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LAWS OF LARGE NUMBERS WITH RATES AND THE
ONE-SIDED ERGODIC HILBERT TRANSFORM

GUY COHEN AND MICHAEL LIN

ABSTRACT. Let T be a power-bounded operator on L,(u), 1 < p < co.
We use a sublinear growth condition on the norms {|| S 7_; T*f|lp} to
obtain for f the pointwise ergodic theorem with rate, as well as a.e. con-
vergence of the one-sided ergodic Hilbert transform. For p finite and
T a positive contraction, we give a sufficient condition for the a.e. con-
vergence of the “rotated one-sided Hilbert transform”; the result holds
also for p = 1 when T is ergodic with 71 = 1.

Our methods apply to norm-bounded sequences in L. Combining
them with results of Marcus and Pisier, we show that if {gn } is indepen-
dent with zero expectation and uniformly bounded, then almost surely
any realization {b,} has the property that for every v > 3/4, any con-
traction T on Lo(p) and f € Lo(u), the series 352 | by T* f(z)/k” con-
verges p-almost everywhere. Furthermore, for every Dunford-Schwartz
contraction of Li(u) of a probability space and f € Lp(u), 1 < p < oo,

the series 372 ; by T* f(x)/k" converges a.e. for v € (max{%, %}, 1].

1. Introduction

The mean ergodic theorem for power-bounded operators in reflexive Banach
spaces yields that for 1 < p < oo and T power-bounded in L, (p) of a o-finite
measure space, the ergodic averages % Y ore Tk f converge in norm for every
feLy

The celebrated theorem of Akcoglu [A] says that if T' is a positive contrac-
tion in Ly(n), 1 < p < oo, then for every f € L, the ergodic averages converge
a.e. Without positivity, the a.e. convergence need not hold (see [Kr, p. 191]).

In general, there is no universal speed of convergence in the pointwise ergo-
dic theorem for probability preserving transformations, not even for bounded
functions; see [Kr, pp. 14-15], [Pe, §3.2B], [K, p. 655-657]. Thus, we need ad-
ditional assumptions, connecting the function f and the operator T" induced
by the transformation, in order to obtain rates of convergence.
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On the other hand, for a centered i.i.d. sequence {fx} C L,(u) of a proba-
bility space, 1 < p < 2, Marcinkiewicz and Zygmund [MaZ, Theorem 9]
(see also [ChTe, p. 115]) proved that we have a.s. convergence of the se-
ries Y po k’fﬁ, which implies —= > fi — 0 a.s. Hence for T induced
by the shift and fi, = T*f, with zero integral the ergodic averages have a
pointwise rate o(nl/p_l). Thus, the rate in this case is determined only by
a moment condition. An equivalent formulation of the above SLLN is that
for every € > 0 we have u(UZin{Ik% 25:1 Tif| > €}) — 0. In this case,

rates of convergence to 0 of pu(Upe, {|& Zle TIf| > €}) for a > 1/p, in
terms of convergent series, were obtained by Baum and Katz [BauKat], who
also showed that their results are no longer true for general stationary se-
quences. However, Peligrad [P-4] showed that some of their results do hold
for ¢-mixing stationary sequences (for earlier results see [P-2], [P-3], [Ber]).
Integral tests for convergence rates for martingales were obtained in [JJoSt],
extending earlier results of Strassen [Str].

By adapting the proof of Lemma 5.2.1 of [Kr], we obtain that if T" is power-
bounded in L, and f = (I —T)g (which is equivalent to sup, <o || > r—; 7% f|l»
< 00), then 530 T*f — 0 ae. for every v > 1/p; thus, the rate
50—, T*fll, = O(1) yields a.e. convergence (with rate) of the ergodic aver-
ages.

For T induced by an invertible probability preserving transformation and
[ € Lo, Gaposhkin [G-1] showed that if | >°;_; T% f|l2 = O(n'#) for some
8 > 0, then n% Sorey T*f — 0 a.e. for appropriate v < 1 (depending only on
B). In [G-2] he proved (under the same assumption) the a.e. convergence of

the series » | % which implies a.e. convergence of the one-sided ergodic

Hilbert transform Y, % Derriennic and Lin [DL] used the same growth
condition for the L,-norms of the sums to obtain similar results, even for 7" a
Dunford-Schwartz operator.

In this paper we develop an intermediate class of results—modulated ergo-
dic theorems with rates; we look for sequences {ay} for which there is a v < 1
such that for every Dunford-Schwartz contraction T of L, (1) and every f € L,
(or for every contraction of Ly) we have -5 >0 | apT*f — 0 a.e., or even
a.e. convergence of » > | a"nT#

In the next section we show that obtaining a strong law of large numbers
with rate from the rate of convergence to 0 of the norms of the averages is
a very general result, applicable to L, norm bounded sequences {f,}, which
yields also a.e. convergence of the series Y -, %" Section 3 deals with mod-
ulated ergodic theorems with rates and a.e. convergence of the modulated
one-sided ergodic Hilbert transform, for general Ls-contractions and for con-
tractions induced on L, by Dunford-Schwartz operators. In Section 5 we
look at sequences {a,} which yield a.e. convergence of series of the form
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> peq “E2E for any Lo-norm bounded orthogonal sequence {g,}. In Section 6
we study the a.e. convergence of the one-sided rotated Hilbert transform for
T a positive contraction of L,, 1 < p < oo. Examples of i.i.d. lead to a
study of almost sure uniform convergence of certain random Fourier series.
In Section 7 we combine our results to show that almost surely realizations
of uniformly bounded centered independent random variables are universally
good sequences for a.e. convergence of the modulated one-sided ergodic Hilbert
transform of L,-contractions induced by Dunford-Schwartz operators.

2. Strong laws of large numbers with rates

In this section we obtain a strong law of large numbers with rate from the
rate of convergence to 0 of the norms of the averages, and apply the result to
obtain a.e. convergence of certain series; for power-bounded operators on L,

(1 < p < o0) this yields a.e. (and norm) convergence of the one-sided ergodic
Hilbert transform.

PROPOSITION 1. Let 1 < p < oo, and let {f,}0%; C Ly(n) with
SUP,5o || frllp < o0o. If for some 0 < B <1 we have

1 n
e DL
k=1 lp

then —5 >0\ fu — 0 a.e. for every 0 < 6 < %6’, hence >0 | fx — 0

a.e. Furthermore, for any 0 < 6 < %ﬂ we have supﬂﬁ ooy frl € Ly.

(1) sup
n>0

=K < o0,

Proof. Let r =1/0 and fix § with 0 < ¢ < B(p — 1)/p. Then we have
(1) (1=rd)p=(8—0d)rp>1.
Define n,, = [m"] + 1. By (1) we have

1 & K K
-5 ka = B8 = mr(B=8)°
mo 1 » m
S0
) 1 I p oo 1 I p oo 1
— = _— P - -
[DIE=D S ARTED S F=0 SF e S =
m=1|"" k=1 m=1[""" k=1 P m=1
which converges by (i). Hence
o0 1 I P
T3 frl <o ae,
m=1|"m k2

SO
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For n,, <n < n,,4+1 we have
MNm

1 < 1
nl-o }:fk Y E:f’“
k=1 k=1

1 n
ni-o Z fr

k=n,,+1
Nm+1 Mm+41
1 1
< 1-6 E |fk:| < 1-5 E |fk|
n n
k=n,,+1 Mmoo k=n,,+1

This yields, with C := sup,, || fallp,

1 & 1 o
[ S R s >R d
m o> m+1 k::1 k:l

P

1 Nm+41 p 1 Mm+41
<[l 3 || 3w
M k=n,,+1

17
M k=n,,+1
MNm41 P p
1 Nom4+1 — N,
< |— Z fr <P (m
[n1_5 ” |P] n}n_(s

M k=nm,+1

p

Since for r > 1 and t > 0 we have (t +2)" > (t+1)"+ 1 and (t +2)" —t" <

2r(t +2)"~1, we obtain

Ml = N _ (m+1)"+1-—m" < 2r(m +2)"1 _o m+2\""" 1
n}{& = (mr)lfé - mr(1=9) = m

Hence

ml-rdé"

Mm,

1 <« 1
ni-o § :fk T pio E:fk
k=1 k=1

p(r—1)
< CP(2r)P m+2 !
- m

p
/ max dp
Nm Sn<nrn+1

m(1—rd)p”

Since (1 —rd)p > 1, we conclude as before that

1 & 1o [
max 4= E fk - 1= E fk; — 0 a.e.
N <N<Nmi1 | N n
k=1 k=1
Since
1 I 1 I
= E fr| < | == E fel — 0 ae,

nl—9 nl 8

k=1 mook=1

the convergence part of the proposition is proved.
Put S, = > p_; fr- For r and {n,,} as above and fixed § < pTTlﬁ, we

obtain as before
P oo
Sun| dn< [ Y
m=1

1
n}{‘s

/ sup
m>0

1 P 1
- pE -
n}nésn“ dp < K lm”’(ﬁ ) < 00,
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SO sup,,~ |n1—1_5 nm| € L,. For n, <n < nm,41 we have

NMm41
Sn < Sn., L 1 il
pl=d| = |13 nl=o E : El»
m M k=n,,+1
SO
Nm41
Sn n 1
sup ‘—n1—5 <||sup | 5 + ||sup ——5 E |felll -
n P m>0 | Nm P m>0 Nm k=, +1 »

The finiteness of the last term follows from

1 Nm+1 p oo 1 Nm+1 p
sup ——5 > |fil s/Z[ﬂ > fkll dpe
m>0Tm = . m=1 "M g1

o0

p

n —n

) m+1 m
<C E (71_5 )

m=1 Tom

with the last series converging by the previous estimates (since (1 — rd)p
> 1). O

ExaMPLE 1. {f,} bounded in Ly(p) satisfying (1), with 131, fu di-
verging a.e.

Let T be the positive contraction of L (u) given by Chacon’s example (see
[Kr, p. 151]), for which there is a non-negative 0 # f € Ly with limsup,, 17" f
= oo a.e. Let f, := T Y(I —T)f. Then || Y p_, felli < 2|fll1, so for
any 0 < 3 < 1 (1) is satisfied, while L 31" | fi = L(f —T"f) is a.e. non-
convergent. This shows that the final conclusion of Proposition 1 fails when
p=1.

REMARKS. (1) Let T be power-bounded on L,(1), 1 < p < oo (so T is a
contraction in an equivalent norm). For 0 < 3 < 1, the power series expansion
1-t)f =1- Z;’;l agﬂ)tj is used in [DL] to define the operator (I —T)7, and
it is shown there that (I — T)%L, = (I — T')L,. When (I —T')L, is not closed,
the linear manifolds {(I — T)’L, : 0 < 8 < 1} are all different, and decrease
when 3 increases. Theorem 2.15 of [DL] yields that for every f € (I —T)PL,,
(1) is satisfied by fr, = T*f, i.e.,

n

1
T2 T

k=1

=K < o0,

(1) sup
n>0

P
and Theorem 2.17 there shows that (1’) implies that f € (I —T)°L,, for every
0 < ¢ < 3. Example 1 shows that for p =1 and T a positive contraction, (1)
does not yield a.e. convergence of % Y orey TEf.

(2) If T is as above, and for some 3 > 1 (1’) holds, then || >_}_, T*f||
converges to 0, and applying I — T to the sums we obtain T'f = 0.
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(3) The a.e. convergence to 0 of L 37" |, 7% f under (1’) in the special case
of T unitary on Ls, due to Loéve [Lo-1] (in the continuous parameter case),
is proved in Doob [Do, p. 492]. The rates of a.e. convergence obtained by
Gaposhkin [G-1, Theorem 3] for this particular case are better than what
Proposition 1 yields.

(4) For more precise information on the rate of a.e. convergence when 7 is
induced on L, (p > 1) by a Dunford-Schwartz operator (a contraction of L;
which contracts also the Lo,-norm), see [DL], Theorem 3.2 (and also Corol-
lary 3.7); Remark 1 following Theorem 3.1 of [DL] shows that for Dunford-
Schwartz operators, (1’) in Li-norm does not yield a rate in the ergodic the-
orem.

(5) Any sequence {f,} of i.i.d. random variables with zero expectation and
finite variance satisfies (1) with 8 = 1/2.

EXAMPLE 2. Let {f,} C La(pt) be a mutually orthogonal sequence with

sup,, |[fnll2 < oo (e.g., an Lo-bounded martingale difference sequence in a
probability space). By orthogonality

2
1 n
Esz _ » ZHf H2 pj ||f]||2
k=1 2

Hence {f,} satisfies (1) with 8 = 1/2, and therefore for every 0 < § < 1/4,
ﬁ Sorey fr — 0 ae.

In Example 2 we may assume p to be a probability (see [Kr, p. 189]), since
an isometry of Ly preserves the inner product, hence the orthogonality. The
Menchoft- Rademacher theorem [Do, p. 157], [Z, vol. II, p. 193] then implies
that Y7 - /2 — converges a.e. for every € > 0. Using Kronecker’s lemma we
thus obtaln "better rates of convergence than those of Proposition 1.

Cotlar [Co] (see also [Pe, §3.6]) proved that for T induced by an invertible
probability preserving transformation, the ergodic Hilbert transform Hf :=
lim,, 00 ZO<\k\§n Tka converges a.e. for every f € Lp. Jajte [Ja] proved
that for 7" unitary on Lo, a.e. convergence of the ergodic averages for every
f € Ly is equivalent to a.e. convergence for every f € Ly of the ergodic Hilbert
transform (norm convergence of the ergodic Hilbert transform holds for every
unitary operator [C]). For 1 < p < oo, Berkson, Bourgain and Gillespie
[BBGi] extended Jajte’s result to T invertible on (a closed subspace of) L
with Sup_ o0 [|7"]] < 00; when T is also positive, this and De la Torre’s
theorem [De] yield a.e convergence of the ergodic Hilbert transform for every
f € L, (a result originally due to Sato [S-1], see also [S-2], [S-3]).

The Khinchine-Kolmogorov theorem for series of independent random vari-
ables (e.g., [Do, p. 108]) yields that for {f,} i.i.d. with zero expectation and
finite variance > p- %" converges a.e.; moreover, for every v > 1/2 the series
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) ,{—’; converges a.s., which yields a rate & 3"} | fv — 0 in the SLLN.

However, in general for 7' unitary on Lo induced by a probability preserving
k
transformation the one-sided ergodic Hilbert transform lim, .o > p_; ka

need not always exist, neither in norm [H] nor a.e. [Pe, p. 94] (see also
[DelR]). Theorems 2.17 and 2.11 of [DL] show that if (1’) is satisfied, then

lim, oo D opey T J; exists in norm for every 0 < § < (3, and hence also the
one-sided ergodic Hilbert transform converges in norm.

THEOREM 1. Letl < p < oo, and let {fn}o2 C Ly(p) with sup,,s¢ |l frllp
< oo. If {fn} satisfies (1) for some 0 < 8 < 1, then for every 0 < § <
pp;lﬁ, the series > pey k{—fé converges a.e. and sup, o | > n_; k{c—f(;| € L,.
Convergence of the series in Ly-norm holds for any 0 <6 < f.

Proof. We can and do assume that p is a probability measure (e.g., [Kr,

p. 189]). For § < pp%lﬁ denote v = 1 — 4. Put Sy = 0 and S = Z?:l fi-
Abel’s summation by parts yields the decomposition

fo N=SE=Sie1 Sa =1 1
k’yfz kY *mJFZ kv (k+ 1) Sk

k=1 k=1 k=1

By Proposition 1, = LS, — 0 a.e. For the series we have
/1 1 | 1
> (kT - m) Skl <) Sk =)

k=1 k=1 k=1
Since p is a probability and y+ 5 =1—6 4+ 8 > 1, we obtain from (1)

/ Z k-ﬁ+v

Hence Y77 | w5 1Sk| < 0o a.e., which completes the proof of the a.e. conver-
gence. For the maximal function, we have

n—1 1 1
— — — ] Si|.
>4 > (- )&
By Proposition 1 and the previous estimates for the last term, we obtain

Z = | = VZ LB+
k= k=1

1
mSk .

oo

Z ,6’+7

—= Sk

kl T1=3 < 00.

klﬁk

sup
n>1

sup
n>1

-+ sup

1

A

sup
n>1

sup

nYy

|<oo.
P P
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The L,-norm convergence holds in fact for any v > 1 — 3: (1) implies

Hn%San — 0,80 Y 1y ,{—ﬁ is Cauchy in L, since

n—1

S| (% ) &

n—1
1

S y Z ]{}1+7 ||Ska

k=j
P

< 3 71

- ’YZ LB+
k=j

REMARKS. (1) Note that formally Proposition 1 follows from Theorem 1,
by Kronecker’s lemma, but the proposition is used in the proof of the theorem.

(2) When p = 1, (1) yields a.e. convergence of Y- f’“—(x) if we know that
% > h_y Jr converges a.e. (take v =1 in the proof of Theorem 1).

(3) Fix 1 < p < 2, and let {f,} C L,(u) of a probability space be an
L,-bounded martingale difference sequence, with sup,, || f»||, = C < co. The-
orem 2 of [BaE] yields |3}, frll, < 2/PCn'/P, so (1) holds with 3 =
(p —1)/p. In the special case of {f,} independent (with 0 expectations), the
result can be deduced also from Theorem 13 of [MaZ] (see [ChTe, p. 356]); in
this case Theorem 5’ in [MaZ] (for a more general form, due to Logve [Lo-2]
and based on the three series theorem, see [ChTe, p. 114]) implies that for
every 0 < 6 < (p— 1)/p the series Y -, k{—i,; converges a.e., which is better
(i.e., giving larger values of §) than what Theorem 1 yields.

(4) Peligrad [P-1, Lemma 3.4] showed that if {f,} is an Ls-bounded cen-
tered p-mixing sequence with >, p(2°) < oo, then (1) holds with 8 = 1/2.
Hence Theorem 1 applies.

1

Tk O
k=001

COROLLARY 1. Let T be a power-bounded operator on L,(p), 1 < p < co.
If f € L, satisfies (1') for0 < 8 <1, then > ;- % converges a.e. for every
0<d< pp%lﬂ (and z'nL -norm for 0 < 6 < ). For 0 <§ < p;%,@ we also

have sup,,~o | > r_; kl LL| € Ly

REMARKS. (1) The corollary improves considerably Theorem 3.12 of [DL].

(2) See Gaposhkin [G-2] for more precise information when T is unitary on
Ly. For T a Dunford-Schwartz operator in L, (in particular, T induced by a
probability preserving transformation), see [DL, Theorem 3.6].

Modulated ergodic theorems are concerned with the convergence (a.e. or
in norm) of L 31" | a,T* f for certain sequences {aj}. We refer the reader
to [LOT], where earlier references are given. Weighted strong laws of large
numbers for i.i.d. sequences were studied by Jamison, Orey, and Pruitt [JOP].
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COROLLARY 2. Let1 < p < oo, and {fn}32; C Lp(p) with sup, <o || fnllp
< oo. Let {a,} be a bounded sequence, such that for some 0 < 8 <1 we have

(2) sup

p

Then for any 0 < § < %ﬁ the series Y po Z’ff’; converges a.e. and

SUpP,,~0 ‘ Y oreq Z’ff’g‘ € L,. Convergence of the series in Ly-norm holds for

any 0 <6 < .

Proof. By (2), the sequence f! = a, f, satisfies (1), so Theorem 1 applies.
O

ExXAMPLE 3. Let aj» =1, and a; = 0 if k is not a square. Then for every
norm-bounded sequence in Ly, (1) holds with § =1/2 and K = sup,, || fx||p-
Note that the sequence is supported on a set of density 0.

3. Modulated ergodic Hilbert transforms for Dunford-Schwartz
operators

In this section we look at conditions on a modulating sequence {a,, } which
will yield a.e. convergence of the modulated one-sided ergodic Hilbert trans-
form for every Lo contraction and every f € Ly. An interpolation yields
a similar result for T induced on L, (1 < p < 2) by a Dunford-Schwartz
operator.

PROPOSITION 2. Let {ny} be a non-decreasing sequence of positive inte-
gers and let {a,} be a bounded sequence of complex numbers such that for
some 0 < 8 <1 we have
n

1
ni—p Z apA™
k=1

(3) sup max =K < o0.

n>0[A=1

(i) For every contraction T in Lo(u) and f € La(u), the series
Sy a’}g,:f converges a.e. for any 0 < 6 < /2, and in Lo-norm
for 0 < 0 < 3. Furthermore, sup,~q | Sohey C”‘,gi_f” € Ly for any
0<d<p/2.

(ii) For every Dunford-Schwartz operator T on Li(n) and f € Ly(p),
1 < p < 2, the series Y poy “';ji’gf converges a.e. for any 0 <

0 < pp%lﬁ, and in Ly-norm for 0 < 6 < 2%%1@ Furthermore,
suppso | or_y a’;gj;f’ €L, forany 0 <4 < pp;lﬂ.

(iii) In the case ni =k, for every Dunford-Schwartz operator T on Lq(p)
and f € Li(u), we have %22:1 ayT*f — 0 a.e., and in Ly-norm if
L is finite.




1006 GUY COHEN AND MICHAEL LIN

Proof. (i) Theorem 2.1 of [BLRT] and the unitary dilation theorem yield
that for any contraction 7" in a Hilbert space

n

nl—lf,B Z apT™*

k=1

sup < K < oo,

n>0

(for a different proof see [RiN, §153]). If T is a contraction of La(u), and f €
Lo, then (2) holds with fi = T™* f and constant K| f||2. Hence Corollary 2
yields that for every 0 < ¢ < (/2 the series Y -, a’;gf:f converges a.e. with
SUp,~0 | Zzzl ‘”ﬁ#| € Lo, and the series converges in Lo-norm for 0 < § <
0. Inspection of the proofs of Proposition 1 and Theorem 1 yields an estimate
on the norm of the maximal function in terms of supy, || fx||, and the constant
K there, which for p = 2 yields that there is a constant C', depending only on
3 and §, such that ||sup, o | >, %Hb < CK||f|l2, with K here given
in (3).

(ii) Let ¢, (¢) :== Y 11 ax(™. By the maximum principle and (3), we have
|6 (¢)] < Knt=P for |¢| < 1. Hence for every contraction T on a Hilbert space
on(T) = >Sp_, ar T satisfies ||¢,(T)| < Kn'~?, by Theorem A in [RiN,
§153] (for T unitary this inequality follows also from the spectral theorem, as
in [BLRT], and the dilation theorem yields it for any contraction T'). Now
fix a Dunford-Schwartz operator T on Lq (i), and put 75, = >, _; agT™*.
Then ||T,|l2 < Kn'=?, and obviously || T}, |l1 < n/{ax}|leo. The Riesz-Thorin
interpolation theorem [Z, vol. 11, p. 95] yields that for 1 < p < 2 we have

||Tn||p < ||{ak}||<2>£p_lK2_2/pnl_ﬁpy

with 8, = 2,6’( — %) > 0. Thus, for f € L,(u) (2) holds for f = T f

and 3, (with K, = ||{ak}||gép71K2_2/p). Now Corollary 2 yields the L,-
norm convergence of the series for 0 < 6 < 3,, and the a.e. convergence for
§ < BRp, =28(P5)°.

In order to improve the rate in the a.e. convergence (i.e., to allow larger
values of §), we will change the interpolation method, and following [R] we will
use Stein’s complex interpolation [Z, Theorem XII.1.39]. Since the condition
on ¢ is satisfied also when 3 is replaced by 3’ < 3 close enough to 3, and also
(3) will obviously hold for 3’, we may assume [ < 1.

Cram. If {ax} satisfies (3), then for any real n the sequence {ark®}
satisfies (3).
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With ¢,, as above, Abel’s summation by parts yields, uniformly in || = 1,

Z apk A"

k=1

< [n"¢n (A

/f“7 (k+1)"¢r(N)

=1
< ou )]+ 3 %
k=1

Kk
< Kn'~ 5+IH\Z -

In] 1-8
< PR R
K<1+1_6 n'=o,

which shows that (3) is satisfied, as claimed, with K replaced by K (1+ 5 SLIE 5)-
We now fix a Dunford-Schwartz operator T. Part (i) and the claim yleld
that for fixed a < $/2 and f € Lo, we have
Bln| >
[1£1l2
2(1-p)

for every real . For ( = £ 4 in in the strip B := 0 < Re( < 1 we look at the

—¢p/2
operator U, ¢ := 22:1 %T"’“, so we have

B|n]
)> 11l

" apk 82T f

sup kl—a

n>0

SC’K(l

k=1 2

I sup| ¥ in 2 < CK (1 + 20

For ¢ =1+ inp we have

a|k=P/2| T f
SUP|‘I’n 14inf| < Z%,
k=1

the theorem of Beppo Levi and a < 3/2 yield

-~ lawlk 22T £
S Z kl—a

sup |¥,,

n>0

= 1
< HawHloellf Il Y s5=agas <0
k=1

For a bounded measurable positive integer-valued function I and ¢ with 0 <
Re ( < 1 we define the linear operator

I(x) _ max I J _
apk=<82 arpk=<B2
Uy ef(x):= Z kkli_aT "flx) = Z Lir—jy(x) kkli_aT *f(x),

k=1 j=1 k=1
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which is defined on all the L, spaces. It is easily checked that for any two
integrable simple functions f and g, the function

maxl J k*Cﬁ/
() = /‘I’Icf gdp ="y Z/ D)L=y (0) == T F()dp,
j=1 k=1

is continuous and bounded in the strip B and analytic in its interior. Clearly

s ) 161l = M) e

sl < 500 Wi 2 < OK (1 + gl

and
197 14infll < ||SUP|‘I’n,1+inf|||1 < Ci fllr-

Forl<p<2lett= 1—) —lso;=(1-1t)3 1+t 1. Stein’s interpolation
theorem now yields that there ex1sts a constant At, which depends only on ¢,
M, and C1, such that for every f € L, we have

I(x) 1) . 450
ar i, o akk .
;klwﬂﬁfl)ﬁ/zT f@)) = kz::l AETEEC)
p p

= Wrefllp < Adlfllp-
For an integer N > 2 let Iy (x) = j for j the first integer with

J apk—t8/2

k=1 k=1
Then for f € L, (and our fixed a < $/2) we have

n

Qg n
Z kl—a+(%—1)ﬁ/2T *f(x)
k=1

- a—k mn
- kZ:l k1*a+<%fl>ﬂ/2ka(x) < Al fllp,

max
1<n<N

P

p
and letting N — oo we conclude that for y =1—a + (% -1)8/2>1- pp%lﬂ

we have
— Tk
Z o T
p

Fix 1 <p<2and5< %ﬁ, and put v := 1 — 4. Since v > 1—p;1ﬁ,
we have sup,,o | Yp_, &I f(z)| € L, for every f € Ly; part (i) ylelds

a.e. convergence of the series Y ° | & T”kf( ) for every f € Lo, so the Banach
principle now yields the same a.e. convergence for any f € L,,.

sup < Q.

n>0
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(iil) We now assume ny = k. By (i) the claimed a.e. convergence holds for
Lo-functions. The a.e. convergence to 0 for all L; functions follows from the
Banach principle, since for every f € Li(u) we have

1 n
LS
n k=1

by the pointwise ergodic theorem for 7, the linear modulus of 7. When p
is finite we may assume it is a probability, so the Li-norm convergence to 0
for Ly functions follows from (i), and boundedness of {aj} yields the norm
convergence for all L, functions. O

sup
n

1 n
< {asHloo sup - 7 7H1f] < o0,
" k=1

REMARKS. (1) Stein’s theorem yields the L,-norm convergence in (ii) for
a smaller interval of § than what we obtain from the Riesz-Thorin theorem,
so both interpolations are needed.

(2) The assertions of Proposition 2 for a fixed sequence {ny} are true under
the following weaker condition:

1 <y,
T L e

k=1

(3" Sup max < 00, 0< 3 <8,

n>0[A|=1

which is equivalent to

lim max
n—oo |)\\:1

=0, 0< @ <p.

1 n
T DA™
k=1

The sequence defined by a, = k\’/gﬁn satisfies >, ar, = O(y/nlogn), so for

any {ny} condition (3’) is satisfied with 5 = 1/2, while (3) is not.

(3) Theorem 2.1 of [BLRT] shows that if for every contraction T in Lo(u)
and every f € Lo(u), the sequence {ﬁ Sohey akaf} is bounded in Ls-
norm for each 0 < § < 3, then (3') holds for ny = k.

(4) The sequence {ny} need not really be monotone, but this will be the
case in most applications. The terms need not be distinct.

PROPOSITION 3. Let {ni} be a non-decreasing sequence of positive inte-
gers, and let {a,} be a sequence of complex numbers satisfying (3) for some
0 < B <1 (no boundedness is assumed), and let 0 < § < 3. Then for every
contraction T' on a Hilbert space, the series 2;11 “k’“li_? converges in operator
norm, and this convergence is uniform in all contractions. In particular, the

. . A"k . .
Fourier series Y po % converges uniformly in |\ = 1.

Proof. For a contraction T on a Hilbert space, denote s, (T) = Y p_; aT"*.
The spectral theorem for unitary operators and the unitary dilation theorem
yield ||s,(T)|| < Kn'=#, with the constant K, given by (3), independent of
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T. Put v=1-4§. Then

- ap T . Sk(T) — Skfl(T)
ky kv

n

k=1

=
Il

Csl(T) &1 1
S Gl DR

By the above discussion, ||-% s, (T)| < -2, so we have uniform convergence
to 0. For the sum on the right hand side, we have

n—1 1 1 n-l 1 - K
Y (5 - ) @) < 1 e IS

k=j

which shows that the series is Cauchy in operator norm, uniformly in 7. [

REMARKS. (1) When sup,, ——5 >__; |ax| < oo, condition (3) is obviously
satisfied for every {ny}. A simple example of {a,,} unbounded satisfying (3)
(with 8 = 1/4) is given by aj> = y/j and a; = 0 for k not a square.

(2) If {a,} is bounded and satisfies (3) with a given {nj}, then the proof
of Proposition 3, combined with the proof of Proposition 2(ii), yields that for
fixedl <p<2and0<§<258(1— %), the series Y oo, % converges in L,
operator norm for every Dunford-Schwartz operator T, and this convergence
is uniform in all Dunford-Schwartz operators.

EXAMPLE 4. Let {e,} be the Rudin-Shapiro sequence [Ru] (see also [Ka-2,
p. 75]): €, = %1, and for some K we have

Propositions 2 and 3 now apply with § = 1/2; for example, if T" is a contraction
of Ly(p), and f € Lo, then Y oo, E’ng_kéf converges a.e. for every 0 < 4§ < 1/4.

REMARKS. (1) For ng = k, condition (3) is satisfied also by the Hardy-
Littlewood sequence {e’"!°8"} (with 8 = 1/2) [Z, vol. 1, p. 199], and by
the sequence {¢"} with 0 < a < 1 (when 8 = «/2) [Z, vol. I, p. 200].
The convergence results for Lo contractions, obtained in these cases from
Propositions 2 and 3, are Theorem 14 of [R] (without the uniformity in all
contractions of the operator norm convergence; the uniform convergence of
the Fourier series for these sequences is proved already in [Z]). Adapting
the methods of [Z, §§V.4-V.5], we can show that the sequence {e""} with
1 < a < 2 satisfies (3) for § = 1 — a/2, and our results include those of
Remark 15 of [R].

(2) Examples of {a,} satisfying (3) for nj, = k? will be given later.
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4. Additional examples for modulating sequences

The following lemma shows how to obtain additional examples for (2).
Note that it applies also in the case p = 1.

LEMMA 1. Letl <p < oo, and {fn}or, C Lp(p) with sup,~g || fnllp < o0.
If {fn} satisfies (1), and {ax} satisfies

oo

(4) Z lak — akt1| < oo,

k=1
then (2) is satisfied.

Proof. Since a,, = a; + 22;11 (akg+1 — ax), the sequence {a,} converges.
With Sp = 0 and Sy = Y27, f;, we obtain

n n n—1
D oarfu =Y ar(Sk—Sk-1) = > _(ak — ar41)Sk + anSp.
k=1 k=1 k=1

Using (1), we obtain

1 n
o D kS
k=1

for every n. O

oo
< KZ lak — ag+1| + K sup |aj|
k=1 J

COROLLARY 3. Let 1 <p < oo, and {fn}32; C Lp(p) with sup,<q || fnllp
< oo, and let {an} satisfy (4). If {fn} satisfies (1) for some 0 < B <1, then
ooy Z’f—f’; converges a.e. for every 0 < § < pTTlﬁ,

EXAMPLE 5. T positive, f satisfies (1), {ay} convergent, but Y j_, a’ﬂ:f
a.e. divergent.

Let 0 be a probability preserving ergodic invertible transformation on (2, u)
and T'g = gof. Then T is a positive invertible isometry of L,(u), 1 <p < oo.
We assume that there is 0 # f € L, such that Tf = —f (e.g., Q = [0,2),
7 an invertible measure preserving ergodic transformation of [0,1); define
Ox = 1x+1for 0 <z < 1land Oz = 7(x—1) for 1 <z < 2, and take
f =101 — 1,2)). Clearly (1') is satisfied for any p > 1 and any 8 € (0, 1],
but for the sequence a, = =" we have that Sohey % =>r ﬁgkf is

log k
kmk
a.e. divergent. This example shows also that for A = —1 the series > _;'_; 2 3; !

is a.e. divergent.

THEOREM 2. Let T be a contraction on Ly () with mean ergodic modulus,
and let {ay} satisfy (4). If f € Ly satisfies (1') for some 0 < 8 < 1, then

00 akaf
Y ohey A converges a.e.
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Proof. With Sif = Z?Zl T7f, we have ||Sipf/k| — 0 by (1’), and the

pointwise ergodic theorem for T [CL] yields SLf — 0 a.e. Defining Sof = 0,

we have

I ve 1
E;akT f= E;ak(skf—sk—lf)

n—1

== Z ap — ak+1)skf+an Suf.
"=
Since {a,} is bounded, the last term tends to 0 a.e. For € > 0 fix N such that
Y ren lak — ags1| < e. Since sup,, |%(I)| < 00 a.e., the inequalities

n—1 N-1 n—1

1 1
=3 (ar —ap1)Sef| < | = D (ak — apr)Sef| + Y lak — axpl f’
= "= k=N
yield
1 n—1 Sn
lim sup —Z ar — ag+1)Spf| < esup ﬂ .
n n n

Hence 1 37 | a;,TF f(z) — 0 a.e.
Since (2) holds by Lemma 1, we can use the proof of Theorem 1 for v =1,
with S = Ekﬂ a;T7 f, to obtain our theorem. O

The following was suggested by D. Cémez (for the case fr = T*f):

Let {fn} C Lp(p), 1 < p < oo, with sup, ||fnllp < o0, and assume
Sorey % < 0. Then the series > po, “I% is a.e. absolutely convergent.

Proof. We may and do assume that p is a probability. Then the assertion
follows from

/ki_l |a’“kf’“|du Z |a| LLfklh < Z |a| ||fk||p

k=1

Note that Y2, |a_]:|ka:||p < 00, so we also have norm convergence. (]

REMARKS. (1) For the sequence a; = 1, (4) holds; Corollary 1 and The-
orem 2 show convergence of the one-sided Hilbert transform when (1) is
satisfied, although >"77 |a’“| = 00.

(2) Let a, = % Then Sy % < 0o, but >°p7 |ak — agy1| = oo.
akaf

%

Thus (4) is not necessary for a.e. convergence of Z;‘;l for every power-

bounded T and f satisfying (1).
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THEOREM 3. Fiz < 1, and let {ax} be a bounded sequence with
Sz, 55l < oo, Let {fa) © Ly(p), 1 < p < oo, with sup, |[ful, < oo,
and assume that {f,} satisfies (1). Then the series Y -, a’“kf’“ converges a.e.

Proof. With Sy =0 and Sy = Zle fj, we clearly have
n—1
ar fr ar  Ggt1 an S
= — — S, )
k ;; ( ko okt 1) Rty

The last term tends to 0 a.e., since {a,} is bounded, and %Sk — 0 a.e. by
Proposition 1.

The sum >, _, (%’“ — ‘2’“_:11 )Sk is a.e. absolutely convergent, since using (1)
we obtain

k=1

ag = ag ag
/Z (% - ) sufaw< 0% - et s,
k=1
 |ag, — ag41] |a|
+1
SZ P 1Sk |\p+zkk+1 [|Skllp
k=1
— |ak — aj41] ak+1| |a|
<y K+Zk1+ﬁ .
k=1

THEOREM 4. Fiz f < 1, and let {ap} be a bounded sequence with
Yore g % < o0. Then for every T power-bounded in L,(p), 1 < p < oo,
or a contraction with mean ergodic modulus in Ly, and every [ satisfying (1),

the series S°°° , T (onverges a.e.
k=1~ &

Proof. We may and do assume that p is a probability. For the power
bounded case (with p > 1) we apply Theorem 3 to the sequence {T™ f}. For
the Li-contraction case, we have +Sif — 0 a.e. by [CL], since (1’) implies
| £Skf]l — 0. The result now follows from the calculation in the proof of
Theorem 3, this time with p = 1. O

REMARK. Theorems 3 and 4 do not follow from the previous results. If
we define a; = 1 for k not a power of 2, and ay; = —1, then obviously (4)

fails, and also > -, a’“l = oo. However, for any 3 > 0 we have
y gl cany ot <o
kB - £ (27 —1)8
k=1 Jj=1

k
Note that if {ay} is a (complezx) sequence such that Y - a"i L converges

a.e. (or in norm) for every T power-bounded on L, and f € L, satisfying
(1) (for some 3 > 0), then > 5. | %A* converges for every complex X # 1
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with || = 1. To see this, note that for such A there is an ergodic probability
preserving transformation 6 on [0, 1) with a bounded function f # 0 such that
Tf = Af (for A aroot of unity, proceed as in Example 5, for other A let 02 = Az

o . AP T*
on the unit circle). Then f satisfies (1), so Y 7, A f = > %
converges.

5. Series of modulated L;-bounded orthogonal sequences

LEMMA 2. Given 1 <p <2, let {a,} satisfy

(5) sup Z|ak|p—A<oo
"=

Then for every e > 0 we have

Proof. Denote S : = > 4y |a,|?, and define similarly S?) . Summation
by parts yields

2 n—1 (2)
1 1 Sn
> e = 2 (e - S+ e
k2/p+e k2/pte (k4 1)2/pte : n2/pte
Since 1 < p < 2, we have (3722))1/2 < (SPHYVP (e.g., [HLP, p. 4]). Hence

n 2 P)\2/p

Z |a| < Z o 1 (S

k2/p+e P k2/p+e (k + 1)2/p+e

n2/p+e
n—1
_ 2—’_6 (Sl(gp))Q/p (Sﬁbp))Q/p
D — k-2/p+1+e n2/p+e

(S(p))Q/p +

n—1 1 A2/p

2 2
= (5“)14 Y et e
k=1

which yields (i). Similar computations yield that if {cx} is a non-negative
sequence with sup, L 370" | ¢ < oo, then Y37, 5 < oo for every € > 0
(see also [As-2, pp. 228-229]). When applied to {|ag|P}, this yields (ii). O

THEOREM 5. Let {a,} be a sequence of complex numbers satisfying (5)

with 1 < p < 2, and let {g,} be an orthogonal sequence in Lo(, 1), with
sup,, [|gnll2 = K < oo. Then for every e > 0 the series Y~ | <592 converges

a.e. and in Lo, with f [supn>0’ZZ:1 Ok Jis ]2d,u < 0o. Thus Y o7, %nn

Lkl/p+e n=1 n
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converges a.e. (and in Ly). If, in addition, {g,} is uniformly bounded (i.e.,

SUP,, SUP,eq |9n (2)| < 00), then 3507 | S5 ds in Ly(p) with ¢ = p/(p — 1),
oo nJdn

and Zn:l . ﬁq € mq§s<o<> LS(N)‘

Proof. For the first part we may assume, as mentioned before, that u is a
probability. By Lemma 2(i),

|an|?(lgn]I3 2 jan|? log®n
Z T 2/pt2e log*n < K Z n2lpte e =
n=1

Now, the Lo convergence is immediate, and the a.e. convergence follows by
applying the Menchoff-Rademacher theorem to the sequence { al"/fie }. For the
maximal function we will use the inequality given in [Z, XIII.10.23] (which

improves Menchoff’s original inequality) Let g, be the j-th non-zero function
gk, and ¢&; = ay, ||gr, [|2 /k:l/m_E Then

in the sequence {gx}. Put g; = Hgk B

an|*llgn
Z &% log? j < Z |&;]2 log? k; Z Ja l/p+2€”2 log? n < oo,

so we can apply the mequahty from [Z] to the orthonormal sequence {g;}, to

obtain
n 2
argk
sup d :/ sup
/ [">0 ; kl/p+6 ] a ln>0

We now assume that {g,} is also uniformly bounded (this is done in the

2
] dup < oo.

original measure space, so j is just o-finite). By Lemma 2(ii) >, [nlla/_gl} :
< 00. Since 1 < p < 2, we can use the Riesz version of the Hausdorff-Young
theorem [Z, Theorem XIL2.8] to conclude that Y >° , 552 is in Ly(u) for
every € > 0 (this part of the theorem does not require {g,} to be normalized,
but only sup,, [|gnl2 < 00); thus also >°07, “29= € L,(u). For any s > ¢ let
r=s/(s—1),s80 1 <r <pand (5) is satisfied also with p replaced by r, and
we have Y7 | 42dn € [ (u). O

COROLLARY 4. Let A = {A € C : |A| = 1} be the unit circle, and let
{an} be a sequence of complex numbers satisfying (5) with 1 < p < 2. Then

ap\*
kY

q
q = %, with [, {supn>0 | Shey “Zi‘k ‘] d\ < oo. Hence for a.e. A on the

for every v > 1/p the series Y -, converges a.e. and in Lg(A,d)N),

. . k k
unit circle, Y pe, %2~ converges and L 31 apA¥ — 0, and Y po, %A~ €

MNa<scoo Ls(A dN).

Proof. We apply Theorem 5. Its last part yields that the Fourier series

Sy a,’;—i‘k is in Ly (A), so the convergence is also in Lg-norm. The maximal
function is in Ly (A, d)\) by Hunt’s strong maximal inequality [Hu]. O
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REMARKS. (1) When a; = 1 for every k, Corollary 4 applies, but
Yooy a’“k)‘k is not in Loo (A, dN).

(2) Let ag; = 27, and ay, = 0 if k is not a power of 2. Then (5) is satisfied
with p = 1, but %Zzzl apA¥ does not converge for any \, since |a,\"|/n
does not converge to 0. Thus Theorem 5 and Corollary 4 fail when p = 1.

(3) Kahane [Ka-1] proved (his proof can be adapted from the continuous
to discrete time) that if {a,} satisfies (5) with p = 1, and we assume that
Ly 1 arAF converges for every A with [A] = 1, then the limit is non-zero
only for at most countably many A.

(4) The La-norm boundedness assumption of Example 2 can be somewhat
relaxed. Let {h,} be an orthogonal sequence in Ly(p) with sup,, 371 || 7|3
< oo. Let ap = ||hil|2, and put gx = hi/ay if ay, # 0, and g = 0 when ay, = 0.
Theorem 5 then yields that > 7, nlh# converges a.e. for every ¢ > 0, and
thus —% > 01 he — 0 ae.

(5) Let {gn} C La(p) of a probability space be a sequence of uncorrelated
random variables, non-negative or pairwise independent, such that for some
1 < ¢ < 2 we have sup, = >0, [lgi/|? < co. Landers and Rogge [LaRo]
proved that + > | (g5 — Egr) — 0 a.e. Example 4 in [LaRo] shows that for
1 < g < 2 the above convergence may fail without non-negativity; combined
with the previous remark, it yields that in Theorem 5 one cannot replace the
assumption sup,, ||gn|l2 < oo by sup, ||gn|lq < oo for some 1 < ¢ < 2. The
previous remark shows that for ¢ = 2 the non-negativity assumption of [LaRo]
can be dropped, and there is even a rate of convergence.

(6) In Corollary 4, >77, “Z—i‘k can be replaced by .50 “A™ for {ny}
strictly increasing.

DEFINITION. A contraction T' of L,(u) is said to be positively dominated
if there is a positive contraction 7 on L,(u) such that |T'f| < 7(|f]) a.e. for

any f € L,(u).

Thus, a positive contraction is obviously positively dominated. If T is a
Dunford-Schwartz contraction on Lq(u), its linear modulus 7 [Kr, p. 159] is
also a Dunford-Schwartz contraction, and thus induces a positive contraction
of L,(p) [Kr, p. 65]; hence T' is a positively dominated contraction of Ly (u),
for any 1 < p < cc.

THEOREM 6. Let T be a positively dominated contraction of L,(Q, p),
p > 1, and f € Ly(n). Then for a.e. x € Q, the sequence ay = T*f(z)
has the property that for every v > max{1/p,1/2} and for any orthogonal
sequence {gn} C Lo(Y,m) with sup,, ||gnll2 < oo, the series Y ;| 2k con-
verges m-a.e., and sup,,so | > p_; 42| € Ly(m). Hence > oo “2% converges
m-a.e. (and in La(m)-norm). If in addition {g,} is uniformly bounded, then
ey 2 s in ({Ls(m) : max{p/(p — 1),2} < s < oo}.
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Proof. Let T be the positive contraction of L,(u) which dominates 1. For
1 <r < p, we have

-~ ZIT’“fIT Z[ NG

k 1

with a.e. convergence of the right hand side by [Be], so for p-almost every
x € Q the sequence ay, ka( ) satisfies (5) with p replaced by r (the
required boundedness sup,, = > ', [7*(| f|)]" < oo a.e. can be proved along
the lines of the proof of Theorem 3.10 of [LOT]—first for 7 an isometry, and
then for the general case with the help of a dilation). We now apply Theorem 5
with p replaced by r for » < min{2, p}. O

REMARK. For T Dunford-Schwartz we have [Kr, p. 65] |Tf] < 7|f| <
[r(IfP)]VP ace., s0 £ 30, [TFfIP < 257, | 7%(|f|P), which converges a.e. if
fe Lp(p).

When p = 2 we can assume T to be only power-bounded, as implied by
the next result.

THEOREM 7. Let {fn} C L2(Q,u) with sup, ||fullz < oo. Then for
a.e. © € ), the sequence ar = fr(x) has the property that for every v > 1/2
and for any orthogonal sequence {g,} C L2(Y, m) with sup,, ||gnll2 = K < oo,
the series > pe “2% converges m-a.e. and in Ly(m), with sup,, <o | Y, “2&|
€ Ly(m). Hence ) ;2| “9% converges m-a.e. and in La(m). If in addition

{gn} is uniformly bounded, then Y ;7| *59% € Nye oo Ls(m).

Proof. Fix v = 1/2 + €. Since

|fa(@)]® fall3 2 1
/Z n1+e = 2:1 nite = (S%p”f’f"?) Z ite <
n=

n=1
2
for a.e. z € Q, the sequence ay(z) = fi(x) satisfies > 7 ; % < oo. Given a
norm-bounded orthogonal sequence {g,} C La2(Y,m), we have

|a'n| ||gn||2 2 \an log n
Z 2'7 1 < K Z n1+6 ne

n=1

Since we may assume m to be a probability, the Menchoff-Rademacher theo-
rem yields the result.

Assume now that {g,} is also bounded. Let s > 2 and r = s/(s—1). Then
r < 2, and the simple inequality |a|” < |a|* + 1 yields >, L’;{;‘ < oo for
any € > 0. Hence > 7 | |%|" < oo, and the Riesz-Hausdorff-Young theorem

yields, as before, that Y7 “2d= e L (m). O




1018 GUY COHEN AND MICHAEL LIN

COROLLARY 5. Let T be a positively dominated contraction of L,(2, u),
p > 1, or only power-bounded when p =2, and let f € L,(p). Then for a.e. A

k
with |\| =1, the series Y po M converges [i-a.e.

Proof. Theorem 6, or Theorem 7 when p = 2, and orthogonality of f,,(\) =

k
A" yield that for p-a.e. z € Q the series Y -, M converges for a.e. A.
Fubini’s theorem yields the assertion. O

6. Rotated ergodic Hilbert transforms and random Fourier series

In this section we look at a positively dominated contraction T"in Ly, p > 1,
and would like to obtain, for f € L, that for u-a.e. x € €2 we have convergence

of Y72, m for every A on the unit circle. Thus, we are looking for a
special type of random Fourier series, with dependent random coefficients (for
random Fourier series, we refer the reader to [Ka-2]). We saw in the proof of
Corollary 5 that for a.e. x the series converges for a.e. A\. In order to have
the convergence for every A, it is necessary that f be “orthogonal” to all the
eigenfunctions of T* with unimodular eigenvalues, i.e., |+ >0 A*T* f|| — 0
for every .

LEMMA 3. Let {axr} be a sequence of complex numbers. Assume that for
every € > 0 there exists {by} with max|y—1 |+ > 7_; bpA*| — 0, such that
limsup,, o 230 lax — bi| < e. Then max)y—1 |1 >0 apA¥| — 0.

Proof. Fix € > 0, and take the corresponding {b;}. For n large enough,

E Z ak)\k

For T induced by an ergodic probability preserving transformation on
(Q,p) and f € Li(p), the Wiener-Wintner theorem [WW] yields that for
pa.e. © € , we have convergence of 2> | \FT* f(z) for every A. When
f € Li(p) is “orthogonal” to all eigenfunctions of T' (which are those of T,
and bounded by ergodicity) ie, |20 AFT*flly — 0 for every |A| = 1,
then for a.e. z € Q we have - 37" )\ka f(x) — 0 for every A, and if f € Lo
the convergence to 0 is in fact umform in A (e.g., [As-1]). Since the Ly func-
tions orthogonal to all the eigenfunctions are dense in the L; functions or-
thogonal to the eigenfunctions (see Proposition 2.6 of [LOT]), for such f € L;
and € > 0 we have g € Ly orthogonal to the eigenfunctions with || f — g||1 < e.
The pointwise ergodic theorem yields that for a.e. z we have

max
[Al=1

1 n
—Z|ak—bk|<2e. O
nk:

n

lim % > IT*f(x) — TFg()| = lim % S THf —glx) = |If — gl <e.
k=1

k=1
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The previous lemma now shows that for ae. =z € € we have
max|y|—1 ‘n > orey NETE f () ’ — 0. By continuity in A for each fixed x € €2, we
can compute maxjyj—; ’n S ARTE f(x )| as the supremum over the count-

able dense subset of roots of unity, so it is measurable. For f € Llog" L
orthogonal to the eigenfunctions this yields by Lebesgue’s dominated conver-
gence theorem (since sup,, £ 3", T*|f| € Ly [Kr, p. 52]) that

1 n
max —Z)\kaf — 0,

Al=1|1n — n— o0
and

1 n
max —Z)\kaf — 0,

Al=1|n n—o0

it feL, p>1.
THEOREM 8. Let (Q, ) be a probability space, and T be a positively dom-

inated contraction of L,(u), 1 < p < 0o, or an ergodic positive contraction of
Lqi(p) with T1 = 1. If for some 0 < 3 <1, the function f € L, satisfies

nl 3 Z Aka

oo T f(:c))\

=K < o0,
1

max

6
©) sup | mac

n>0

then for p-a.e. © € Q the series Y, converges uniformly in A on
the unit circle (and is therefore a contmuous function of \).

Proof. Put ¢ (z,A) = Y p_; T*f(2)A*, and ¥, (z) = max)y=1 [¢n (2, A)|.
Cram. ¢, (z)/n — 0 for p-a.e. x.

We first prove the claim when p > 1. Let r be an integer with r3 > 1, and
define n,,, = m". Then (6) yields

Y
>

m=1

oo 1 o0
K35

Hence vy, (x)/nm — 0 for p-a.e. .
For n,, <n < n;,4+1 we have

1
—Un <
S ¥n(@) < max

Pn(2)  Pn,.(2)

n n

+ Yn,, (33)

Nm

The last term tends to 0 for a.e. x € Q. For a.e. x and any 1 < s < p, the
sequence {T* f(z)} satisfies (5) with p replaced by s (see proof of Theorem 6).
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Using Holder’s inequality, with s’ = s/(s — 1), we obtain for those z € Q2
< Pn(z) _ Pn, (2) _

A=1| n n

n

1
= Tk AP
mex | >, T"f()
k=n.m;,+1

N1 1/s n . 1/51
( Z IT* f(x ) . (M) .
Ny Nm n— 00

Thus t¢,(z) — 0 a.e., and the claim is proved when p > 1.

For T an ergodic contraction on Ly with T1 = 1, p is invariant. We
will assume 7' induced by a transition probability P(z, A) (see [CLO] for
the reduction to this case). On the space of one-sided trajectories QN with
coordinate projections {X,}, the shift § is ergodic, with invariant proba-
bility P, induced by the initial distribution p. For any g € Lo(u) the
function § := g o Xq is in Lo(P,). When [|2 37 AT*g|l; — 0, we have
[ £33 A¥G o 6%||1,p,) — 0. Thus, if g € Ly(u) is orthogonal to all eigen-
functions of T with  unimodular  eigenvalues, we have
max|y—1 |2 3 p_; A¥Go 65| — 0 P, ae., and therefore for a.e. x this con-
vergence holds P, a.e. By Lebesgue’s dominated convergence theorem, for
a.e. x € §) we have

- Z Tk g (

n

< LS T

™ k=nm,+1

max
[Al=1

= max
[Al=1

max
[Al=1

By (6), f is orthogonal to all the eigenfunctions of unimodular eigenvalues.
We proceed as in the discussion above (see also [LOT]): we approximate f
in Ly norm by g € Lo which is orthogonal to the eigenfunctions; we have
max|y|—1 |% Soney )\kag(:z:)| — 0 a.e., and Hopf’s pointwise ergodic theorem
with ergodicity of T" show that Lemma 3 can be applied. This proves the
claim when p = 1.

Now (6) yields

= Y
/Z( k+1) Szkwf”klk“l <o

which yields Y2, (% — ﬁ) Yr(z) < 0o a.e. Since

n Lk T k
sz—qﬁnx A) +Z(——k—+1>¢k<xa)‘)7

k=1

f/ZA’“ o 0kdP,,
n
n

Z goak

k

dP, — 0.

for a.e. € Q we have the desired convergence uniformly in A. O
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REMARKS. (1) For T induced by an ergodic probability preserving trans-
formation, Theorem 8 was proved in [As-4] (for p = 2). For such T, functions
satisfying (6) were called there Wiener-Wintner functions.

(2) For p > 2 and T induced by a probability preserving transformation,
Assani and Nicolaou [AsN] proved that under the rate condition (6) with
l < ﬁ < 1, for pra.e. z € Q we have convergence of Y -, M for every

1 + 55 — é < v <1 and every A (and for fixed v the convergence is uniform
in )\) Even for such 7', our theorem is new when 1 < p < 2.

(3) Examples of ergodic dynamical systems with f € Ly satisfying (6) are
given in [As-4] and [AsN]. For a spectral characterization of the rate condition
(6) see [As-5].

THEOREM 9. Let 1 < p < oo, and let {fn}32; C L,(Q,p) with
SUp,~o | fullp < 00. Let Y be a compact metric space and {g,} C C(Y)
with sup,, ||gnllec = C < 0o. If for some 0 < B <1 we have

1 n
nl—>5 ng(y)fk
k=1

then there exists a set ' C Q with u(Q') =0, such that for x ¢ Q' and every
0<df<k ﬂ, the series > oy %f’;(‘w) converges uniformly iny € Y (and is
gk y)fk| c

max

=K < oo,
yey

sup
n>0

p

therefore a continuous function on'Y ), and sup,,~(maxycy | Zk 1
Ly ().

Proof. We may assume p to be a probability Fix 0<d< p_lﬁ The first

step is to show that max,cy |n1 5D pey Jr () | — 0 a.e. The proof of
this convergence is similar to that of Proposmon 1 Wlth > r—y [x replaced by
maxyey | D op—q fx9x(y)|. We also obtain

1 n
1o ka(x)gk(y) €

k=1
Setting So = 0 and Sy (z,y) := E?Zl fe(x)gr(y), we have, for y =1 -4,

;fk(x]iguy) _ Suley) +Z<m _ k+1) )ém,y)-

The first term tends to 0 uniformly in y as indicated above; for the series we
obtain the a.e. convergence uniformly in y, similarly to the proof of Theorem 1,

since
=1 =1
ma < ma
=n n

sup max
n>0 YEY

Ly ().

Sk (SL’, y)
k1-p

Sk: ($7 y)
k1-5

)
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and the last series converges to 0 for a.e. x, as using the assumption we have
o0 o~ o0
1 Sk(x,y) 1
<
|3 | T e < Y s
k=n k=n

k

PR
<K 3 L 0
- kZ k’Y"Fﬁ njo)o

Similarly to the proof of Theorem 1, we obtain also

1 -
e WS’C("WHP

frgr(y
s a .
swpna 3590 < 1)
Taking §; > 0 increasing to ﬂ we obtain the set Q. O

REMARK. If each g is identically a constant ag, we obtain Corollary 2.

COROLLARY 6. Let 1 < p < oo, and let {f,}52; C Ly(Q,p) with
SUp,,so | frllp < o0o. If for some sequence of integers {ny} and 0 < B <1
we have

max

(7) Sup || max

n>0

=K < o0,

n1 6 ka)\nk
p

then there exists a set ' C Q with M(Q’) =0, such that for x ¢ Q' and every
0<d< = 1ﬁ the series Y o, f’“](j) " conwerges uniformly in [\ =1 (and
i therefore a continuous function of \), and

/\”k
z fitaar

COROLLARY 7. Let T be a power-bounded operator of Ly(2, 1), 1 < p <
oo. If f € L, satisfies, for some 0 < 3 <1,

nl 3 Z)\ka
p

then there exists a set Q' C Q with M(Q’) =0, such that for x ¢ Q' and every

k
0<o< &= 15 the series Y oo, Tk(—f?‘ converges uniformly in A on the unit
circle (and is therefore a continuous function of A), and

" Tk A\F
S T

sup max

e L,(1).
n>0 [AI=1 oK)

sup
n>0

max

=K < o0,
[A]=1

Sup max

eL .
n>0 [A[=1 k=1 p(/‘)

The following result was obtained by Assani [As-4].
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THEOREM 10. Let (2, 1) be a probability space, and let {fn} C La(u) be
independent with [ fodp =0 and sup,, || fnll2 < 0o. Then
(L+v2)1/?
< sup :
2 i/ ! Il ficll2

n

Sy A

k=1

max
IAl=1

Assani’s proof is elementary; he remarked that the inequality follows also
from the general (deep) results of [MPi] (without an estimate of the constant).
We are grateful to him for providing us with his (unpublished) derivation of
the inequality of Theorem 10 from [MP1i]; his method is used below to obtain
a more general result (with a better rate in Theorem 10).

THEOREM 11. Let (Q, ) be a probability space, and let {f,} C La(u) be
independent with [ fndp = 0 and sup,, ||fnllz2 < co. Let {ny} be a strictly
increasing sequence with ni, < ck” for some r > 1. Then for any 8 < 1/2
there is a constant K., g such that
n

EDPUT

k=1

max
IAl=1

K
< 70’;’5 sup || fr|l2-
2 " k

Proof. Fix0 < 8 < 1/2 and put a = (1—20)/r. We will use Corollary 1.1.2
of [MPi], with the group G the unit circle, G the compact neighborhood, the
set of characters A := {ny : k > 1}, and the independent random variables
gnk = flc~

For each n, we want to apply that result to the sequence {a;} defined on
A by an, =1for1 <k <mnand a,, =0 for k> n (the sequence need not
be defined outside A, but we put a; = 0 for j ¢ A). It will be convenient
to identify the unit circle with the interval [0, 27], with addition modulo 27.
Let t1,t2 € [0,27] and define the corresponding translation invariant pseudo-
metric dy, (t1,t2) = o, (t1 — t2), where

1/2

n 1/2
on(t) = | Y la;P -1 —eV'P | = (Z 1- em’“t|2>
k=1

JEA

n ; 1/2
.o Mk
-9 E 2 )
(klsnl 2 )

Since |sint| < 1 and |sint| < |t], we obtain sin® ¢ < |sint|® < [t|*. This yields

n aa 1/2 n Lrago 1/2
on(t) <2 (Z ”2’€a> < 2c/? (Z 2a>

k=1 k=1

ra+1
ra+1

2
< 20a/2—ta/ (n+1) > < ca/221_a/2t@/2(n +1)7

20/2\/rae +1
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Denote by m the Lebesgue measure on [0, 27]. Then the “distribution” of o,
satisfies
2/a
o . 1-2/« € .
Mg, (€) :=m{t € [0,27] : 0, () < €} > 2 —_——
en+1)"a
hence the ‘inverse’ function defined on [0,27] (which is the non-decreasing
rearrangement of o), satisfies
ra+

on(s) = sup{t > 0:m,, (t) < s} < /221792522 (1 1)"% -
In order to apply inequality (1.15) of [MPi, p. 9] we estimate

27

L(o) ::/ on(s)ds

s(log 87)1/2
0

2T

a/20l—a/2 ra41 ds . ra+1
s (1) /sl—a/Q(logg?“)l/gCc,r,ﬁ(nJrl) >,

0

with Ce,,3 < 00 by the integrability of = for a > 0.
Now inequality (1.15) of [MPi] (as modified in Corollary 1.1.2 there) yields

1/2
<4C sup (| frll2 [(Z |“J‘|2> + I”(U)}

JEA

n

ankfk

k=1

IAI=1
2

o 1/2
:40sgp||fk||2[<2|ank|2> +In<o>]

k=1

ra+1l
<40 il |1 + Cerpln+1)75 ]

the constant C' (which was not determined in [MP1i]) is independent of the
specific sequence {a;}. Dividing the inequality by n, we obtain the assertion
of the theorem, since (ra+1)/2=1—-0>1/2. O

REMARKS. (1) The additional condition inf,, [ |f,|dx > 0 in the state-
ment of Corollary 1.1.2 of [MPi] is not needed for the proof of (1.15) there
(see [MP4i, p. 51]).

(2) The theorem applies to sequences {[k"] : k > 1} with r > 1.

(3) The sequence {ny} need not be monotone, but its terms must be distinct
(in addition to the growth condition), to make it an enumeration of the set of
characters A; hence the proof of Theorem 11 does not apply to the sequence

{[V]}.

THEOREM 12. Let (Q, ) be a probability space, and let {f,} C La(u) be
independent with [ f,dp = 0 and sup,, ||fall2 < co. Let {ny} be a strictly
increasing sequence with ny < ck” for some r > 1. Then for a.e. z, the
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series Y po J;’j(x& A" converges uniformly in A, for any 0 < § < 1/2. For
0<4§<1/4, we even have

2(1)-

Sup max
n>0[A|=1

Z

Proof. Fix r > 1 and 0 < § < 1/4. Taking 8 with 2§ < < 1/2, Theo-
rem 11 yields that (7) is satisfied by {ny} with p = 2, so Corollary 6 yields the
claimed result for the maximal function, and also the required a.e. convergence
for § < 1/4.

An appropriate use of [MPi] will yield the a.e. uniform convergence for &
in the larger interval [0,1/2) (without using Theorem 11). As in the proof of
Theorem 11, take G the unit circle, A := {ny}, and §,,, = fi. Fix0< 0 < 1/2,
and put v = (1 —28)/2r, so 0 < o < 1/2. Define ay, = 77— (and a; = 0 for
j ¢ A), and consider the corresponding metric d(ty,t2) = o (¢ — t2) (which is
uniformly convergent), where

1/2 o 2 nut \ 1/2
ii Sim- ——
o(t) = [ Y _la;PlL—e' | =2 ( ,M>
JjEA k=1
oo 1/2
<9 Z kTt < 21704/2Ca/2‘t|a/2 val
- — Qo f2—26 - /'Y -1

with v:=2—-20 —ra=3/2-4§ > 1.
Estimations of m, and & as in the previous proof show that I(c) < oo; now

by Corollary 1.2 in [MPi, p. 10] for a.e. = the series > -, ],;’“1(_755) A"k converges
uniformly in A\. Note that the condition inf,, [ |f,|dx > 0 is not needed for
the convergence [MPi, p. 51]. O

REMARKS. (1) Since Theorem 8 and [As-4, Theorem 9] require an oper-
ator (also in their proofs), they cannot be used to prove Theorem 12 in the
case ng = k.

(2) Let ny = k. For {f,} independent identically distributed random
variables with mean 0 and finite variance, Theorem 10 (see also [As-4]) shows
that (7) is satisfied with 8 = 1/4, and Theorem 11 yields (7) with any 8 < 1/2.
The result of [AsN] (with p = 2 and T induced by the shift of the i.i.d.
sequence) cannot be applied in this case, since 8 < 1/p.

(3) We mention that for {f,,} i.i.d., Cuzick and Lai [CuLa, Theorem 2(iv)]
proved that if E(f;) = 0 and E(|f1|log™ |fi]) < oo, then we have uniform
convergence of > 7 Ji T))\k for a.e. x. Furthermore, if f; € L,,1 < p < 2,

then for any v > 1/p the series Y -, f’“( fe(@) \k converges uniformly for a.e. x.
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7. Convergence with random modulating sequences

In this section we show that random bounded sequences (realizations of cer-
tain independent uniformly bounded random variables) are almost surely uni-
versally good—they satisfy the assumptions of Section 3—and yield a.e. con-
vergence of the modulated one-sided ergodic Hilbert transform for all Dunford-
Schwartz operators and L,, functions.

THEOREM 13. Let {ny} be a strictly increasing sequence of positive in-
tegers with ng < ck” for some r > 1, let (Y,m) be a probability space, and
let {gn} C Loo(Y,m) be independent with [ g,dm =0 and sup,, ||gn| s < co.
Then for a.e. y € Y the sequence by := gx(y) has the property that for any

contraction T in Ly(Q, p) and f € Lo(p), the series > po b’“i:kf converges
p-a.e. for v > 3/4, with sup, ‘22:1 bkii:k'f’ € Lo(p). For vy > 1/2 the

series converges in Lo(p)-norm.

Proof. By Theorem 12 (applied to {g,}) we have that for a.e. y € Y, the
bounded sequence b, = gi(y) satisfies sup,, max|yj=1 | >, _; %/\”H < oo for
any 0 < 8 < 1/2. By a variant of Kronecker’s lemma, we obtain sup,, SUpP| =1
| L5 > o1 bkA™ | < oo for any 3 < 1/2. For v > 3/4, Proposition 2(i) now
yields that for 7 and f as in the assertion, the series > ;- Ik f

kY
a.e., with sup,,+ ‘22:1 bki:kf‘ € Lo(p). The norm convergence of the series

. converges

for v > 1/2 also follows from Proposition 2. O

REMARKS. (1) In fact, by Proposition 3, for v > 1/2 the series >, ; b’fjk
in Theorem 13 converges in operator norm, and this convergence is uniform
in all Ly-contractions.

(2) Theorem 7 has more general assumptions, but using Fubini’s theorem
(as in Corollary 5), the null set outside which we get the “good modulating
sequence” {gx(y)} depends on T and f. In Theorem 13 we obtain a universally
good modulating sequence, but the rate is not as good as in Theorem 7.

EXAMPLE 6. Let {¢,} be the Rademacher sequence on [0,1]. It corre-
sponds to i.i.d. with values 1 or —1 with probability 1/2. By Theorem 13, for
a.e. y € [0,1] the sequence of signs €, := ¢, (y) is universally good: for every
v > 3/4, any contraction T on Lo(p) and f € Lo(p), the series > po ek,;kf
converges a.e. This result is Remark 12 and (part of) Theorem 23 of [R]. A
concrete example of a universally good {e, } is provided by the Rudin-Shapiro

sequence.
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REMARKS. (1) Using different methods, Boukhari and Weber [BoWe] have
obtained that if { g, } are symmetric i.i.d. with second moment (not necessarily
bounded) and ny = k, also the a.e. convergence assertion of Theorem 13
holds for v > 1/2. This improves the result of Example 6. This improvement
is due to the use in [BoWe] of all the information (identical distribution,
symmetry), while our proof relies on the very general results of Theorem 1
(through Corollary 2); in Ly, the interval of § obtained in Theorem 1 for
a.e. convergence is [0, 3/2), while for norm convergence it is [0,3). On the
other hand, Theorem 13 applies in cases where the distributions are not the
same.

(2) In Example 6, for any given {ny} with ny < ck" (e.g., nx = k?),

Eankf

- for

a.e. random sequence of signs {¢, } yields a.e. convergence of > -
v > 3/4.

THEOREM 14. Let {ny} be a strictly increasing sequence of positive in-
tegers with ny < ck” for some r > 1, let (Y,m) be a probability space, and
let {gn} C Loo(Y,m) be independent with [ g,dm =0 and sup,, ||gn| s < c0.
Then for a.e. y € Y the sequence by := gr(y) has the following property:

For every Dunford-Schwartz operator T on L1 (), 1) of a probability space

and f € Ly(p), 1 < p < oo, the series > oo, bki:kf converges a.e. for v €

(max{2, %}, 1], with sup,,so | >h_4 b’ﬂl;:kf| € Ly(p) when p < 2.

Proof. It was noted in the proof of Theorem 13 that {bs} satisfies (3) for
any 3 < 1/2. Thus for f € L,(u) with 1 < p < 2 and v > Zt1 take

2p
8 < 1/2 such that v > 1— ijlﬂ, and apply Proposition 2(ii), which yields the
BT f b T f

a.e. convergence of » o 2o——L and also that sup,, | >l 2 ‘ € Ly.
For p > 2 we have f € Ly since p is a probability.

THEOREM 15.  Let (Y, m) be a probability space, and let {gn} C Loo(Y,m)
be independent with [ gndm = 0 and sup,, ||gn|l < 0o0. Then for a.e. y €Y
the sequence by, := gi(y) has the following properties:

(i) For every Dunford-Schwartz operator on L1(Q, u) and f € Li(u) we
have

1 n
(8) lim —» T f =0
u-almost everywhere, and in Li(p)-norm when p is finite.
(ii) For every Dunford-Schwartz operator T on L1(Q,u) of a probability

k
space and f € Ly(p), 1 < p < oo, the series Y po bk; L converges

« . , k
a.e. for v € (max{%,pg—';l},l}, with sup,,~o | Yor_; b’“g—vf| € Ly(p)
when p < 2.
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(iii) For every contraction T on L1 (2, p) with mean ergodic modulus and
f € Li(u), (8) holds i a.e. and in Li(u)-norm.

(iv) For every positively dominated contraction of L,(2,u), 1 < p < oo,
and f € Ly(p), (8) holds pu a.e. and in L,(p)-norm.

Proof. (i) Theorem 13 (for nr = k) and Kronecker’s lemma yield the
convergence for f € Lo(p). The a.e. convergence now follows from the Banach
principle (see proof of Proposition 2(iii)).

(ii) Apply Theorem 14 to ny = k. For f € L, this also yields a rate in (8).

(iii) and (iv) follow from (i), by [CLO], Theorems 2.3 and 2.4, respectively.

O

REMARKS. (1) The remark following Proposition 3 yields that for fixed
1 <p<2and~y > 1/p, the series > -, I”;C—fk in Theorem 15(ii) converges
in the Ly-operator norm, and this convergence is uniform in all Dunford-
Schwartz contractions.

(2) When the independent sequence {gx} is identically distributed, The-
orem 15(i) follows from the “return times theorem” (see [CLO] for the pas-
sage from T induced by a probability preserving transformation to a general
Dunford-Schwartz operator). If the i.i.d. {gx} are symmetric, one can also
use the result of [As-3].

(3) Theorem 15(i) can be proved independently of [MP1i], since the precise
rates of convergence are not needed: in the proof of Theorem 13, we can use
Theorem 10 and Corollary 6, instead of Theorem 12, to obtain the convergence

of the series > -, b’ckTA,kf for some v < 1.
(4) For the special case of {g,} the Rademacher functions, part (i) of
Theorem 15 is Corollary 24 of [R], and part (ii) is in Theorems 18 and 25 of

[R]. Theorem 14 provides a more general result.

Acknowledgements. The authors are grateful to Idris Assani for sending
them a preprint of [As-4], to Michael Braverman for pointing out reference
[BaE], and to the anonymous referee for valuable remarks and references.
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