of K, then (13) allows us to
choose ν as in condition (a) of Lemma 2. Taking u = P (·, z0) and h = −Pν,
we again find that condition (c) of the corollary fails since

inf
E

Pν

P (·, z0)
≥ 1 whereas inf

B

Pν

P (·, z0)
= ν({z0}) = 0.

4.4. Here we justify the remarks made in Section 1 concerning work of
Aikawa and Essén that is related to Theorem 3 and Corollary 3. (Zhang [21]
has also noted these errors.)

Firstly, it is not possible to replace condition (b) of Theorem 3 by the
condition

(14) sup
E
h = sup

Ω
h whenever h ∈ hK(Ω).

For example, let U denote the closed upper halfplane, let Ω = D, K = U ∩∂D
and E = U∩D, and let h be the harmonic measure of K in D. Then condition
(a) of Theorem 3 holds, in view of Corollary 3. However, −h ∈ hK(D) and
supD(−h) = 0 whereas supE(−h) = −1/2.

Secondly, this example also shows that condition (d) of Corollary 3, even
when EK is replaced by E∂B , does not imply (14).

5. Proof of Theorem 4 and corollaries

5.1. First suppose that condition (a) of Theorem 4 holds and let h ∈
hK(Ω), where h/H is bounded above. Further, let a = supE h/H and let b be
a non-negative upper bound for h/H on Ω. Then h = bH −Mτ, where τ is a
measure with supp τ ⊆ K. Let x0 ∈ Ω. By condition (a), there exist sequences
(λk) in [0,+∞) and (xk) in E such that M(x0, ·) = g almost everywhere (µ),
where g =

∑∞
1 λkM(xk, ·). Since g is lower semicontinuous, M(x0, ·) ≥ g on

K and so

H(x0) =
∞∑
1

λkH(xk) and Mτ(x0) ≥
∞∑
1

λkMτ(xk).
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Hence

h(x0) = bH(x0)−Mτ(x0) ≤
∞∑
1

λk {bH(xk)−Mτ(xk)}

=
∞∑
1

λkh(xk) ≤ a
∞∑
1

λkH(xk) = aH(x0),

and condition (b) follows from the arbitrary nature of x0.
For the converse we adapt an argument of Hoffman and Rossi [15], and

recall the following corollary of the Krein-Smulian theorem from that paper.

Lemma D. Let A be a convex subset of `∞. The following are equivalent:
(i) A is weak∗ closed.
(ii) If

{
(a(m)
k )k≥1 : m ∈ N

}
is a bounded subset of A and a

(m)
k → ak as

m→∞ for each k, then (ak) ∈ A.

Now suppose that condition (b) of Theorem 4 holds, let (xk) be a dense
sequence of points in E and let x0 ∈ Ω. We define A to be the set of bounded
real sequences (ak) with the following property: there exists h ∈ hK(Ω) such
that h/H is bounded above, h(xk) ≤ akH(xk) for each k, and h(x0) = 0.
Clearly A is convex. We now use Lemma D to check that A is weak∗ closed.
Let

{
(a(m)
k )k≥1 : m ∈ N

}
be a subset of A such that

∥∥(a(m)
k )k≥1

∥∥
∞ ≤ c for

each m, where c ∈ R, and a
(m)
k → ak as m → ∞ for each k. For each m

let hm be a member of hK(Ω) corresponding to (a(m)
k )k≥1 in the definition of

A. By condition (b) and the density of (xk) in E, we see that hm − cH ≤ 0
on Ω. Since hm(x0) = 0 for each m, the compactness property of harmonic
functions shows that there is a subsequence (hmj ) which converges pointwise
to a harmonic function which must belong to hK(Ω). It is now clear that
(ak) ∈ A, so A is weak∗ closed by Lemma D.

We note also from condition (b) that (−1)k≥1 /∈ A. Hence, by a standard
separation theorem, there exists (bk) ∈ `1\{0} such that

∑
akbk ≥ 0 whenever

(ak) ∈ A. Since 0 ∈ hK(Ω), it follows that A contains every sequence (ak) of
non-negative numbers, and so bk ≥ 0 for each k. Now let L ⊆ K be a Borel
set and define

h = M(µ |L )−M(µ |L )(x0)
H

H(x0)
.

Since ±((h/H)(xk)) ∈ A, we have
∞∑
k=1

bk

{
M(µ |L )(xk)

H(xk)
− M(µ |L )(x0)

H(x0)

}
= 0,

whence∫
L

{∑ bk
H(xk)

M(xk, ·)−
M(x0, ·)
H(x0)

∑
bk

}
dµ = 0 (L ⊆ K).
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Thus

M(x0, ·) =
H(x0)∑

bk

∑ bk
H(xk)

M(xk, ·) almost everywhere (µ).

In view of the arbitrary nature of x0, condition (a) now follows using the
simple case of Theorem 3 where E = Ω.

5.2. In this section we establish two lemmas in preparation for the proof
of Corollary 4.

Lemma 3. Let µ be a measure with compact support K in Rn and suppose
that µ(I) > 0, where I ⊆ K and I contains no isolated points of K. Then
there is a subset J of I such that µ(J) > 0 and µ(U\J) > 0 for every open
set U which intersects K.

To see this, let I0 be the collection of open cubes of the form (a1, a1 + 2)×
· · · × (an, an + 2), where (a1, . . . , an) ∈ Zn, and, for each m ∈ N, let

Im =
{

2−mQ : Q ∈ I0

}
, where 2−mQ =

{
2−mx : x ∈ Q

}
.

Next, let Qm,1, . . . , Qm,km be the members of Im which intersect K, and let
k ∈ {1, . . . , km}. If µ(Qm,k\I) = 0 then, because I contains no isolated point
of K, we can choose a Borel subset Lm,k of Qm,k ∩ I such that

(15) 0 < µ(Lm,k) < 2−m−kµ(I).

On the other hand, if µ(Qm,k\I) > 0, then we define Lm,k = ∅. In either case,

(16) µ ((Qm,k\I) ∪ Lm,k) > 0.

If we now define

J = I\

( ∞⋃
m=1

km⋃
k=1

Lm,k

)
,

we see from (15) that

µ(J) ≥ µ(I)−
∞∑
m=1

km∑
k=1

µ(Lm,k) > 0.

Further, if U is an open set which intersects K, then we can choose m and k
such that Qm,k ⊂ U and Qm,k ∩K 6= 0, and it follows from (16) that

µ(U\J) ≥ µ ((Qm,k\I) ∪ Lm,k) > 0.

Lemma 3 is now proved.

Lemma 4. Let H,µ,K and E be as in Corollary 4 and let

I =
{
z ∈ K :

∫
EK∩B

dx

‖x− z‖n
< +∞

}
.
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If µ(I) > 0, then there is a non-negative function f ∈ L1(µ) such that f = 0
on a set of positive µ-measure and P (fµ) ≥ H on E.

To prove Lemma 4, we suppose that µ(I) > 0. If I contains an isolated
point z0 of K, then z0 /∈ E since

∫
EK∩B ‖x− z‖

−n
dx is finite. We note by

hypothesis that K\{z0} 6= ∅, and the functions{
P (·, z0)
P (·, z)

: z ∈ K\{z0}
}

are uniformly bounded above on E, since

P (x, z0)
P (x, z)

=
{
‖x− z‖
‖x− z0‖

}n
≤
{
‖x− z‖

dist(z0, E)

}n
(x ∈ E; z ∈ ∂B).

Hence P
(
µ|K\{z0}

)
/H has a positive lower bound, c say, on E. It thus suffices

in this case to define f = c−1 on K\{z0} and f(z0) = 0.
It remains to consider the case where I contains no isolated points of K.

By Lemma 3 there is a subset J of I such that µ(J) > 0 and µ(U\J) > 0 for
every open set U which intersects K. Further, we can choose J so that the
set of numbers {∫

EK∩B

dx

‖x− z‖n
: z ∈ J

}
is bounded above by a positive constant C. By Lemma B there is a countable
subset A = {xk : k ≥ 1} of E such that the constituent balls of AK1/10 are
disjoint and EK1/10 ⊆ A

K . We define

f = χK\J +
∑
k

ak
µ(Ik)

χIk ,

where χL is the characteristic function valued 1 on the set L and 0 elsewhere,

Ik = B (xk, 2dK(xk)) ∩ (K\J)

(our choice of J ensures that µ(Ik) > 0) and

ak = {dK(xk)}n
∫
J

dµ(z)
‖xk − z‖n

.

Since AK1/10 ⊆ E
K , we have∑

k

∫
B(xk,dK(xk)/10)∩B

∫
J

dµ(z)
‖x− z‖n

dx =
∫
J

∫
AK1/10∩B

dx

‖x− z‖n
dµ(z)

≤ Cµ(J),

and hence∫
K

fdµ = µ(K\J) +
∑
k

{dK(xk)}n
∫
J

dµ(z)
‖xk − z‖n

< +∞.
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Finally,

P (fµ)(xk) ≥ 1− ‖xk‖2

σn

{∫
K\J

dµ(z)
‖xk − z‖n

+
{dK(xk)}n

µ(Ik)

∫
J

dµ(z)
‖xk − z‖n

∫
Ik

dµ(z)
‖xk − z‖n

}

≥ 1− ‖xk‖2

2nσn

∫
K

dµ(z)
‖xk − z‖n

= 2−nH(xk) (k ≥ 1),

by the definition of Ik. Thus P (fµ) ≥ C(n)H on AK∩B by Lemma A′. Since
E ⊆ AK ∩B and f = 0 on J , the lemma follows on replacing f by f/C(n).

5.3. We now prove Corollary 4. Suppose firstly that condition (c) holds
and let h ∈ hK(B), where h/H is bounded above (by b > 0, say) on B.
Further, suppose that h/H ≤ a on E, and let 0 < ρ < 1. It follows from
Lemma A′ that

(17) (b+ |a|)H ≤ C(n, ρ) {(a+ |a|)H + (bH − h)}

on EKρ ∩ B. Condition (c) and Lemma C together imply that at µ-almost
every point of K the set EKρ ∩ B is not minimally thin. As in the proof of
Corollary 3 it follows that (17) holds on all of B and, letting ρ → 0+, we
conclude that h/H ≤ a on B. Hence condition (b) holds.

Conversely, if condition (c) fails, then we can choose f as in Lemma 4.
Thus condition (b) is seen to fail on putting h = −P (fµ) and noting that
infB P (fµ)/Pµ = 0.

5.4. The following analogue of Lemma 4 will be required for the proof of
Corollary 5. We note from Lemma 2 of [12] that, if EKρ is thin at z ∈ K for
some ρ ∈ (0, 1), then it is thin at z for all ρ ∈ (0, 1).

Lemma 5. Let K be a compact polar subset of Ω that contains more than
one point, let E ⊆ Ω\K and I = {z ∈ K : EK is thin at z}. If µ(I) > 0,
then there is a non-negative function f ∈ L1(µ) such that f = 0 on a set of
positive µ-measure and GΩ(fµ) ≥ GΩµ on E.

We will prove Lemma 5 in the case where n ≥ 3; minor modifications are
required when n = 2. Given an open set V such that K ⊂ V ⊂ Ω, it is enough
to establish the above inequality at points of E ∩ V : Harnack’s inequalities
then show that, provided f 6= 0 in L1(µ), the quotient GΩ(fµ)/GΩµ has a
positive lower bound on the remainder of E. For this reason we may assume
that B(x, 2dK(x)) ⊂ Ω for all x ∈ E and that there is a positive constant c
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such that

(18) GΩ(x, y) ≥ c ‖x− y‖2−n (x, y ∈ EK1 ∪K).

If I contains an isolated point z0 of K, then

r1−nσ
(
EK ∩ ∂B(z0, r)

)
→ 0 as r → 0+,

where σ denotes surface area measure on ∂B(z0, r). Hence z0 /∈ E and the
quotient GΩ(µ

∣∣
K\{z0} )/GΩµ has a positive lower bound b on E, so it suffices

to define f = b−1 on K\{z0} and f(z0) = 0. (We assumed that K contains
more than one point.)

It thus remains to deal with the case where I contains no isolated points of
K. By Lemma 3 we can choose J ⊆ I such that µ(J) > 0 and µ(U\J) > 0 for
any open set U which intersects K. Next, by Lemma B there is a countable
subset A = {xk : k ≥ 1} of E such that AK1/10 is a disjoint union of balls and
EK1/10 ⊆ AK . The set AK1/20 is thin at each point of I, so the regularized

reduced function R̂
AK1/20

GΩµ
, of GΩµ relative to AK1/20 in Ω, is the potential of a

measure ν such that

supp ν ⊆

(⋃
k

∂B

(
x,
dK(xk)

20

))
∪K.

Further, ν ≤ µ on K by the Riesz decomposition theorem, since K is polar
and so GΩµ − GΩ(ν |K ) has a non-negative superharmonic extension from
Ω\K to all of Ω. Also, ν(I) = 0 by Theorem 1.XI.14 of [9]. We define

f = χK\J +
∑
k

ak
µ(Ik)

χIk ,

where

Ik = B (xk, 2dK(xk)) ∩ (K\J) and ak = ν

(
∂B

(
xk,

dK(xk)
20

))
.

Then ∫
K

f dµ = µ(K\J) +
∑
k

ak ≤ µ(K) + ν(Ω) < +∞

since the spheres ∂B (xk, dK(xk)/20) are disjoint. Also, by (18),

GΩ(fµ)(xj) ≥ GΩ

(
µ
∣∣
K\J

)
(xj) + c

∑
k

ak

{‖xj − xk‖+ 2dK(xk)}n−2

≥ C(n)GΩν(xj)

= C(n)GΩµ(xj) (j ≥ 1),

since GΩν = GΩµ on AK1/20. Thus GΩ(fµ) ≥ C(n)GΩµ on AK by Harnack’s
inequalities and, since E ⊆ AK , the lemma follows on multiplication of f by
a suitable constant.



1134 STEPHEN J. GARDINER AND JORDI PAU

5.5. We note from Theorem 9.5.1 of [4] that, if K ⊂ Ω is polar, then the
Martin boundary of Ω\K is ∆∪K, the set of minimal Martin boundary points
of Ω\K is ∆1 ∪K and the Martin kernel for Ω\K with pole y ∈ K is of the
form GΩ(·, y)/GΩν0(y) (provided that the support of the reference measure
ν0 is disjoint from K). We thus have the following immediate consequence of
Theorem 4.

Corollary 6. Let µ be a non-zero measure with polar compact support
K ⊂ Ω, and let E ⊆ Ω\K. Then condition (a) of Corollary 5 holds if and
only if

inf
E

GΩν

GΩµ
= inf

Ω

GΩν

GΩµ
for every measure ν on K.

We now deduce Corollary 5. Suppose firstly that condition (b) holds, let ν
be a measure on K and suppose that GΩν/GΩµ ≥ a on E. We choose an open
set V such that K ⊂ V ⊂ Ω and FK1 ⊂ Ω, where F = E ∩ V. By Harnack’s
inequalities,

GΩν ≥ C(n, ρ)aGΩµ on FKρ .

At µ-almost every point of K the quotient GΩν/GΩµ has a fine limit given by
the Radon-Nikodým derivative dν/dµ (see Theorems 9.4.6 and 9.5.1 in [4]).
Thus ν ≥ C(n, ρ)aµ by condition (b), and since C(n, ρ) → 1 as ρ → 0+, we
have GΩν/GΩµ ≥ a on Ω. Condition (a) now follows from Corollary 6.

Conversely, if condition (b) fails, then we can choose f as in Lemma 5.
Clearly

inf
E

GΩ(fµ)
GΩµ

≥ 1 and inf
Ω

GΩ(fµ)
GΩµ

= 0,

so condition (a) fails, by Corollary 6.

6. Concluding remarks

6.1. Hayman (see Section 2.4 of [13]) has also asked about sets E ⊆ D
such that every f ∈ C(∂D) can be uniformly approximated by finite linear
combinations of {P (x, ·) : x ∈ E}. We make the following general observation,
which is analogous to Proposition 3 of Sakai [19].

Proposition 1. Let K be a compact subset of ∆1 and let E ⊆ Ω. The
following are equivalent:

(a) For each f ∈ C(K) and ε > 0 there exist λ1, . . . , λm ∈ R and
x1, . . . , xm ∈ E such that∣∣∣∣∣f −

m∑
k=1

λkM(xk, ·)

∣∣∣∣∣ < ε on K.

(b) If h ∈ hK(Ω) and h = 0 on E, then h ≡ 0.
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To see this, let A denote the closure, in C(K), of the set of finite sums of
the form

∑
λkM(xk, ·), where λk ∈ R and xk ∈ E. If condition (a) holds,

then A = C(K). Thus, if Mν = 0 on E for some signed measure ν on K, then
we have ν = 0, and condition (b) follows. On the other hand, if condition (a)
fails, then the Hahn-Banach theorem shows that there is a signed measure ν
on K such that

∫
f dν = 0 for all f ∈ A yet ν 6= 0, so condition (b) also fails.

We remark that, if
(
E
)◦ 6= ∅, then condition (b) holds by the analyticity

of harmonic functions. Thus condition (a) is essentially different from the
corresponding conditions in Theorems A and B, which depend only the nature
of E near ∂D.

6.2. The following questions remain open.

Problem 1. Find an explicit characterization of the sets E ⊆ D which
satisfy (3).

Problem 2. Condition (b) of Theorem 4 clearly implies condition (b) of
Corollary 2. Under what circumstances are they equivalent? As noted in
Section 1, equivalence is known to hold when Ω = B and H ≡ 1.
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