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LAWS OF LARGE NUMBERS WITH RATES AND THE
ONE-SIDED ERGODIC HILBERT TRANSFORM

GUY COHEN AND MICHAEL LIN

Abstract. Let T be a power-bounded operator on Lp(µ), 1 < p <∞.

We use a sublinear growth condition on the norms {‖
∑n
k=1 T

kf‖p} to
obtain for f the pointwise ergodic theorem with rate, as well as a.e. con-

vergence of the one-sided ergodic Hilbert transform. For µ finite and
T a positive contraction, we give a sufficient condition for the a.e. con-
vergence of the “rotated one-sided Hilbert transform”; the result holds
also for p = 1 when T is ergodic with T1 = 1.

Our methods apply to norm-bounded sequences in Lp. Combining
them with results of Marcus and Pisier, we show that if {gn} is indepen-
dent with zero expectation and uniformly bounded, then almost surely
any realization {bn} has the property that for every γ > 3/4, any con-
traction T on L2(µ) and f ∈ L2(µ), the series

∑∞
k=1 bkT

kf(x)/kγ con-

verges µ-almost everywhere. Furthermore, for every Dunford-Schwartz
contraction of L1(µ) of a probability space and f ∈ Lp(µ), 1 < p <∞,

the series
∑∞
k=1 bkT

kf(x)/kγ converges a.e. for γ ∈ (max{ 3
4
, p+1

2p
}, 1].

1. Introduction

The mean ergodic theorem for power-bounded operators in reflexive Banach
spaces yields that for 1 < p <∞ and T power-bounded in Lp(µ) of a σ-finite
measure space, the ergodic averages 1

n

∑n
k=1 T

kf converge in norm for every
f ∈ Lp.

The celebrated theorem of Akcoglu [A] says that if T is a positive contrac-
tion in Lp(µ), 1 < p <∞, then for every f ∈ Lp the ergodic averages converge
a.e. Without positivity, the a.e. convergence need not hold (see [Kr, p. 191]).

In general, there is no universal speed of convergence in the pointwise ergo-
dic theorem for probability preserving transformations, not even for bounded
functions; see [Kr, pp. 14–15], [Pe, §3.2B], [K, p. 655–657]. Thus, we need ad-
ditional assumptions, connecting the function f and the operator T induced
by the transformation, in order to obtain rates of convergence.
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On the other hand, for a centered i.i.d. sequence {fk} ⊂ Lp(µ) of a proba-
bility space, 1 < p < 2, Marcinkiewicz and Zygmund [MaZ, Theorem 9]
(see also [ChTe, p. 115]) proved that we have a.s. convergence of the se-
ries

∑∞
k=1

fk
k1/p , which implies 1

n1/p

∑n
k=1 fk → 0 a.s. Hence for T induced

by the shift and fk = T kf0 with zero integral the ergodic averages have a
pointwise rate o(n1/p−1). Thus, the rate in this case is determined only by
a moment condition. An equivalent formulation of the above SLLN is that
for every ε > 0 we have µ(

⋃∞
k=n{|

1
k1/p

∑k
j=1 T

jf | ≥ ε}) → 0. In this case,

rates of convergence to 0 of µ(
⋃∞
k=n{|

1
kα

∑k
j=1 T

jf | ≥ ε}) for α > 1/p, in
terms of convergent series, were obtained by Baum and Katz [BauKat], who
also showed that their results are no longer true for general stationary se-
quences. However, Peligrad [P-4] showed that some of their results do hold
for φ-mixing stationary sequences (for earlier results see [P-2], [P-3], [Ber]).
Integral tests for convergence rates for martingales were obtained in [JJoSt],
extending earlier results of Strassen [Str].

By adapting the proof of Lemma 5.2.1 of [Kr], we obtain that if T is power-
bounded in Lp and f = (I−T )g (which is equivalent to supn>0 ‖

∑n
k=1 T

kf‖p
< ∞), then 1

nγ

∑n
k=1 T

kf → 0 a.e. for every γ > 1/p; thus, the rate
‖
∑n
k=1 T

kf‖p = O(1) yields a.e. convergence (with rate) of the ergodic aver-
ages.

For T induced by an invertible probability preserving transformation and
f ∈ L2, Gaposhkin [G-1] showed that if ‖

∑n
k=1 T

kf‖2 = O(n1−β) for some
β > 0, then 1

nγ

∑n
k=1 T

kf → 0 a.e. for appropriate γ < 1 (depending only on
β). In [G-2] he proved (under the same assumption) the a.e. convergence of
the series

∑∞
n=1

Tnf
nγ , which implies a.e. convergence of the one-sided ergodic

Hilbert transform
∑∞
n=1

Tnf
n . Derriennic and Lin [DL] used the same growth

condition for the Lp-norms of the sums to obtain similar results, even for T a
Dunford-Schwartz operator.

In this paper we develop an intermediate class of results—modulated ergo-
dic theorems with rates; we look for sequences {ak} for which there is a γ < 1
such that for every Dunford-Schwartz contraction T of L1(µ) and every f ∈ Lp
(or for every contraction of L2) we have 1

nγ

∑n
k=1 akT

kf → 0 a.e., or even
a.e. convergence of

∑∞
n=1

anT
nf

nγ .
In the next section we show that obtaining a strong law of large numbers

with rate from the rate of convergence to 0 of the norms of the averages is
a very general result, applicable to Lp norm bounded sequences {fn}, which
yields also a.e. convergence of the series

∑∞
k=1

fk
k . Section 3 deals with mod-

ulated ergodic theorems with rates and a.e. convergence of the modulated
one-sided ergodic Hilbert transform, for general L2-contractions and for con-
tractions induced on Lp by Dunford-Schwartz operators. In Section 5 we
look at sequences {an} which yield a.e. convergence of series of the form
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k=1

akgk
k for any L2-norm bounded orthogonal sequence {gn}. In Section 6

we study the a.e. convergence of the one-sided rotated Hilbert transform for
T a positive contraction of Lp, 1 < p < ∞. Examples of i.i.d. lead to a
study of almost sure uniform convergence of certain random Fourier series.
In Section 7 we combine our results to show that almost surely realizations
of uniformly bounded centered independent random variables are universally
good sequences for a.e. convergence of the modulated one-sided ergodic Hilbert
transform of Lp-contractions induced by Dunford-Schwartz operators.

2. Strong laws of large numbers with rates

In this section we obtain a strong law of large numbers with rate from the
rate of convergence to 0 of the norms of the averages, and apply the result to
obtain a.e. convergence of certain series; for power-bounded operators on Lp
(1 < p <∞) this yields a.e. (and norm) convergence of the one-sided ergodic
Hilbert transform.

Proposition 1. Let 1 < p < ∞, and let {fn}∞n=1 ⊂ Lp(µ) with
supn>0 ‖fn‖p <∞. If for some 0 < β ≤ 1 we have

(1) sup
n>0

∥∥∥∥∥ 1
n1−β

n∑
k=1

fk

∥∥∥∥∥
p

= K <∞,

then 1
n1−δ

∑n
k=1 fk → 0 a.e. for every 0 ≤ δ < p−1

p β; hence 1
n

∑n
k=1 fk → 0

a.e. Furthermore, for any 0 ≤ δ < p−1
p β we have supn| 1

n1−δ

∑n
k=1 fk| ∈ Lp.

Proof. Let r = 1/β and fix δ with 0 ≤ δ < β(p− 1)/p. Then we have

(i) (1− rδ)p = (β − δ)rp > 1.

Define nm = [mr] + 1. By (1) we have∥∥∥∥∥ 1
n1−δ
m

nm∑
k=1

fk

∥∥∥∥∥
p

≤ K

nβ−δm

≤ K

mr(β−δ) ,

so ∫ ∞∑
m=1

∣∣∣∣∣ 1
n1−δ
m

nm∑
k=1

fk

∣∣∣∣∣
p

dµ =
∞∑
m=1

∥∥∥∥∥ 1
n1−δ
m

nm∑
k=1

fk

∥∥∥∥∥
p

p

≤ Kp
∞∑
m=1

1
mpr(β−δ) ,

which converges by (i). Hence
∞∑
m=1

∣∣∣∣∣ 1
n1−δ
m

nm∑
k=1

fk

∣∣∣∣∣
p

<∞ a.e.,

so ∣∣∣∣∣ 1
n1−δ
m

nm∑
k=1

fk

∣∣∣∣∣→ 0 a.e.
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For nm ≤ n < nm+1 we have∣∣∣∣∣ 1
n1−δ

n∑
k=1

fk −
1

n1−δ

nm∑
k=1

fk

∣∣∣∣∣ =

∣∣∣∣∣ 1
n1−δ

n∑
k=nm+1

fk

∣∣∣∣∣
≤ 1
n1−δ

nm+1∑
k=nm+1

|fk| ≤
1

n1−δ
m

nm+1∑
k=nm+1

|fk|.

This yields, with C := supn ‖fn‖p,∫
max

nm≤n<nm+1

∣∣∣∣∣ 1
n1−δ

n∑
k=1

fk −
1

n1−δ

nm∑
k=1

fk

∣∣∣∣∣
p

dµ

≤
∫ [

1
n1−δ
m

nm+1∑
k=nm+1

|fk|

]p
dµ =

∥∥∥∥∥ 1
n1−δ
m

nm+1∑
k=nm+1

|fk|

∥∥∥∥∥
p

p

≤

[
1

n1−δ
m

nm+1∑
k=nm+1

‖fk‖p

]p
≤ Cp

(
nm+1 − nm

n1−δ
m

)p
.

Since for r ≥ 1 and t ≥ 0 we have (t+ 2)r ≥ (t+ 1)r + 1 and (t+ 2)r − tr ≤
2r(t+ 2)r−1, we obtain

nm+1 − nm
n1−δ
m

≤ (m+ 1)r + 1−mr

(mr)1−δ ≤ 2r(m+ 2)r−1

mr(1−δ) = 2r
(
m+ 2
m

)r−1 1
m1−rδ .

Hence ∫
max

nm≤n<nm+1

∣∣∣∣∣ 1
n1−δ

n∑
k=1

fk −
1

n1−δ

nm∑
k=1

fk

∣∣∣∣∣
p

dµ

≤ Cp(2r)p
(
m+ 2
m

)p(r−1) 1
m(1−rδ)p .

Since (1− rδ)p > 1, we conclude as before that

max
nm≤n<nm+1

∣∣∣∣∣ 1
n1−δ

n∑
k=1

fk −
1

n1−δ

nm∑
k=1

fk

∣∣∣∣∣
p

→ 0 a.e.

Since ∣∣∣∣∣ 1
n1−δ

nm∑
k=1

fk

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
n1−δ
m

nm∑
k=1

fk

∣∣∣∣∣→ 0 a.e.,

the convergence part of the proposition is proved.
Put Sn =

∑n
k=1 fk. For r and {nm} as above and fixed δ < p−1

p β, we
obtain as before∫

sup
m>0

∣∣∣∣ 1
n1−δ
m

Snm

∣∣∣∣p dµ ≤ ∫ ∞∑
m=1

∣∣∣∣ 1
n1−δ
m

Snm

∣∣∣∣p dµ ≤ Kp
∞∑
m=1

1
mrp(β−δ) <∞,
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so supm>0

∣∣ 1

n1−δ
m

Snm
∣∣ ∈ Lp. For nm ≤ n < nm+1 we have∣∣∣∣ Snn1−δ

∣∣∣∣ ≤ ∣∣∣∣ Snmn1−δ
m

∣∣∣∣+
1

n1−δ
m

nm+1∑
k=nm+1

|fk|,

so ∥∥∥∥sup
n

∣∣∣∣ Snn1−δ

∣∣∣∣∥∥∥∥
p

≤
∥∥∥∥sup
m>0

∣∣∣∣ Snmn1−δ
m

∣∣∣∣∥∥∥∥
p

+

∥∥∥∥∥sup
m>0

1
n1−δ
m

nm+1∑
k=nm+1

|fk|

∥∥∥∥∥
p

.

The finiteness of the last term follows from∥∥∥∥∥sup
m>0

1
n1−δ
m

nm+1∑
k=nm+1

|fk|

∥∥∥∥∥
p

p

≤
∫ ∞∑

m=1

[
1

n1−δ
m

nm+1∑
k=nm+1

|fk|

]p
dµ

≤ Cp
∞∑
m=1

(
nm+1 − nm

n1−δ
m

)p
,

with the last series converging by the previous estimates (since (1 − rδ)p
> 1). �

Example 1. {fn} bounded in L1(µ) satisfying (1), with 1
n

∑n
k=1 fk di-

verging a.e.
Let T be the positive contraction of L1(µ) given by Chacon’s example (see

[Kr, p. 151]), for which there is a non-negative 0 6≡ f ∈ L1 with lim supn
1
nT

nf

= ∞ a.e. Let fn := Tn−1(I − T )f . Then ‖
∑n
k=1 fk‖1 ≤ 2‖f‖1, so for

any 0 < β ≤ 1 (1) is satisfied, while 1
n

∑n
k=1 fk = 1

n (f − Tnf) is a.e. non-
convergent. This shows that the final conclusion of Proposition 1 fails when
p = 1.

Remarks. (1) Let T be power-bounded on Lp(µ), 1 < p <∞ (so T is a
contraction in an equivalent norm). For 0 < β < 1, the power series expansion
(1− t)β = 1−

∑∞
j=1 a

(β)
j tj is used in [DL] to define the operator (I−T )β , and

it is shown there that (I − T )βLp = (I − T )Lp. When (I−T )Lp is not closed,
the linear manifolds {(I − T )βLp : 0 < β ≤ 1} are all different, and decrease
when β increases. Theorem 2.15 of [DL] yields that for every f ∈ (I −T )βLp,
(1) is satisfied by fk = T kf , i.e.,

(1′) sup
n>0

∥∥∥∥∥ 1
n1−β

n∑
k=1

T kf

∥∥∥∥∥
p

= K <∞,

and Theorem 2.17 there shows that (1′) implies that f ∈ (I−T )δLp for every
0 < δ < β. Example 1 shows that for p = 1 and T a positive contraction, (1′)
does not yield a.e. convergence of 1

n

∑n
k=1 T

kf .
(2) If T is as above, and for some β > 1 (1′) holds, then ‖

∑n
k=1 T

kf‖
converges to 0, and applying I − T to the sums we obtain Tf = 0.
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(3) The a.e. convergence to 0 of 1
n

∑n
k=1 T

kf under (1′) in the special case
of T unitary on L2, due to Loève [Lo-1] (in the continuous parameter case),
is proved in Doob [Do, p. 492]. The rates of a.e. convergence obtained by
Gaposhkin [G-1, Theorem 3] for this particular case are better than what
Proposition 1 yields.

(4) For more precise information on the rate of a.e. convergence when T is
induced on Lp (p > 1) by a Dunford-Schwartz operator (a contraction of L1

which contracts also the L∞-norm), see [DL], Theorem 3.2 (and also Corol-
lary 3.7); Remark 1 following Theorem 3.1 of [DL] shows that for Dunford-
Schwartz operators, (1′) in L1-norm does not yield a rate in the ergodic the-
orem.

(5) Any sequence {fn} of i.i.d. random variables with zero expectation and
finite variance satisfies (1) with β = 1/2.

Example 2. Let {fn} ⊂ L2(µ) be a mutually orthogonal sequence with
supn ‖fn‖2 < ∞ (e.g., an L2-bounded martingale difference sequence in a
probability space). By orthogonality∥∥∥∥∥ 1

n

n∑
k=1

fk

∥∥∥∥∥
2

2

=
1
n2

n∑
k=1

‖fk‖22 ≤
supj ‖fj‖22

n
.

Hence {fn} satisfies (1) with β = 1/2, and therefore for every 0 ≤ δ < 1/4,
1

n1−δ

∑n
k=1 fk → 0 a.e.

In Example 2 we may assume µ to be a probability (see [Kr, p. 189]), since
an isometry of L2 preserves the inner product, hence the orthogonality. The
Menchoff-Rademacher theorem [Do, p. 157], [Z, vol. II, p. 193] then implies
that

∑∞
n=1

fn
n1/2+ε converges a.e. for every ε > 0. Using Kronecker’s lemma we

thus obtain better rates of convergence than those of Proposition 1.
Cotlar [Co] (see also [Pe, §3.6]) proved that for T induced by an invertible

probability preserving transformation, the ergodic Hilbert transform Hf :=
limn→∞

∑
0<|k|≤n

Tkf
k converges a.e. for every f ∈ L1. Jajte [Ja] proved

that for T unitary on L2, a.e. convergence of the ergodic averages for every
f ∈ L2 is equivalent to a.e. convergence for every f ∈ L2 of the ergodic Hilbert
transform (norm convergence of the ergodic Hilbert transform holds for every
unitary operator [C]). For 1 < p < ∞, Berkson, Bourgain and Gillespie
[BBGi] extended Jajte’s result to T invertible on (a closed subspace of) Lp
with sup−∞<n<∞ ‖Tn‖ <∞; when T is also positive, this and De la Torre’s
theorem [De] yield a.e convergence of the ergodic Hilbert transform for every
f ∈ Lp (a result originally due to Sato [S-1], see also [S-2], [S-3]).

The Khinchine-Kolmogorov theorem for series of independent random vari-
ables (e.g., [Do, p. 108]) yields that for {fn} i.i.d. with zero expectation and
finite variance

∑∞
k=1

fk
k converges a.e.; moreover, for every γ > 1/2 the series
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k=1

fk
kγ converges a.s., which yields a rate 1

nγ

∑n
k=1 fk → 0 in the SLLN.

However, in general for T unitary on L2 induced by a probability preserving
transformation the one-sided ergodic Hilbert transform limn→∞

∑n
k=1

Tkf
k

need not always exist, neither in norm [H] nor a.e. [Pe, p. 94] (see also
[DelR]). Theorems 2.17 and 2.11 of [DL] show that if (1′) is satisfied, then
limn→∞

∑n
k=1

Tkf
k1−δ exists in norm for every 0 < δ < β, and hence also the

one-sided ergodic Hilbert transform converges in norm.

Theorem 1. Let 1 < p <∞, and let {fn}∞n=1 ⊂ Lp(µ) with supn>0 ‖fn‖p
< ∞. If {fn} satisfies (1) for some 0 < β ≤ 1, then for every 0 ≤ δ <
p−1
p β, the series

∑∞
k=1

fk
k1−δ converges a.e. and supn>0

∣∣∑n
k=1

fk
k1−δ

∣∣ ∈ Lp.

Convergence of the series in Lp-norm holds for any 0 ≤ δ < β.

Proof. We can and do assume that µ is a probability measure (e.g., [Kr,
p. 189]). For δ < p−1

p β denote γ = 1 − δ. Put S0 = 0 and Sk =
∑k
j=1 fj .

Abel’s summation by parts yields the decomposition

n∑
k=1

fk
kγ

=
n∑
k=1

Sk − Sk−1

kγ
=
Sn
nγ

+
n−1∑
k=1

(
1
kγ
− 1

(k + 1)γ

)
Sk.

By Proposition 1, 1
nγ Sn → 0 a.e. For the series we have

n∑
k=1

∣∣∣∣( 1
kγ
− 1

(k + 1)γ

)
Sk

∣∣∣∣ ≤ γ n∑
k=1

1
k1+γ

|Sk| = γ
n∑
k=1

1
kβ+γ

∣∣∣∣ 1
k1−β Sk

∣∣∣∣ .
Since µ is a probability and γ + β = 1− δ + β > 1, we obtain from (1)∫ ∞∑

k=1

1
kβ+γ

∣∣∣∣ 1
k1−β Sk

∣∣∣∣ dµ ≤ ∞∑
k=1

1
kβ+γ

∥∥∥∥ 1
k1−β Sk

∥∥∥∥
p

<∞.

Hence
∑∞
k=1

1
k1+γ |Sk| <∞ a.e., which completes the proof of the a.e. conver-

gence. For the maximal function, we have

sup
n>1

∣∣∣∣∣
n∑
k=1

fk
kγ

∣∣∣∣∣ ≤ sup
n>1

∣∣∣∣Snnγ
∣∣∣∣+ sup

n>1

∣∣∣∣∣
n−1∑
k=1

(
1
kγ
− 1

(k + 1)γ

)
Sk

∣∣∣∣∣ .
By Proposition 1 and the previous estimates for the last term, we obtain∥∥∥∥∥sup

n>1

∣∣∣∣∣
n∑
k=1

fk
kγ

∣∣∣∣∣
∥∥∥∥∥
p

≤
∥∥∥∥sup
n>1

∣∣∣∣Snnγ
∣∣∣∣ ∥∥∥∥
p

+

∥∥∥∥∥γ
∞∑
k=1

1
kβ+γ

∣∣∣∣ 1
k1−β Sk

∣∣∣∣
∥∥∥∥∥
p

<∞.
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The Lp-norm convergence holds in fact for any γ > 1 − β: (1) implies∥∥ 1
nγ Sn

∥∥
p
→ 0, so

∑n
k=1

fk
kγ is Cauchy in Lp since∥∥∥∥∥∥

n−1∑
k=j

∣∣∣∣( 1
kγ
− 1

(k + 1)γ

)
Sk

∣∣∣∣
∥∥∥∥∥∥
p

≤ γ
n−1∑
k=j

1
k1+γ

‖Sk‖p

≤ γ
∞∑
k=j

1
kβ+γ

∥∥∥∥ 1
k1−β Sk

∥∥∥∥
p

. �

Remarks. (1) Note that formally Proposition 1 follows from Theorem 1,
by Kronecker’s lemma, but the proposition is used in the proof of the theorem.

(2) When p = 1, (1) yields a.e. convergence of
∑∞
k=1

fk(x)
k if we know that

1
n

∑n
k=1 fk converges a.e. (take γ = 1 in the proof of Theorem 1).

(3) Fix 1 < p ≤ 2, and let {fn} ⊂ Lp(µ) of a probability space be an
Lp-bounded martingale difference sequence, with supn ‖fn‖p = C <∞. The-
orem 2 of [BaE] yields ‖

∑n
k=1 fk‖p ≤ 21/pCn1/p, so (1) holds with β =

(p− 1)/p. In the special case of {fn} independent (with 0 expectations), the
result can be deduced also from Theorem 13 of [MaZ] (see [ChTe, p. 356]); in
this case Theorem 5’ in [MaZ] (for a more general form, due to Loève [Lo-2]
and based on the three series theorem, see [ChTe, p. 114]) implies that for
every 0 ≤ δ < (p − 1)/p the series

∑∞
k=1

fk
k1−δ converges a.e., which is better

(i.e., giving larger values of δ) than what Theorem 1 yields.
(4) Peligrad [P-1, Lemma 3.4] showed that if {fn} is an L2-bounded cen-

tered ρ-mixing sequence with
∑
i ρ(2i) < ∞, then (1) holds with β = 1/2.

Hence Theorem 1 applies.

Corollary 1. Let T be a power-bounded operator on Lp(µ), 1 < p <∞.
If f ∈ Lp satisfies (1′) for 0 < β ≤ 1, then

∑∞
k=1

Tkf
k1−δ converges a.e. for every

0 ≤ δ < p−1
p β (and in Lp-norm for 0 ≤ δ < β). For 0 ≤ δ < p−1

p β we also

have supn>0

∣∣∑n
k=1

Tkf
k1−δ

∣∣ ∈ Lp.
Remarks. (1) The corollary improves considerably Theorem 3.12 of [DL].
(2) See Gaposhkin [G-2] for more precise information when T is unitary on

L2. For T a Dunford-Schwartz operator in Lp (in particular, T induced by a
probability preserving transformation), see [DL, Theorem 3.6].

Modulated ergodic theorems are concerned with the convergence (a.e. or
in norm) of 1

n

∑n
k=1 akT

kf for certain sequences {ak}. We refer the reader
to [LOT], where earlier references are given. Weighted strong laws of large
numbers for i.i.d. sequences were studied by Jamison, Orey, and Pruitt [JOP].



LAWS OF LARGE NUMBERS WITH RATES 1005

Corollary 2. Let 1 < p <∞, and {fn}∞n=1 ⊂ Lp(µ) with supn>0 ‖fn‖p
<∞. Let {an} be a bounded sequence, such that for some 0 < β ≤ 1 we have

(2) sup
n>0

∥∥∥∥∥ 1
n1−β

n∑
k=1

akfk

∥∥∥∥∥
p

= K <∞.

Then for any 0 ≤ δ < p−1
p β the series

∑∞
k=1

akfk
k1−δ converges a.e. and

supn>0

∣∣∑n
k=1

akfk
k1−δ

∣∣ ∈ Lp. Convergence of the series in Lp-norm holds for
any 0 ≤ δ < β.

Proof. By (2), the sequence f ′n = anfn satisfies (1), so Theorem 1 applies.
�

Example 3. Let aj2 = 1, and ak = 0 if k is not a square. Then for every
norm-bounded sequence in Lp, (1) holds with β = 1/2 and K = supn ‖fn‖p.
Note that the sequence is supported on a set of density 0.

3. Modulated ergodic Hilbert transforms for Dunford-Schwartz
operators

In this section we look at conditions on a modulating sequence {an} which
will yield a.e. convergence of the modulated one-sided ergodic Hilbert trans-
form for every L2 contraction and every f ∈ L2. An interpolation yields
a similar result for T induced on Lp (1 < p ≤ 2) by a Dunford-Schwartz
operator.

Proposition 2. Let {nk} be a non-decreasing sequence of positive inte-
gers and let {an} be a bounded sequence of complex numbers such that for
some 0 < β ≤ 1 we have

(3) sup
n>0

max
|λ|=1

∣∣∣∣∣ 1
n1−β

n∑
k=1

akλ
nk

∣∣∣∣∣ = K <∞.

(i) For every contraction T in L2(µ) and f ∈ L2(µ), the series∑∞
k=1

akT
nkf

k1−δ converges a.e. for any 0 ≤ δ < β/2, and in L2-norm
for 0 ≤ δ < β. Furthermore, supn>0

∣∣∑n
k=1

akT
nkf

k1−δ

∣∣ ∈ L2 for any
0 ≤ δ < β/2.

(ii) For every Dunford-Schwartz operator T on L1(µ) and f ∈ Lp(µ),
1 < p ≤ 2, the series

∑∞
k=1

akT
nkf

k1−δ converges a.e. for any 0 ≤
δ < p−1

p β, and in Lp-norm for 0 ≤ δ < 2p−1
p β. Furthermore,

supn>0

∣∣∑n
k=1

akT
nkf

k1−δ

∣∣ ∈ Lp for any 0 ≤ δ < p−1
p β.

(iii) In the case nk = k, for every Dunford-Schwartz operator T on L1(µ)
and f ∈ L1(µ), we have 1

n

∑n
k=1 akT

kf → 0 a.e., and in L1-norm if
µ is finite.
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Proof. (i) Theorem 2.1 of [BLRT] and the unitary dilation theorem yield
that for any contraction T in a Hilbert space

sup
n>0

∥∥∥∥∥ 1
n1−β

n∑
k=1

akT
nk

∥∥∥∥∥ ≤ K <∞,

(for a different proof see [RiN, §153]). If T is a contraction of L2(µ), and f ∈
L2, then (2) holds with fk = Tnkf and constant K‖f‖2. Hence Corollary 2
yields that for every 0 ≤ δ < β/2 the series

∑∞
k=1

akT
nkf

k1−δ converges a.e. with
supn>0

∣∣∑n
k=1

akT
nkf

k1−δ

∣∣ ∈ L2, and the series converges in L2-norm for 0 ≤ δ <
β. Inspection of the proofs of Proposition 1 and Theorem 1 yields an estimate
on the norm of the maximal function in terms of supk ‖fk‖p and the constant
K there, which for p = 2 yields that there is a constant C, depending only on
β and δ, such that

∥∥ supn>0

∣∣∑n
k=1

akT
nkf

k1−δ

∣∣∥∥
2
≤ CK‖f‖2, with K here given

in (3).
(ii) Let φn(ζ) :=

∑n
k=1 akζ

nk . By the maximum principle and (3), we have
|φn(ζ)| ≤ Kn1−β for |ζ| ≤ 1. Hence for every contraction T on a Hilbert space
φn(T ) =

∑n
k=1 akT

nk satisfies ‖φn(T )‖ ≤ Kn1−β , by Theorem A in [RiN,
§153] (for T unitary this inequality follows also from the spectral theorem, as
in [BLRT], and the dilation theorem yields it for any contraction T ). Now
fix a Dunford-Schwartz operator T on L1(µ), and put Tn =

∑n
k=1 akT

nk .
Then ‖Tn‖2 ≤ Kn1−β , and obviously ‖Tn‖1 ≤ n‖{ak}‖∞. The Riesz-Thorin
interpolation theorem [Z, vol. II, p. 95] yields that for 1 < p < 2 we have

‖Tn‖p ≤ ‖{ak}‖2/p−1
∞ K2−2/pn1−βp ,

with βp := 2β
(
1 − 1

p

)
> 0. Thus, for f ∈ Lp(µ) (2) holds for fk = Tnkf

and βp (with Kp := ‖{ak}‖2/p−1
∞ K2−2/p). Now Corollary 2 yields the Lp-

norm convergence of the series for 0 ≤ δ < βp, and the a.e. convergence for
δ < p−1

p βp = 2β(p−1
p )2.

In order to improve the rate in the a.e. convergence (i.e., to allow larger
values of δ), we will change the interpolation method, and following [R] we will
use Stein’s complex interpolation [Z, Theorem XII.1.39]. Since the condition
on δ is satisfied also when β is replaced by β′ < β close enough to β, and also
(3) will obviously hold for β′, we may assume β < 1.

Claim. If {ak} satisfies (3), then for any real η the sequence {akkiη}
satisfies (3).
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With φn as above, Abel’s summation by parts yields, uniformly in |λ| = 1,∣∣∣∣∣
n∑
k=1

akk
iηλnk

∣∣∣∣∣ ≤ |niηφn(λ)|+

∣∣∣∣∣
n−1∑
k=1

[kiη − (k + 1)iη]φk(λ)

∣∣∣∣∣
≤ |φn(λ)|+

n∑
k=1

|η|1
k
|φk(λ)|

≤ Kn1−β + |η|
n−1∑
k=1

Kk1−β

k

≤ K
(

1 +
|η|

1− β

)
n1−β ,

which shows that (3) is satisfied, as claimed, with K replaced by K(1 + |η|
1−β ).

We now fix a Dunford-Schwartz operator T . Part (i) and the claim yield
that for fixed α < β/2 and f ∈ L2, we have∥∥∥∥∥sup

n>0

∣∣∣∣∣
n∑
k=1

akk
−iηβ/2Tnkf

k1−α

∣∣∣∣∣
∥∥∥∥∥

2

≤ CK
(

1 +
β|η|

2(1− β)

)
‖f‖2

for every real η. For ζ = ξ + iη in the strip B := 0 ≤ Re ζ ≤ 1 we look at the
operator Ψn,ζ :=

∑n
k=1

akk
−ζβ/2

k1−α Tnk , so we have

‖ sup
n
|Ψn,iηf |‖2 ≤ CK

(
1 +

β|η|
2(1− β)

)
‖f‖2.

For ζ = 1 + iη we have

sup
n>0
|Ψn,1+iηf | ≤

∞∑
k=1

|ak|k−β/2|Tnkf |
k1−α ;

the theorem of Beppo Levi and α < β/2 yield∥∥∥∥sup
n>0
|Ψn,1+iηf |

∥∥∥∥
1

≤
∞∑
k=1

|ak|k−β/2‖Tnkf‖1
k1−α

≤ ‖{ak}‖∞‖f‖1
∞∑
k=1

1
k1−α+β/2

<∞.

For a bounded measurable positive integer-valued function I and ζ with 0 ≤
Re ζ ≤ 1 we define the linear operator

ΨI,ζf(x) :=
I(x)∑
k=1

akk
−ζβ/2

k1−α Tnkf(x) =
max I∑
j=1

1{I=j}(x)
j∑

k=1

akk
−ζβ/2

k1−α Tnkf(x),
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which is defined on all the Lp spaces. It is easily checked that for any two
integrable simple functions f and g, the function

Φ(ζ) =
∫

ΨI,ζf · gdµ =
max I∑
j=1

j∑
k=1

∫
g(x)1{I=j}(x)

akk
−ζβ/2

k1−α Tnkf(x)dµ,

is continuous and bounded in the strip B and analytic in its interior. Clearly

‖ΨI,iηf‖2 ≤ ‖ sup
n
|Ψn,iηf |‖2 ≤ CK

(
1 +

β|η|
2(1− β)

)
‖f‖2 = M1(η)‖f‖2,

and
‖ΨI,1+iηf‖1 ≤ ‖ sup

n
|Ψn,1+iηf |‖1 ≤ C1‖f‖1.

For 1 < p < 2 let t = 2
p − 1, so 1

p = (1− t) · 1
2 + t · 1. Stein’s interpolation

theorem now yields that there exists a constant At, which depends only on t,
M1, and C1, such that for every f ∈ Lp we have∥∥∥∥∥∥

I(x)∑
k=1

ak

k1−α+( 2
p−1)β/2

Tnkf(x)

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
I(x)∑
k=1

akk
−tβ/2

k1−α Tnkf(x)

∥∥∥∥∥∥
p

= ‖ΨI,tf‖p ≤ At‖f‖p.

For an integer N ≥ 2 let IN (x) = j for j the first integer with∣∣∣∣∣
j∑

k=1

akk
−tβ/2

k1−α Tnkf(x)

∣∣∣∣∣ = max
1≤n≤N

∣∣∣∣∣
n∑
k=1

akk
−tβ/2

k1−α Tnkf(x)

∣∣∣∣∣ .
Then for f ∈ Lp (and our fixed α < β/2) we have∥∥∥∥∥ max

1≤n≤N

∣∣∣∣∣
n∑
k=1

ak

k1−α+( 2
p−1)β/2

Tnkf(x)

∣∣∣∣∣
∥∥∥∥∥
p

=

∥∥∥∥∥∥
IN (x)∑
k=1

ak

k1−α+( 2
p−1)β/2

Tnkf(x)

∥∥∥∥∥∥
p

≤ At‖f‖p,

and letting N →∞ we conclude that for γ = 1− α+ ( 2
p − 1)β/2 > 1− p−1

p β

we have ∥∥∥∥∥sup
n>0

∣∣∣∣∣
n∑
k=1

ak
kγ
Tnkf(x)

∣∣∣∣∣
∥∥∥∥∥
p

<∞.

Fix 1 < p < 2 and δ < p−1
p β, and put γ := 1 − δ. Since γ > 1 − p−1

p β,
we have supn>0

∣∣∑n
k=1

ak
kγ T

nkf(x)
∣∣ ∈ Lp for every f ∈ Lp; part (i) yields

a.e. convergence of the series
∑∞
k=1

ak
kγ T

nkf(x) for every f ∈ L2, so the Banach
principle now yields the same a.e. convergence for any f ∈ Lp.
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(iii) We now assume nk = k. By (i) the claimed a.e. convergence holds for
L2-functions. The a.e. convergence to 0 for all L1 functions follows from the
Banach principle, since for every f ∈ L1(µ) we have

sup
n

∣∣∣∣∣ 1n
n∑
k=1

akT
kf

∣∣∣∣∣ ≤ ‖{aj}‖∞ sup
n

1
n

n∑
k=1

τk|f | <∞,

by the pointwise ergodic theorem for τ , the linear modulus of T . When µ
is finite we may assume it is a probability, so the L1-norm convergence to 0
for L2 functions follows from (i), and boundedness of {ak} yields the norm
convergence for all L1 functions. �

Remarks. (1) Stein’s theorem yields the Lp-norm convergence in (ii) for
a smaller interval of δ than what we obtain from the Riesz-Thorin theorem,
so both interpolations are needed.

(2) The assertions of Proposition 2 for a fixed sequence {nk} are true under
the following weaker condition:

(3′) sup
n>0

max
|λ|=1

∣∣∣∣∣ 1
n1−β′

n∑
k=1

akλ
nk

∣∣∣∣∣ <∞, 0 < β′ < β,

which is equivalent to

lim
n→∞

max
|λ|=1

∣∣∣∣∣ 1
n1−β′

n∑
k=1

akλ
nk

∣∣∣∣∣ = 0, 0 < β′ < β.

The sequence defined by an = logn√
n

satisfies
∑n
k=1 ak = O(

√
n log n), so for

any {nk} condition (3′) is satisfied with β = 1/2, while (3) is not.
(3) Theorem 2.1 of [BLRT] shows that if for every contraction T in L2(µ)

and every f ∈ L2(µ), the sequence
{

1
n1−δ

∑n
k=1 akT

kf
}

is bounded in L2-
norm for each 0 ≤ δ < β, then (3′) holds for nk = k.

(4) The sequence {nk} need not really be monotone, but this will be the
case in most applications. The terms need not be distinct.

Proposition 3. Let {nk} be a non-decreasing sequence of positive inte-
gers, and let {an} be a sequence of complex numbers satisfying (3) for some
0 < β ≤ 1 (no boundedness is assumed), and let 0 ≤ δ < β. Then for every
contraction T on a Hilbert space, the series

∑∞
k=1

akT
nk

k1−δ converges in operator
norm, and this convergence is uniform in all contractions. In particular, the
Fourier series

∑∞
k=1

akλ
nk

k1−δ converges uniformly in |λ| = 1.

Proof. For a contraction T on a Hilbert space, denote sn(T ) =
∑n
k=1 akT

nk .
The spectral theorem for unitary operators and the unitary dilation theorem
yield ‖sn(T )‖ ≤ Kn1−β , with the constant K, given by (3), independent of
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T . Put γ = 1− δ. Then
n∑
k=1

akT
nk

kγ
=

n∑
k=1

sk(T )− sk−1(T )
kγ

=
sn(T )
nγ

+
n−1∑
k=1

(
1
kγ
− 1

(k + 1)γ

)
sk(T ).

By the above discussion, ‖ 1
nγ sn(T )‖ ≤ K

nβ−δ
, so we have uniform convergence

to 0. For the sum on the right hand side, we have∥∥∥∥∥∥
n−1∑
k=j

(
1
kγ
− 1

(k + 1)γ

)
sk(T )

∥∥∥∥∥∥ ≤ γ
n−1∑
k=j

1
k1+γ

‖sk(T )‖ ≤ γ
∞∑
k=j

K

kβ+γ
,

which shows that the series is Cauchy in operator norm, uniformly in T . �

Remarks. (1) When supn
1

n1−β

∑n
k=1 |ak| <∞, condition (3) is obviously

satisfied for every {nk}. A simple example of {an} unbounded satisfying (3)
(with β = 1/4) is given by aj2 =

√
j and ak = 0 for k not a square.

(2) If {an} is bounded and satisfies (3) with a given {nk}, then the proof
of Proposition 3, combined with the proof of Proposition 2(ii), yields that for
fixed 1 < p ≤ 2 and 0 ≤ δ < 2β(1− 1

p ), the series
∑∞
k=1

akT
nk

k1−δ converges in Lp
operator norm for every Dunford-Schwartz operator T , and this convergence
is uniform in all Dunford-Schwartz operators.

Example 4. Let {εn} be the Rudin-Shapiro sequence [Ru] (see also [Ka-2,
p. 75]): εn = ±1, and for some K we have

max
|λ|=1

∣∣∣∣∣∣
n∑
j=1

εjλ
j

∣∣∣∣∣∣ ≤ K√n.
Propositions 2 and 3 now apply with β = 1/2; for example, if T is a contraction
of L2(µ), and f ∈ L2, then

∑∞
k=1

εkT
kf

k1−δ converges a.e. for every 0 ≤ δ < 1/4.

Remarks. (1) For nk = k, condition (3) is satisfied also by the Hardy-
Littlewood sequence {eicn logn} (with β = 1/2) [Z, vol. I, p. 199], and by
the sequence {einα} with 0 < α < 1 (when β = α/2) [Z, vol. I, p. 200].
The convergence results for L2 contractions, obtained in these cases from
Propositions 2 and 3, are Theorem 14 of [R] (without the uniformity in all
contractions of the operator norm convergence; the uniform convergence of
the Fourier series for these sequences is proved already in [Z]). Adapting
the methods of [Z, §§V.4-V.5], we can show that the sequence {einα} with
1 < α < 2 satisfies (3) for β = 1 − α/2, and our results include those of
Remark 15 of [R].

(2) Examples of {an} satisfying (3) for nk = k2 will be given later.
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4. Additional examples for modulating sequences

The following lemma shows how to obtain additional examples for (2).
Note that it applies also in the case p = 1.

Lemma 1. Let 1 ≤ p <∞, and {fn}∞n=1 ⊂ Lp(µ) with supn>0 ‖fn‖p <∞.
If {fn} satisfies (1), and {ak} satisfies

(4)
∞∑
k=1

|ak − ak+1| <∞,

then (2) is satisfied.

Proof. Since an = a1 +
∑n−1
k=1(ak+1 − ak), the sequence {an} converges.

With S0 = 0 and Sk =
∑k
j=1 fj , we obtain

n∑
k=1

akfk =
n∑
k=1

ak(Sk − Sk−1) =
n−1∑
k=1

(ak − ak+1)Sk + anSn.

Using (1), we obtain∥∥∥∥∥ 1
n1−β

n∑
k=1

akfk

∥∥∥∥∥ ≤ K
∞∑
k=1

|ak − ak+1|+K sup
j
|aj |

for every n. �

Corollary 3. Let 1 < p <∞, and {fn}∞n=1 ⊂ Lp(µ) with supn>0 ‖fn‖p
<∞, and let {an} satisfy (4). If {fn} satisfies (1) for some 0 < β ≤ 1, then∑∞
k=1

akfk
k1−δ converges a.e. for every 0 ≤ δ < p−1

p β.

Example 5. T positive, f satisfies (1′), {ak} convergent, but
∑n
k=1

akT
kf
k

a.e. divergent.
Let θ be a probability preserving ergodic invertible transformation on (Ω, µ)

and Tg = g ◦ θ. Then T is a positive invertible isometry of Lp(µ), 1 ≤ p <∞.
We assume that there is 0 6= f ∈ L∞ such that Tf = −f (e.g., Ω = [0, 2),
τ an invertible measure preserving ergodic transformation of [0, 1); define
θx = τx + 1 for 0 ≤ x < 1 and θx = τ(x − 1) for 1 ≤ x < 2, and take
f = 1[0,1) − 1[1,2)). Clearly (1′) is satisfied for any p ≥ 1 and any β ∈ (0, 1],

but for the sequence ak = (−1)k

log k we have that
∑n
k=1

akT
kf
k =

∑n
k=1

1
k log kf is

a.e. divergent. This example shows also that for λ = −1 the series
∑n
k=1

λkTkf
k

is a.e. divergent.

Theorem 2. Let T be a contraction on L1(µ) with mean ergodic modulus,
and let {ak} satisfy (4). If f ∈ L1 satisfies (1′) for some 0 < β ≤ 1, then∑∞
k=1

akT
kf
k converges a.e.
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Proof. With Skf =
∑k
j=1 T

jf , we have ‖Skf/k‖ → 0 by (1′), and the
pointwise ergodic theorem for T [ÇL] yields Skf

k → 0 a.e. Defining S0f = 0,
we have

1
n

n∑
k=1

akT
kf =

1
n

n∑
k=1

ak(Skf − Sk−1f)

=
1
n

n−1∑
k=1

(ak − ak+1)Skf + an
1
n
Snf.

Since {an} is bounded, the last term tends to 0 a.e. For ε > 0 fix N such that∑∞
k=N |ak − ak+1| < ε. Since supn |

Snf(x)
n | <∞ a.e., the inequalities∣∣∣∣∣ 1n

n−1∑
k=1

(ak − ak+1)Skf

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

N−1∑
k=1

(ak − ak+1)Skf

∣∣∣∣∣+
n−1∑
k=N

|ak − ak+1|
∣∣∣∣Skfk

∣∣∣∣
yield

lim sup
n

∣∣∣∣∣ 1n
n−1∑
k=1

(ak − ak+1)Skf

∣∣∣∣∣ ≤ ε sup
n

∣∣∣∣Snf(x)
n

∣∣∣∣ .
Hence 1

n

∑n
k=1 akT

kf(x)→ 0 a.e.
Since (2) holds by Lemma 1, we can use the proof of Theorem 1 for γ = 1,

with Sk =
∑k
j=1 ajT

jf , to obtain our theorem. �

The following was suggested by D. Çömez (for the case fk = T kf):

Let {fn} ⊂ Lp(µ), 1 ≤ p < ∞, with supn ‖fn‖p < ∞, and assume∑∞
k=1

|ak|
k <∞. Then the series

∑∞
k=1

akfk
k is a.e. absolutely convergent.

Proof. We may and do assume that µ is a probability. Then the assertion
follows from∫ ∞∑

k=1

|akfk|
k

dµ =
∞∑
k=1

|ak| ‖fk‖1
k

≤
∞∑
k=1

|ak| ‖fk‖p
k

<∞.

Note that
∑∞
k=1

|ak|
k ‖fk‖p <∞, so we also have norm convergence. �

Remarks. (1) For the sequence ak = 1, (4) holds; Corollary 1 and The-
orem 2 show convergence of the one-sided Hilbert transform when (1′) is
satisfied, although

∑∞
k=1

|ak|
k =∞.

(2) Let ak = (−1)k

k . Then
∑∞
k=1

|ak|
k < ∞, but

∑∞
k=1 |ak − ak+1| = ∞.

Thus (4) is not necessary for a.e. convergence of
∑∞
k=1

akT
kf
k for every power-

bounded T and f satisfying (1′).
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Theorem 3. Fix β ≤ 1, and let {ak} be a bounded sequence with∑∞
k=1

|ak−ak+1|
kβ

< ∞. Let {fn} ⊂ Lp(µ), 1 < p < ∞, with supn ‖fn‖p < ∞,
and assume that {fn} satisfies (1). Then the series

∑∞
k=1

akfk
k converges a.e.

Proof. With S0 = 0 and Sk =
∑k
j=1 fj , we clearly have

n∑
k=1

akfk
k

=
n−1∑
k=1

(
ak
k
− ak+1

k + 1

)
Sk +

anSn
n

.

The last term tends to 0 a.e., since {an} is bounded, and 1
kSk → 0 a.e. by

Proposition 1.
The sum

∑n
k=1

(
ak
k −

ak+1
k+1

)
Sk is a.e. absolutely convergent, since using (1)

we obtain∫ n∑
k=1

∣∣∣∣(akk − ak+1

k + 1

)
Sk

∣∣∣∣ dµ ≤ n∑
k=1

∣∣∣∣akk − ak+1

k + 1

∣∣∣∣ ‖Sk‖p
≤

n∑
k=1

|ak − ak+1|
k + 1

‖Sk‖p +
n∑
k=1

|ak|
k(k + 1)

‖Sk‖p

≤
n∑
k=1

|ak − ak+1|
kβ

K +
n∑
k=1

|ak|
k1+β

K. �

Theorem 4. Fix β ≤ 1, and let {ak} be a bounded sequence with∑∞
k=1

|ak−ak+1|
kβ

<∞. Then for every T power-bounded in Lp(µ), 1 < p <∞,
or a contraction with mean ergodic modulus in L1, and every f satisfying (1′),
the series

∑∞
k=1

akT
kf
k converges a.e.

Proof. We may and do assume that µ is a probability. For the power
bounded case (with p > 1) we apply Theorem 3 to the sequence {Tnf}. For
the L1-contraction case, we have 1

kSkf → 0 a.e. by [ÇL], since (1′) implies
‖ 1
kSkf‖ → 0. The result now follows from the calculation in the proof of

Theorem 3, this time with p = 1. �

Remark. Theorems 3 and 4 do not follow from the previous results. If
we define ak = 1 for k not a power of 2, and a2j = −1, then obviously (4)
fails, and also

∑∞
k=1

|ak|
k =∞. However, for any β > 0 we have

∞∑
k=1

|ak − ak+1|
kβ

≤ 2 +
∞∑
j=1

4
(2j − 1)β

<∞.

Note that if {ak} is a (complex) sequence such that
∑∞
k=1

akT
kf
k converges

a.e. (or in norm) for every T power-bounded on Lp and f ∈ Lp satisfying
(1′) (for some β > 0), then

∑∞
k=1

ak
k λ

k converges for every complex λ 6= 1
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with |λ| = 1. To see this, note that for such λ there is an ergodic probability
preserving transformation θ on [0, 1) with a bounded function f 6= 0 such that
Tf = λf (for λ a root of unity, proceed as in Example 5, for other λ let θz = λz

on the unit circle). Then f satisfies (1′), so
∑∞
k=1

akλ
k

k f =
∑∞
k=1

akT
kf
k

converges.

5. Series of modulated L2-bounded orthogonal sequences

Lemma 2. Given 1 ≤ p ≤ 2, let {an} satisfy

(5) sup
n

1
n

n∑
k=1

|ak|p = A <∞.

Then for every ε > 0 we have

(i)
∞∑
n=1

|an|2

n2/p+ε
<∞, and

(ii)
∞∑
k=1

|an|p

n1+ε
<∞ .

Proof. Denote S(p)
n :=

∑n
k=1 |an|p, and define similarly S

(2)
n . Summation

by parts yields
n∑
k=1

|ak|2

k2/p+ε
=
n−1∑
k=1

(
1

k2/p+ε
− 1

(k + 1)2/p+ε

)
S

(2)
k +

S
(2)
n

n2/p+ε
.

Since 1 ≤ p ≤ 2, we have (S(2)
n )1/2 ≤ (S(p)

n )1/p (e.g., [HLP, p. 4]). Hence
n∑
k=1

|ak|2

k2/p+ε
≤
n−1∑
k=1

∣∣∣∣ 1
k2/p+ε

− 1
(k + 1)2/p+ε

∣∣∣∣ (S(p)
k )2/p +

(S(p)
n )2/p

n2/p+ε

≤
(

2
p

+ ε

) n−1∑
k=1

(S(p)
k )2/p

k2/p+1+ε
+

(S(p)
n )2/p

n2/p+ε

≤
(

2
p

+ ε

)
A2/p

n−1∑
k=1

1
k1+ε

+
A2/p

nε
,

which yields (i). Similar computations yield that if {ck} is a non-negative
sequence with supn

1
n

∑n
k=1 ck < ∞, then

∑∞
k=1

ck
k1+ε < ∞ for every ε > 0

(see also [As-2, pp. 228–229]). When applied to {|ak|p}, this yields (ii). �

Theorem 5. Let {an} be a sequence of complex numbers satisfying (5)
with 1 < p ≤ 2, and let {gn} be an orthogonal sequence in L2(Ω, µ), with
supn ‖gn‖2 = K <∞. Then for every ε > 0 the series

∑∞
n=1

angn
n1/p+ε converges

a.e. and in L2, with
∫ [

supn>0

∣∣∑n
k=1

akgk
k1/p+ε

∣∣]2 dµ < ∞. Thus
∑∞
n=1

angn
n
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converges a.e. (and in L2). If, in addition, {gn} is uniformly bounded (i.e.,
supn supx∈Ω |gn(x)| < ∞), then

∑∞
n=1

angn
n1/p+ε is in Lq(µ) with q = p/(p − 1),

and
∑∞
n=1

angn
n ∈

⋂
q≤s<∞ Ls(µ).

Proof. For the first part we may assume, as mentioned before, that µ is a
probability. By Lemma 2(i),

∞∑
n=1

|an|2‖gn‖22
n2/p+2ε

log2 n ≤ K2
∞∑
n=1

|an|2

n2/p+ε

log2 n

nε
<∞.

Now, the L2 convergence is immediate, and the a.e. convergence follows by
applying the Menchoff-Rademacher theorem to the sequence { angn

n1/p+ε }. For the
maximal function we will use the inequality given in [Z, XIII.10.23] (which
improves Menchoff’s original inequality). Let gkj be the j-th non-zero function
in the sequence {gk}. Put g̃j = 1

‖gkj ‖2
gkj and c̃j := akj‖gkj‖2/k

1/p+ε
j . Then

∞∑
j=1

|c̃j |2 log2 j ≤
∞∑
j=1

|c̃j |2 log2 kj =
∞∑
n=1

|an|2‖gn‖22
n2/p+2ε

log2 n <∞,

so we can apply the inequality from [Z] to the orthonormal sequence {g̃j}, to
obtain ∫ [

sup
n>0

∣∣∣∣∣
n∑
k=1

akgk
k1/p+ε

∣∣∣∣∣
]2

dµ =
∫ [

sup
n>0

∣∣∣∣∣
n∑
j=1

c̃j g̃j

∣∣∣∣∣
]2

dµ <∞.

We now assume that {gn} is also uniformly bounded (this is done in the

original measure space, so µ is just σ-finite). By Lemma 2(ii)
∑∞
k=1

[
|an|
n1/p+ε

]p
< ∞. Since 1 < p ≤ 2, we can use the Riesz version of the Hausdorff-Young
theorem [Z, Theorem XII.2.8] to conclude that

∑∞
n=1

angn
n1/p+ε is in Lq(µ) for

every ε > 0 (this part of the theorem does not require {gn} to be normalized,
but only supn ‖gn‖2 < ∞); thus also

∑∞
n=1

angn
n ∈ Lq(µ). For any s > q let

r = s/(s− 1), so 1 < r < p and (5) is satisfied also with p replaced by r, and
we have

∑∞
n=1

angn
n ∈ Ls(µ). �

Corollary 4. Let Λ = {λ ∈ C : |λ| = 1} be the unit circle, and let
{an} be a sequence of complex numbers satisfying (5) with 1 < p ≤ 2. Then
for every γ > 1/p the series

∑∞
k=1

akλ
k

kγ converges a.e. and in Lq(Λ, dλ),

q = p
p−1 , with

∫
Λ

[
supn>0

∣∣∑n
k=1

akλ
k

kγ

∣∣]q dλ < ∞. Hence for a.e. λ on the

unit circle,
∑∞
k=1

akλ
k

k converges and 1
n

∑n
k=1 akλ

k → 0, and
∑∞
k=1

akλ
k

k ∈⋂
2≤s<∞ Ls(Λ, dλ).

Proof. We apply Theorem 5. Its last part yields that the Fourier series∑∞
k=1

akλ
k

kγ is in Lq(Λ), so the convergence is also in Lq-norm. The maximal
function is in Lq(Λ, dλ) by Hunt’s strong maximal inequality [Hu]. �
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Remarks. (1) When ak = 1 for every k, Corollary 4 applies, but∑∞
k=1

akλ
k

k is not in L∞(Λ, dλ).
(2) Let a2j = 2j , and ak = 0 if k is not a power of 2. Then (5) is satisfied

with p = 1, but 1
n

∑n
k=1 akλ

k does not converge for any λ, since |anλn|/n
does not converge to 0. Thus Theorem 5 and Corollary 4 fail when p = 1.

(3) Kahane [Ka-1] proved (his proof can be adapted from the continuous
to discrete time) that if {an} satisfies (5) with p = 1, and we assume that
1
n

∑n
k=1 akλ

k converges for every λ with |λ| = 1, then the limit is non-zero
only for at most countably many λ.

(4) The L2-norm boundedness assumption of Example 2 can be somewhat
relaxed. Let {hn} be an orthogonal sequence in L2(µ) with supn

1
n

∑n
k=1 ‖hk‖22

<∞. Let ak = ‖hk‖2, and put gk = hk/ak if ak 6= 0, and gk = 0 when ak = 0.
Theorem 5 then yields that

∑∞
n=1

hn
n1/2+ε converges a.e. for every ε > 0, and

thus 1
n1/2+ε

∑n
k=1 hk → 0 a.e.

(5) Let {gn} ⊂ L2(µ) of a probability space be a sequence of uncorrelated
random variables, non-negative or pairwise independent, such that for some
1 < q ≤ 2 we have supn

1
n

∑n
k=1 ‖gk‖qq < ∞. Landers and Rogge [LaRo]

proved that 1
n

∑n
k=1(gk − Egk)→ 0 a.e. Example 4 in [LaRo] shows that for

1 < q < 2 the above convergence may fail without non-negativity; combined
with the previous remark, it yields that in Theorem 5 one cannot replace the
assumption supn ‖gn‖2 < ∞ by supn ‖gn‖q < ∞ for some 1 < q < 2. The
previous remark shows that for q = 2 the non-negativity assumption of [LaRo]
can be dropped, and there is even a rate of convergence.

(6) In Corollary 4,
∑∞
k=1

akλ
k

kγ can be replaced by
∑∞
k=1

akλ
nk

kγ for {nk}
strictly increasing.

Definition. A contraction T of Lp(µ) is said to be positively dominated
if there is a positive contraction τ on Lp(µ) such that |Tf | ≤ τ(|f |) a.e. for
any f ∈ Lp(µ).

Thus, a positive contraction is obviously positively dominated. If T is a
Dunford-Schwartz contraction on L1(µ), its linear modulus τ [Kr, p. 159] is
also a Dunford-Schwartz contraction, and thus induces a positive contraction
of Lp(µ) [Kr, p. 65]; hence T is a positively dominated contraction of Lp(µ),
for any 1 ≤ p ≤ ∞.

Theorem 6. Let T be a positively dominated contraction of Lp(Ω, µ),
p > 1, and f ∈ Lp(µ). Then for a.e. x ∈ Ω, the sequence ak = T kf(x)
has the property that for every γ > max{1/p, 1/2} and for any orthogonal
sequence {gn} ⊂ L2(Y,m) with supn ‖gn‖2 < ∞, the series

∑∞
k=1

akgk
kγ con-

verges m-a.e., and supn>0

∣∣∑n
k=1

akgk
kγ

∣∣ ∈ L2(m). Hence
∑∞
k=1

akgk
k converges

m-a.e. (and in L2(m)-norm). If in addition {gn} is uniformly bounded, then∑∞
k=1

akgk
k is in

⋂
{Ls(m) : max{p/(p− 1), 2} < s <∞}.
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Proof. Let τ be the positive contraction of Lp(µ) which dominates T . For
1 < r < p, we have

1
n

n∑
k=1

|T kf |r ≤ 1
n

n∑
k=1

[τk(|f |)]r,

with a.e. convergence of the right hand side by [Be], so for µ-almost every
x ∈ Ω the sequence ak = T kf(x) satisfies (5) with p replaced by r (the
required boundedness supn

1
n

∑n
k=1[τk(|f |)]r < ∞ a.e. can be proved along

the lines of the proof of Theorem 3.10 of [LOT]—first for τ an isometry, and
then for the general case with the help of a dilation). We now apply Theorem 5
with p replaced by r for r < min{2, p}. �

Remark. For T Dunford-Schwartz we have [Kr, p. 65] |Tf | ≤ τ |f | ≤
[τ(|f |p)]1/p a.e., so 1

n

∑
k=1 |T kf |p ≤

1
n

∑
k=1 τ

k(|f |p), which converges a.e. if
f ∈ Lp(µ).

When p = 2 we can assume T to be only power-bounded, as implied by
the next result.

Theorem 7. Let {fn} ⊂ L2(Ω, µ) with supn ‖fn‖2 < ∞. Then for
a.e. x ∈ Ω, the sequence ak = fk(x) has the property that for every γ > 1/2
and for any orthogonal sequence {gn} ⊂ L2(Y,m) with supn ‖gn‖2 = K <∞,
the series

∑∞
k=1

akgk
kγ converges m-a.e. and in L2(m), with supn>0

∣∣∑n
k=1

akgk
kγ

∣∣
∈ L2(m). Hence

∑∞
k=1

akgk
k converges m-a.e. and in L2(m). If in addition

{gn} is uniformly bounded, then
∑∞
k=1

akgk
k ∈

⋂
2≤s<∞ Ls(m).

Proof. Fix γ = 1/2 + ε. Since∫ ∞∑
n=1

|fn(x)|2

n1+ε
dµ =

∞∑
n=1

‖fn‖22
n1+ε

≤ (sup
k
‖fk‖2)2

∞∑
n=1

1
n1+ε

<∞,

for a.e. x ∈ Ω, the sequence ak(x) = fk(x) satisfies
∑∞
n=1

|an|2
n1+ε <∞. Given a

norm-bounded orthogonal sequence {gn} ⊂ L2(Y,m), we have
∞∑
n=1

|an|2‖gn‖22
n2γ

log2 n ≤ K2
∞∑
n=1

|an|2

n1+ε

log2 n

nε
<∞.

Since we may assume m to be a probability, the Menchoff-Rademacher theo-
rem yields the result.

Assume now that {gn} is also bounded. Let s > 2 and r = s/(s−1). Then
r < 2, and the simple inequality |a|r ≤ |a|2 + 1 yields

∑∞
n=1

|an|r
n1+ε < ∞ for

any ε > 0. Hence
∑∞
n=1 |

an
n |

r < ∞, and the Riesz-Hausdorff-Young theorem
yields, as before, that

∑∞
n=1

angn
n ∈ Ls(m). �
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Corollary 5. Let T be a positively dominated contraction of Lp(Ω, µ),
p > 1, or only power-bounded when p = 2, and let f ∈ Lp(µ). Then for a.e. λ
with |λ| = 1, the series

∑∞
k=1

Tkf(x)λk

k converges µ-a.e.

Proof. Theorem 6, or Theorem 7 when p = 2, and orthogonality of fn(λ) =
λn yield that for µ-a.e. x ∈ Ω the series

∑∞
k=1

Tkf(x)λk

k converges for a.e. λ.
Fubini’s theorem yields the assertion. �

6. Rotated ergodic Hilbert transforms and random Fourier series

In this section we look at a positively dominated contraction T in Lp, p > 1,
and would like to obtain, for f ∈ Lp, that for µ-a.e. x ∈ Ω we have convergence
of
∑∞
k=1

Tkf(x)λk

k for every λ on the unit circle. Thus, we are looking for a
special type of random Fourier series, with dependent random coefficients (for
random Fourier series, we refer the reader to [Ka-2]). We saw in the proof of
Corollary 5 that for a.e. x the series converges for a.e. λ. In order to have
the convergence for every λ, it is necessary that f be “orthogonal” to all the
eigenfunctions of T ∗ with unimodular eigenvalues, i.e., ‖ 1

n

∑n
k=1 λ

kT kf‖ → 0
for every λ.

Lemma 3. Let {ak} be a sequence of complex numbers. Assume that for
every ε > 0 there exists {bk} with max|λ|=1

∣∣ 1
n

∑n
k=1 bkλ

k
∣∣ → 0, such that

lim supn→∞
1
n

∑n
k=1 |ak − bk| < ε. Then max|λ|=1

∣∣ 1
n

∑n
k=1 akλ

k
∣∣→ 0.

Proof. Fix ε > 0, and take the corresponding {bk}. For n large enough,

max
|λ|=1

∣∣∣∣∣ 1n
n∑
k=1

akλ
k

∣∣∣∣∣ ≤ max
|λ|=1

∣∣∣∣∣ 1n
n∑
k=1

bkλ
k

∣∣∣∣∣+
1
n

n∑
k=1

|ak − bk| < 2ε. �

For T induced by an ergodic probability preserving transformation on
(Ω, µ) and f ∈ L1(µ), the Wiener-Wintner theorem [WW] yields that for
µ-a.e. x ∈ Ω, we have convergence of 1

n

∑n
k=1 λ

kT kf(x) for every λ. When
f ∈ L1(µ) is “orthogonal” to all eigenfunctions of T (which are those of T ∗,
and bounded by ergodicity), i.e., ‖ 1

n

∑n
k=1 λ

kT kf‖1 → 0 for every |λ| = 1,
then for a.e. x ∈ Ω we have 1

n

∑n
k=1 λ

kT kf(x)→ 0 for every λ, and if f ∈ L2

the convergence to 0 is in fact uniform in λ (e.g., [As-1]). Since the L2 func-
tions orthogonal to all the eigenfunctions are dense in the L1 functions or-
thogonal to the eigenfunctions (see Proposition 2.6 of [LOT]), for such f ∈ L1

and ε > 0 we have g ∈ L2 orthogonal to the eigenfunctions with ‖f − g‖1 < ε.
The pointwise ergodic theorem yields that for a.e. x we have

lim
n

1
n

n∑
k=1

|T kf(x)− T kg(x)| = lim
n

1
n

n∑
k=1

T k|f − g|(x) = ‖f − g‖1 < ε.
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The previous lemma now shows that for a.e. x ∈ Ω we have
max|λ|=1

∣∣ 1
n

∑n
k=1 λ

kT kf(x)
∣∣→ 0. By continuity in λ for each fixed x ∈ Ω, we

can compute max|λ|=1

∣∣ 1
n

∑n
k=1 λ

kT kf(x)
∣∣ as the supremum over the count-

able dense subset of roots of unity, so it is measurable. For f ∈ L log+ L
orthogonal to the eigenfunctions this yields by Lebesgue’s dominated conver-
gence theorem (since supn

1
n

∑n
k=1 T

k|f | ∈ L1 [Kr, p. 52]) that∥∥∥∥∥max
|λ|=1

∣∣∣∣∣ 1n
n∑
k=1

λkT kf

∣∣∣∣∣
∥∥∥∥∥

1

−→
n→∞

0,

and ∥∥∥∥∥max
|λ|=1

∣∣∣∣∣ 1n
n∑
k=1

λkT kf

∣∣∣∣∣
∥∥∥∥∥
p

−→
n→∞

0,

if f ∈ Lp, p > 1.

Theorem 8. Let (Ω, µ) be a probability space, and T be a positively dom-
inated contraction of Lp(µ), 1 < p <∞, or an ergodic positive contraction of
L1(µ) with T1 = 1. If for some 0 < β ≤ 1, the function f ∈ Lp satisfies

(6) sup
n>0

∥∥∥∥∥max
|λ|=1

∣∣∣∣∣ 1
n1−β

n∑
k=1

λkT kf

∣∣∣∣∣
∥∥∥∥∥

1

= K <∞,

then for µ-a.e. x ∈ Ω the series
∑∞
k=1

Tkf(x)λk

k converges uniformly in λ on
the unit circle (and is therefore a continuous function of λ).

Proof. Put φn(x, λ) =
∑n
k=1 T

kf(x)λk, and ψn(x) = max|λ|=1 |φn(x, λ)|.

Claim. ψn(x)/n→ 0 for µ-a.e. x.

We first prove the claim when p > 1. Let r be an integer with rβ > 1, and
define nm = mr. Then (6) yields

∞∑
m=1

∥∥∥∥ψnmnm
∥∥∥∥

1

≤ K
∞∑
m=1

n1−β
m

nm
= K

∞∑
m=1

1
mrβ

<∞.

Hence ψnm(x)/nm → 0 for µ-a.e. x.
For nm ≤ n < nm+1 we have

1
n
ψn(x) ≤ max

|λ|=1

∣∣∣∣φn(x)
n
− φnm(x)

n

∣∣∣∣+
ψnm(x)
nm

.

The last term tends to 0 for a.e. x ∈ Ω. For a.e. x and any 1 < s < p, the
sequence {T kf(x)} satisfies (5) with p replaced by s (see proof of Theorem 6).
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Using Hölder’s inequality, with s′ = s/(s− 1), we obtain for those x ∈ Ω

max
|λ|=1

∣∣∣∣φn(x)
n
− φnm(x)

n

∣∣∣∣ = max
|λ|=1

∣∣∣∣∣ 1n
n∑

k=nm+1

T kf(x)λk
∣∣∣∣∣ ≤ 1

nm

n∑
k=nm+1

|T kf(x)|

≤

(
1
nm

nm+1∑
k=1

|T kf(x)|s
)1/s

·
(
nm+1 − nm

nm

)1/s′

−→
n→∞

0.

Thus 1
nψn(x)→ 0 a.e., and the claim is proved when p > 1.

For T an ergodic contraction on L1 with T1 = 1, µ is invariant. We
will assume T induced by a transition probability P (x,A) (see [ÇLO] for
the reduction to this case). On the space of one-sided trajectories ΩN, with
coordinate projections {Xn}, the shift θ is ergodic, with invariant proba-
bility Pµ induced by the initial distribution µ. For any g ∈ L2(µ) the
function g̃ := g ◦ X0 is in L2(Pµ). When ‖ 1

n

∑n
k=1 λ

kT kg‖2 → 0, we have
‖ 1
n

∑
k=1 λ

kg̃ ◦ θk‖L2(Pµ) → 0. Thus, if g ∈ L2(µ) is orthogonal to all eigen-
functions of T with unimodular eigenvalues, we have
max|λ|=1 | 1n

∑n
k=1 λ

kg̃ ◦ θk| → 0 Pµ a.e., and therefore for a.e. x this con-
vergence holds Px a.e. By Lebesgue’s dominated convergence theorem, for
a.e. x ∈ Ω we have

max
|λ|=1

∣∣∣∣∣ 1n
n∑
k=1

λkT kg(x)

∣∣∣∣∣ = max
|λ|=1

∣∣∣∣∣ 1n
∫ n∑

k=1

λkg̃ ◦ θkdPx

∣∣∣∣∣
≤
∫

max
|λ|=1

∣∣∣∣∣ 1n
n∑
k=1

λkg̃ ◦ θk
∣∣∣∣∣ dPx → 0.

By (6), f is orthogonal to all the eigenfunctions of unimodular eigenvalues.
We proceed as in the discussion above (see also [LOT]): we approximate f
in L1 norm by g ∈ L2 which is orthogonal to the eigenfunctions; we have
max|λ|=1

∣∣ 1
n

∑n
k=1 λ

kT kg(x)
∣∣→ 0 a.e., and Hopf’s pointwise ergodic theorem

with ergodicity of T show that Lemma 3 can be applied. This proves the
claim when p = 1.

Now (6) yields∫ ∞∑
k=1

(
1
k
− 1
k + 1

)
ψk(x)dµ ≤

∞∑
k=1

1
k1+β

‖ψk‖1
k1−β <∞,

which yields
∑∞
k=1

(
1
k −

1
k+1

)
ψk(x) <∞ a.e. Since

n∑
k=1

T kf(x)λk

k
=

1
n
φn(x, λ) +

n−1∑
k=1

(
1
k
− 1
k + 1

)
φk(x, λ),

for a.e. x ∈ Ω we have the desired convergence uniformly in λ. �
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Remarks. (1) For T induced by an ergodic probability preserving trans-
formation, Theorem 8 was proved in [As-4] (for p = 2). For such T , functions
satisfying (6) were called there Wiener-Wintner functions.

(2) For p ≥ 2 and T induced by a probability preserving transformation,
Assani and Nicolaou [AsN] proved that under the rate condition (6) with
1
p < β < 1, for µ-a.e. x ∈ Ω we have convergence of

∑∞
k=1

Tkf(x)λk

kγ for every
1 + 1

2p −
β
2 < γ ≤ 1 and every λ (and for fixed γ the convergence is uniform

in λ). Even for such T , our theorem is new when 1 < p < 2.
(3) Examples of ergodic dynamical systems with f ∈ L2 satisfying (6) are

given in [As-4] and [AsN]. For a spectral characterization of the rate condition
(6) see [As-5].

Theorem 9. Let 1 < p < ∞, and let {fn}∞n=1 ⊂ Lp(Ω, µ) with
supn>0 ‖fn‖p < ∞. Let Y be a compact metric space and {gn} ⊂ C(Y )
with supn ‖gn‖∞ = C <∞. If for some 0 < β ≤ 1 we have

sup
n>0

∥∥∥∥∥max
y∈Y

∣∣∣∣∣ 1
n1−β

n∑
k=1

gk(y)fk

∣∣∣∣∣
∥∥∥∥∥
p

= K <∞,

then there exists a set Ω′ ⊂ Ω with µ(Ω′) = 0, such that for x /∈ Ω′ and every
0 ≤ δ < p−1

p β, the series
∑∞
k=1

gk(y)fk(x)
k1−δ converges uniformly in y ∈ Y (and is

therefore a continuous function on Y ), and supn>0 maxy∈Y
∣∣∑n

k=1
gk(y)fk
k1−δ

∣∣ ∈
Lp(µ).

Proof. We may assume µ to be a probability. Fix 0 ≤ δ < p−1
p β. The first

step is to show that maxy∈Y
∣∣ 1
n1−δ

∑n
k=1 fk(x)gk(y)

∣∣ → 0 a.e. The proof of
this convergence is similar to that of Proposition 1, with

∑n
k=1 fk replaced by

maxy∈Y |
∑n
k=1 fkgk(y)|. We also obtain

sup
n>0

max
y∈Y

∣∣∣∣∣ 1
n1−δ

n∑
k=1

fk(x)gk(y)

∣∣∣∣∣ ∈ Lp(µ).

Setting S̃0 ≡ 0 and S̃k(x, y) :=
∑k
j=1 fk(x)gk(y), we have, for γ = 1− δ,

n∑
k=1

fk(x)gk(y)
kγ

=
S̃n(x, y)
nγ

+
n−1∑
k=1

(
1
kγ
− 1

(k + 1)γ

)
S̃k(x, y).

The first term tends to 0 uniformly in y as indicated above; for the series we
obtain the a.e. convergence uniformly in y, similarly to the proof of Theorem 1,
since

max
y∈Y

∞∑
k=n

1
kγ+β

∣∣∣∣∣ S̃k(x, y)
k1−β

∣∣∣∣∣ ≤
∞∑
k=n

1
kγ+β

max
y∈Y

∣∣∣∣∣ S̃k(x, y)
k1−β

∣∣∣∣∣ ,
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and the last series converges to 0 for a.e. x, as using the assumption we have∫ ∞∑
k=n

1
kγ+β

max
y∈Y

∣∣∣∣∣ S̃k(x, y)
k1−β

∣∣∣∣∣ dµ ≤
∞∑
k=n

1
kγ+β

∥∥∥∥max
y∈Y

1
k1−β S̃k(·, y)

∥∥∥∥
p

≤ K
∞∑
k=n

1
kγ+β

−→
n→∞

0.

Similarly to the proof of Theorem 1, we obtain also

sup
n>0

max
y∈Y

∣∣∣∣∣
n∑
k=1

fkgk(y)
k1−δ

∣∣∣∣∣ ∈ Lp(µ).

Taking δj > 0 increasing to p−1
p β we obtain the set Ω′. �

Remark. If each gk is identically a constant ak, we obtain Corollary 2.

Corollary 6. Let 1 < p < ∞, and let {fn}∞n=1 ⊂ Lp(Ω, µ) with
supn>0 ‖fn‖p < ∞. If for some sequence of integers {nk} and 0 < β ≤ 1
we have

(7) sup
n>0

∥∥∥∥∥max
|λ|=1

∣∣∣∣∣ 1
n1−β

n∑
k=1

fkλ
nk

∣∣∣∣∣
∥∥∥∥∥
p

= K <∞,

then there exists a set Ω′ ⊂ Ω with µ(Ω′) = 0, such that for x /∈ Ω′ and every
0 ≤ δ < p−1

p β the series
∑∞
k=1

fk(x)λnk

k1−δ converges uniformly in |λ| = 1 (and
is therefore a continuous function of λ), and

sup
n>0

max
|λ|=1

∣∣∣∣∣
n∑
k=1

fk(x)λnk

k1−δ

∣∣∣∣∣ ∈ Lp(µ).

Corollary 7. Let T be a power-bounded operator of Lp(Ω, µ), 1 < p <
∞. If f ∈ Lp satisfies, for some 0 < β ≤ 1,

sup
n>0

∥∥∥∥∥max
|λ|=1

∣∣∣∣∣ 1
n1−β

n∑
k=1

λkT kf

∣∣∣∣∣
∥∥∥∥∥
p

= K <∞,

then there exists a set Ω′ ⊂ Ω with µ(Ω′) = 0, such that for x /∈ Ω′ and every
0 ≤ δ < p−1

p β the series
∑∞
k=1

Tkf(x)λk

k1−δ converges uniformly in λ on the unit
circle (and is therefore a continuous function of λ), and

sup
n>0

max
|λ|=1

∣∣∣∣∣
n∑
k=1

T kf(x)λk

k1−δ

∣∣∣∣∣ ∈ Lp(µ).

The following result was obtained by Assani [As-4].
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Theorem 10. Let (Ω, µ) be a probability space, and let {fn} ⊂ L2(µ) be
independent with

∫
fndµ = 0 and supn ‖fn‖2 <∞. Then∥∥∥∥∥max

|λ|=1

∣∣∣∣∣ 1n
n∑
k=1

λkfk

∣∣∣∣∣
∥∥∥∥∥

2

≤ (1 +
√

2)1/2

n1/4
sup
k
‖fk‖2.

Assani’s proof is elementary; he remarked that the inequality follows also
from the general (deep) results of [MPi] (without an estimate of the constant).
We are grateful to him for providing us with his (unpublished) derivation of
the inequality of Theorem 10 from [MPi]; his method is used below to obtain
a more general result (with a better rate in Theorem 10).

Theorem 11. Let (Ω, µ) be a probability space, and let {fn} ⊂ L2(µ) be
independent with

∫
fndµ = 0 and supn ‖fn‖2 < ∞. Let {nk} be a strictly

increasing sequence with nk ≤ ckr for some r ≥ 1. Then for any β < 1/2
there is a constant Kc,r,β such that∥∥∥∥∥max

|λ|=1

∣∣∣∣∣ 1n
n∑
k=1

λnkfk

∣∣∣∣∣
∥∥∥∥∥

2

≤ Kc,r,β

nβ
sup
k
‖fk‖2.

Proof. Fix 0 < β < 1/2 and put α = (1−2β)/r. We will use Corollary 1.1.2
of [MPi], with the group G the unit circle, G the compact neighborhood, the
set of characters A := {nk : k ≥ 1}, and the independent random variables
ξnk = fk.

For each n, we want to apply that result to the sequence {aj} defined on
A by ank = 1 for 1 ≤ k ≤ n and ank = 0 for k > n (the sequence need not
be defined outside A, but we put aj = 0 for j /∈ A). It will be convenient
to identify the unit circle with the interval [0, 2π], with addition modulo 2π.
Let t1, t2 ∈ [0, 2π] and define the corresponding translation invariant pseudo-
metric dn(t1, t2) = σn(t1 − t2), where

σn(t) :=

∑
j∈A
|aj |2 · |1− eijt|2

1/2

=

(
n∑
k=1

|1− einkt|2
)1/2

= 2

(
n∑
k=1

sin2 nkt

2

)1/2

.

Since | sin t| ≤ 1 and | sin t| ≤ |t|, we obtain sin2 t ≤ | sin t|α ≤ |t|α. This yields

σn(t) ≤ 2

(
n∑
k=1

nαk t
α

2α

)1/2

≤ 2cα/2
(

n∑
k=1

krαtα

2α

)1/2

≤ 2cα/2
tα/2(n+ 1)

rα+1
2

2α/2
√
rα+ 1

≤ cα/221−α/2tα/2(n+ 1)
rα+1

2 .
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Denote by m the Lebesgue measure on [0, 2π]. Then the “distribution” of σn
satisfies

mσn(ε) := m{t ∈ [0, 2π] : σn(t) < ε} ≥ 21−2/α ε2/α

c(n+ 1)
rα+1
α

;

hence the ‘inverse’ function defined on [0, 2π] (which is the non-decreasing
rearrangement of σn), satisfies

σn(s) := sup{t > 0 : mσn(t) < s} ≤ cα/221−α/2sα/2(n+ 1)
rα+1

2 .

In order to apply inequality (1.15) of [MPi, p. 9] we estimate

In(σ) =:

2π∫
0

σn(s)ds
s(log 8π

s )1/2

≤ cα/221−α/2(n+ 1)
rα+1

2

2π∫
0

ds

s1−α/2(log 8π
s )1/2

= Cc,r,β(n+ 1)
rα+1

2 ,

with Cc,r,β <∞ by the integrability of 1
s1−α/2

for α > 0.
Now inequality (1.15) of [MPi] (as modified in Corollary 1.1.2 there) yields∥∥∥∥∥max

|λ|=1

∣∣∣∣∣
n∑
k=1

λnkfk

∣∣∣∣∣
∥∥∥∥∥

2

≤ 4C sup
k
‖fk‖2

[(∑
j∈A
|aj |2

)1/2

+ In(σ)
]

= 4C sup
k
‖fk‖2

[( ∞∑
k=1

|ank |2
)1/2

+ In(σ)

]
≤ 4C sup

k
‖fk‖2

[
n1/2 + Cc,r,β(n+ 1)

rα+1
2

]
;

the constant C (which was not determined in [MPi]) is independent of the
specific sequence {aj}. Dividing the inequality by n, we obtain the assertion
of the theorem, since (rα+ 1)/2 = 1− β > 1/2. �

Remarks. (1) The additional condition infn
∫
|fn|dµ > 0 in the state-

ment of Corollary 1.1.2 of [MPi] is not needed for the proof of (1.15) there
(see [MPi, p. 51]).

(2) The theorem applies to sequences {[kr] : k ≥ 1} with r ≥ 1.
(3) The sequence {nk} need not be monotone, but its terms must be distinct

(in addition to the growth condition), to make it an enumeration of the set of
characters A; hence the proof of Theorem 11 does not apply to the sequence
{[
√
k]}.

Theorem 12. Let (Ω, µ) be a probability space, and let {fn} ⊂ L2(µ) be
independent with

∫
fndµ = 0 and supn ‖fn‖2 < ∞. Let {nk} be a strictly

increasing sequence with nk ≤ ckr for some r ≥ 1. Then for a.e. x, the
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series
∑∞
k=1

fk(x)
k1−δ λ

nk converges uniformly in λ, for any 0 ≤ δ < 1/2. For
0 ≤ δ < 1/4, we even have

sup
n>0

max
|λ|=1

∣∣∣∣∣
n∑
k=1

fk(x)
k1−δ λ

nk

∣∣∣∣∣ ∈ L2(µ).

Proof. Fix r ≥ 1 and 0 ≤ δ < 1/4. Taking β with 2δ < β < 1/2, Theo-
rem 11 yields that (7) is satisfied by {nk} with p = 2, so Corollary 6 yields the
claimed result for the maximal function, and also the required a.e. convergence
for δ < 1/4.

An appropriate use of [MPi] will yield the a.e. uniform convergence for δ
in the larger interval [0, 1/2) (without using Theorem 11). As in the proof of
Theorem 11, take G the unit circle, A := {nk}, and ξnk = fk. Fix 0 < δ < 1/2,
and put α = (1− 2δ)/2r, so 0 < α < 1/2. Define ank = 1

k1−δ (and aj = 0 for
j /∈ A), and consider the corresponding metric d(t1, t2) = σ(t1 − t2) (which is
uniformly convergent), where

σ(t) :=

∑
j∈A
|aj |2|1− eijt|2

1/2

= 2

( ∞∑
k=1

sin2 nkt
2

k2−2δ

)1/2

≤ 2

( ∞∑
k=1

cαkrα|t|α

2αk2−2δ

)1/2

≤ 21−α/2cα/2|t|α/2
√
γ

√
γ − 1

,

with γ := 2− 2δ − rα = 3/2− δ > 1.
Estimations of mσ and σ as in the previous proof show that I(σ) <∞; now

by Corollary 1.2 in [MPi, p. 10] for a.e. x the series
∑∞
k=1

fk(x)
k1−δ λ

nk converges
uniformly in λ. Note that the condition infn

∫
|fn|dµ > 0 is not needed for

the convergence [MPi, p. 51]. �

Remarks. (1) Since Theorem 8 and [As-4, Theorem 9] require an oper-
ator (also in their proofs), they cannot be used to prove Theorem 12 in the
case nk = k.

(2) Let nk = k. For {fn} independent identically distributed random
variables with mean 0 and finite variance, Theorem 10 (see also [As-4]) shows
that (7) is satisfied with β = 1/4, and Theorem 11 yields (7) with any β < 1/2.
The result of [AsN] (with p = 2 and T induced by the shift of the i.i.d.
sequence) cannot be applied in this case, since β < 1/p.

(3) We mention that for {fn} i.i.d., Cuzick and Lai [CuLa, Theorem 2(iv)]
proved that if E(f1) = 0 and E(|f1| log+ |f1|) < ∞, then we have uniform
convergence of

∑∞
k=1

fk(x)
k λk for a.e. x. Furthermore, if f1 ∈ Lp, 1 < p < 2,

then for any γ > 1/p the series
∑∞
k=1

fk(x)
kγ λk converges uniformly for a.e. x.
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7. Convergence with random modulating sequences

In this section we show that random bounded sequences (realizations of cer-
tain independent uniformly bounded random variables) are almost surely uni-
versally good—they satisfy the assumptions of Section 3—and yield a.e. con-
vergence of the modulated one-sided ergodic Hilbert transform for all Dunford-
Schwartz operators and Lp functions.

Theorem 13. Let {nk} be a strictly increasing sequence of positive in-
tegers with nk ≤ ckr for some r ≥ 1, let (Y,m) be a probability space, and
let {gn} ⊂ L∞(Y,m) be independent with

∫
gndm = 0 and supn ‖gn‖∞ <∞.

Then for a.e. y ∈ Y the sequence bk := gk(y) has the property that for any
contraction T in L2(Ω, µ) and f ∈ L2(µ), the series

∑∞
k=1

bkT
nkf
kγ converges

µ-a.e. for γ > 3/4, with supn>0

∣∣∣∑n
k=1

bkT
nkf
kγ

∣∣∣ ∈ L2(µ). For γ > 1/2 the
series converges in L2(µ)-norm.

Proof. By Theorem 12 (applied to {gn}) we have that for a.e. y ∈ Y , the
bounded sequence bk = gk(y) satisfies supn max|λ|=1 |

∑n
k=1

bk
k1−β λ

nk | <∞ for
any 0 < β < 1/2. By a variant of Kronecker’s lemma, we obtain supn sup|λ|=1∣∣ 1
n1−β

∑n
k=1 bkλ

nk
∣∣ < ∞ for any β < 1/2. For γ > 3/4, Proposition 2(i) now

yields that for T and f as in the assertion, the series
∑∞
k=1

bkT
nkf
kγ . converges

a.e., with supn>0

∣∣∣∑n
k=1

bkT
nkf
kγ

∣∣∣ ∈ L2(µ). The norm convergence of the series
for γ > 1/2 also follows from Proposition 2. �

Remarks. (1) In fact, by Proposition 3, for γ > 1/2 the series
∑∞
k=1

bkT
nk

kγ

in Theorem 13 converges in operator norm, and this convergence is uniform
in all L2-contractions.

(2) Theorem 7 has more general assumptions, but using Fubini’s theorem
(as in Corollary 5), the null set outside which we get the “good modulating
sequence” {gk(y)} depends on T and f . In Theorem 13 we obtain a universally
good modulating sequence, but the rate is not as good as in Theorem 7.

Example 6. Let {φn} be the Rademacher sequence on [0, 1]. It corre-
sponds to i.i.d. with values 1 or −1 with probability 1/2. By Theorem 13, for
a.e. y ∈ [0, 1] the sequence of signs εn := φn(y) is universally good: for every
γ > 3/4, any contraction T on L2(µ) and f ∈ L2(µ), the series

∑∞
k=1

εkT
kf

kγ

converges a.e. This result is Remark 12 and (part of) Theorem 23 of [R]. A
concrete example of a universally good {εn} is provided by the Rudin-Shapiro
sequence.
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Remarks. (1) Using different methods, Boukhari and Weber [BoWe] have
obtained that if {gn} are symmetric i.i.d. with second moment (not necessarily
bounded) and nk = k, also the a.e. convergence assertion of Theorem 13
holds for γ > 1/2. This improves the result of Example 6. This improvement
is due to the use in [BoWe] of all the information (identical distribution,
symmetry), while our proof relies on the very general results of Theorem 1
(through Corollary 2); in L2, the interval of δ obtained in Theorem 1 for
a.e. convergence is [0, β/2), while for norm convergence it is [0, β). On the
other hand, Theorem 13 applies in cases where the distributions are not the
same.

(2) In Example 6, for any given {nk} with nk ≤ ckr (e.g., nk = k2),
a.e. random sequence of signs {εn} yields a.e. convergence of

∑∞
k=1

εkT
nkf
kγ for

γ > 3/4.

Theorem 14. Let {nk} be a strictly increasing sequence of positive in-
tegers with nk ≤ ckr for some r ≥ 1, let (Y,m) be a probability space, and
let {gn} ⊂ L∞(Y,m) be independent with

∫
gndm = 0 and supn ‖gn‖∞ <∞.

Then for a.e. y ∈ Y the sequence bk := gk(y) has the following property:
For every Dunford-Schwartz operator T on L1(Ω, µ) of a probability space

and f ∈ Lp(µ), 1 < p < ∞, the series
∑∞
k=1

bkT
nkf
kγ converges a.e. for γ ∈

(max{ 3
4 ,

p+1
2p }, 1], with supn>0

∣∣∑n
k=1

bkT
nkf
kγ

∣∣ ∈ Lp(µ) when p ≤ 2.

Proof. It was noted in the proof of Theorem 13 that {bk} satisfies (3) for
any β < 1/2. Thus for f ∈ Lp(µ) with 1 < p ≤ 2 and γ > p+1

2p , take
β < 1/2 such that γ > 1− p−1

p β, and apply Proposition 2(ii), which yields the

a.e. convergence of
∑∞
k=1

bkT
nkf
kγ , and also that supn>0

∣∣∑n
k=1

bkT
nkf
kγ

∣∣ ∈ Lp.
For p > 2 we have f ∈ L2 since µ is a probability. �

Theorem 15. Let (Y,m) be a probability space, and let {gn} ⊂ L∞(Y,m)
be independent with

∫
gndm = 0 and supn ‖gn‖∞ < ∞. Then for a.e. y ∈ Y

the sequence bk := gk(y) has the following properties:

(i) For every Dunford-Schwartz operator on L1(Ω, µ) and f ∈ L1(µ) we
have

(8) lim
n→∞

1
n

n∑
k=1

bkT
kf = 0

µ-almost everywhere, and in L1(µ)-norm when µ is finite.
(ii) For every Dunford-Schwartz operator T on L1(Ω, µ) of a probability

space and f ∈ Lp(µ), 1 < p < ∞, the series
∑∞
k=1

bkT
kf

kγ converges

a.e. for γ ∈ (max{ 3
4 ,

p+1
2p }, 1], with supn>0

∣∣∑n
k=1

bkT
kf

kγ

∣∣ ∈ Lp(µ)
when p ≤ 2.
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(iii) For every contraction T on L1(Ω, µ) with mean ergodic modulus and
f ∈ L1(µ), (8) holds µ a.e. and in L1(µ)-norm.

(iv) For every positively dominated contraction of Lp(Ω, µ), 1 < p < ∞,
and f ∈ Lp(µ), (8) holds µ a.e. and in Lp(µ)-norm.

Proof. (i) Theorem 13 (for nk = k) and Kronecker’s lemma yield the
convergence for f ∈ L2(µ). The a.e. convergence now follows from the Banach
principle (see proof of Proposition 2(iii)).

(ii) Apply Theorem 14 to nk = k. For f ∈ Lp this also yields a rate in (8).
(iii) and (iv) follow from (i), by [ÇLO], Theorems 2.3 and 2.4, respectively.

�

Remarks. (1) The remark following Proposition 3 yields that for fixed
1 < p < 2 and γ > 1/p, the series

∑∞
k=1

bkT
k

kγ in Theorem 15(ii) converges
in the Lp-operator norm, and this convergence is uniform in all Dunford-
Schwartz contractions.

(2) When the independent sequence {gk} is identically distributed, The-
orem 15(i) follows from the “return times theorem” (see [ÇLO] for the pas-
sage from T induced by a probability preserving transformation to a general
Dunford-Schwartz operator). If the i.i.d. {gk} are symmetric, one can also
use the result of [As-3].

(3) Theorem 15(i) can be proved independently of [MPi], since the precise
rates of convergence are not needed: in the proof of Theorem 13, we can use
Theorem 10 and Corollary 6, instead of Theorem 12, to obtain the convergence
of the series

∑∞
k=1

bkT
kf

kγ for some γ < 1.
(4) For the special case of {gn} the Rademacher functions, part (i) of

Theorem 15 is Corollary 24 of [R], and part (ii) is in Theorems 18 and 25 of
[R]. Theorem 14 provides a more general result.

Acknowledgements. The authors are grateful to Idris Assani for sending
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[BaE], and to the anonymous referee for valuable remarks and references.
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[Lo-1] M. Loève, Sur les fonctions aléatoires de second ordre, Revue Sci. 83 (1945),

297–303. MR 8,38e
[Lo-2] , On almost sure convergence, Proc. 2nd Berkeley Symp. Math. Stat.

Proba., 1950, University of California Press, Berkeley, 1951, pp. 279–303. MR
13,853a

[MaZ] J. Marcinkiewicz and A. Zygmund, Sur les fonctions indépendentes, Fund. Math.
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