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SHARP SUBELLIPTIC ESTIMATES FOR n− 1 FORMS ON
FINITE TYPE DOMAINS

LOP-HING HO

Abstract. Let x0 ∈ bΩ in a smooth domain Ω ⊂ Cn, which is not as-

sumed to be pseudoconvex. We define a finite type condition R (L, x0)
for a vector field L ∈ T 1,0 (bΩ), which equals the well-known type

c (L, x0) in certain important cases. We prove that if R (L, x0) = m,

then a subelliptic estimate of order 1/m holds at x0 for (p, n− 1) forms.

1. Introduction

Let Ω be a domain in Cn with smooth boundary. In conjunction with
proving local regularity results for ∂, Kohn and Nirenberg [20] introduced
subelliptic estimates (see Definition 2). There are many results on subelliptic
estimates in case Ω is pseudoconvex (see, for example, [18],[19],[3],[4],[5]). In
particular, Catlin ([3],[4],[5]) established necessary and sufficient conditions
for subelliptic estimates for (p, q) forms on smoothly bounded pseudoconvex
domains.

In this paper we consider domains that are not pseudoconvex. We suppose
that there is a (1, 0) vector field L such that the Levi form λL is nonnegative
near x0 and also that L satisfies a certain type condition (see Definition 1) at
a boundary point x0. We then establish a subelliptic estimate for (p, n− 1)
forms at x0.

Before we introduce this new type condition, we recall some of the known
results on subelliptic estimates, both for the case when Ω is pseudoconvex and
for the general case.

On pseudoconvex domains Kohn [19] used the vector field estimates of
Rothschild and Stein [21] to prove that if the maximum order of contact of
n−1 dimensional manifolds with the boundary at x0 (which is the type at x0)
ism, then there is a subelliptic estimate of order ε = 1/m at x0. By the work of
Greiner [13] this is best possible in C2. Later, Catlin [3] gave general necessary
condition for subellipticity for (p, q) forms in Cn. He showed that ε ≤ 1/m
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when the order of contact of a q−dimensional complex analytic variety with
the boundary is m. In a fundamental work [5] he proved that if a domain is of
finite type at x0 (in the sense of D’Angelo), then there is a subelliptic estimate
at x0. There are other proofs that establish Kohn’s subelliptic estimate in C2

and in convex domains. Catlin [6] proved this estimate as a corollary of the
construction of certain plurisubharmonic functions in pseudoconvex domains
of finite type in C2. Also, the construction of plurisubharmonic peak functions
of Fornaess and Sibony [12] lead to the same result in C2 and in convex
domains in Cn.

On non-pseudoconvex domains Hörmander [17] proved that if the Levi form
has n− q positive eigenvalues or q + 1 negative eigenvalues at x0, then there
is a subelliptic estimate of order ε = 1/2 at x0 for (p, q) forms. In the case
when q = n− 1, this implies that if the Levi-form has one positive eigenvalue,
then a subelliptic estimate of order 1/2 holds for (p, n− 1) forms. Subelliptic
estimates on non-pseudoconvex domains were studied by Derridj [10] and Ho
[14]. In [14] it was proved that if there is a vector field L of type (1, 0)
with non-negative Levi form and the type c (L, x0) equals m, then there is
a subelliptic estimate for (p, n− 1) forms. However, the value of ε obtained
there is very weak, namely ε = 1/2m. There are attempts to improve this
value ε to the expected value 1/m (see [15], [16]).

In this paper we define a new type R (L, x0) and prove that the expected
order of the subelliptic estimate ε = 1/m is achieved if R (L, x0) = m.

Definition 1. Let Ω = {z : r (z) < 0} be a smooth domain in Cn, x0 ∈
bΩ, and L ∈ T 1,0 (bΩ). We define

R (L, x0) = 2 + min
{
m | (Re(aL))m λL (x0) 6= 0

for some C∞ function a near x0

}
.

We will discuss the relation between R (L, x0) and the well-known vector
field type c (L, x0) in Section 3. Our main result is as follows.

Main Theorem. Let Ω = {z : r (z) < 0} be a smooth domain in Cn, and
let x0 ∈ bΩ. Assume that there exists a vector field L ∈ T 1,0 (bΩ) with

(1) λL = ∂∂r
(
L,L

)
≥ 0,

(2) R (L, x0) = m.
Then a subelliptic estimate of order ε = 1/m holds at x0 for (p, n− 1)

forms.

Remarks.

(1) We do not assume that Ω is pseudoconvex. When it is, our result for
(p, n− 1) forms is well-known. It is the same as a theorem in Kohn
[19] and is also contained in a result of Catlin for C2 [6].
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(2) The order of the subelliptic estimate ε = 1/m is sharp in all known
cases. Though a general necessary condition theorem relating the type
m of L (in the sense of either c (L, x0) or R (L, x0)) and the value of ε
in the subelliptic estimate has not been established, we know that the
subelliptic estimate is sharp in a great variety of non-pseudoconvex
domains (Ho [15]), and also in all pseudoconvex domains (Catlin [3]).

The proof of the Main Theorem follows the argument of Ho [16]. The key
ingredient is the construction of real functions µk so that for some constant
C and every k,

2kλ+X2µk ≥ C 2
2k
m+2 ,

where m+2 is the R (L, x0) type of L, X = Re(aL) for some smooth function a
near x0, and λ is the Levi form of L. The functions µk may be compared with
the plurisubharmonic function used by Catlin [6]. However, it is of interest
to note here that the construction of µk only makes use of the Levi form λ
and there is no explicit reference to the defining function r. This is in sharp
contrast with the proofs of Catlin [6] and Fornaess and Sibony [12].

2. Preliminaries

Let Ω be a smoothly bounded domain in Cn that is endowed with a
smoothly varying inner product 〈 , 〉x on T 1,0

x for x ∈ Ω, where T 1,0
x de-

notes the holomorphic vectors at x. This inner product extends to the space
of (p, q) forms at x. We define an inner product on (p, q) forms u and v by

(u, v) =
∫

Ω

〈u, v〉 dV

and set
‖u‖2 = (u, u) .

We will use |||u|||
2

ε
to denote the tangential Sobolev norm of u of order ε, and

write ∂
∗

for the L2 adjoint of ∂. The domain of ∂
∗

is defined as usual by

Dom(∂
∗
) =

{
u ∈ Lp,q (Ω) | there exists C > 0 with

∣∣(∂f, u)∣∣ ≤ C ‖f‖
for all f ∈ Dom(∂)

}
Definition 2. Let Ω be a domain in Cn. We say that a subelliptic esti-

mate holds for (p, q) forms at x0 ∈ bΩ if there is a neighborhood U of x0 and
there are constants ε > 0 and C > 0, such that

|||u|||
2

ε
≤ C

(∥∥∂u∥∥2
+
∥∥∥∂∗u∥∥∥2

+ ‖u‖2
)

for all smooth (p, q) forms u ∈ Dom(∂
∗
) with compact support in U .
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Set T 1,0 (bΩ) = T 1,0 ∩ T (bΩ), and let L1, L2, . . . , Ln be C∞ vector fields
that form a basis of T 1,0, with L1, . . . , Ln−1 ∈ T 1,0 (bΩ). We denote the “bad
direction” by T , where T = Ln − Ln. Let ω1, ω2, . . . , ωn be (1,0) forms dual
to L1, L2, . . . , Ln. For the sake of simplicity, we will prove the Main Theorem
for (0, n− 1) forms only, but the proof is clearly equally valid for (p, n− 1)
forms. We will further assume that a (0, n− 1) form u is of the form

u = uω1 ∧ ω2 ∧ · · · ∧ ωn−1.

(The use of u to denote both the form and its first coefficient will not lead to
any confusion.) We discard the other coefficients uI because these coefficients
all involve ωn and hence are zero on bΩ. Thus they satisfy

|||uI |||
2

1
≤ C

(∥∥∂u∥∥2
+
∥∥∥∂∗u∥∥∥2

+ ‖u‖2
)
.

It is easy to see that∥∥∂u∥∥2
+
∥∥∥∂∗u∥∥∥2

≈ ‖L1u‖2 + ‖L2u‖2 + · · ·+ ‖Ln−1u‖2 +
∥∥Lnu∥∥2

.

(The reader may refer to Folland and Kohn [11] for these facts.)
If φ is a C2 function on Ω, we define, for functions u, v ∈ C

(
Ω
)
,

(u, v)φ =
∫

Ω

uve−φ dV

and
‖u‖2φ =

∫
Ω

|u|2 e−φ dV.

3. Notions of vector field types

The following notion of type was introduced by Kohn ([18],[19]) to measure
the vanishing order of the Levi-form in the holomorphic and anti-holomorphic
directions that are tangential to the boundary.

Definition 3 (Kohn [18]). Let Ω be a domain in Cn, let p ∈ bΩ, and
let L ∈ T 1,0 (bΩ) be nonvanishing at p. We define typep L to be the smallest
integer k such that there is an iterated commutator

〈∂r, [. . . [[L1, L2] , L3] , . . . , Lk]〉 (p) 6= 0,

where each Li is either L or L, [ , ] is the Lie bracket and 〈 , 〉 is the con-
traction between co-tangent vectors and tangent vectors. If no such k exists,
then we set typep L =∞.

Another notion of type was introduced by Bloom [1].

Definition 4. With the same notations as in the preceding definition, we
define c (L, p) to be 2 plus the smallest order of a polynomial f in L and L
such that f

(
L,L

)
λL (p) 6= 0. If no such f exists, then we set c (L, p) =∞.
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In dimension n = 2 it is always true that typep L = c (L, p). For n ≥ 3
it was proved by D’Angelo [8] that the two types are equal if the domain is
pseudoconvex and one of the two values equals 4. D’Angelo also proved that
for larger values of N = typep L,

N ≤ c (L, p) ≤ max (N, 2N − 6) .

These partial results suggest that perhaps the two values are equal whenever
Ω is pseudoconvex. These two vector types were used and discussed by other
authors; see, for example, Bloom and Graham [2], Catlin [4], Sibony [22], and
Talhoui [23].

Kohn [19] proved that the type can also be characterized by the order of
contact of manifolds with the boundary:

Theorem 5. If Ω ⊂ Cn is pseudoconvex and p ∈ bΩ, then

min
L∈T 1,0(bΩ)

typep L = min
L∈T 1,0(bΩ)

c (L, p) = ∆n−1
reg (Ω, p) ,

where ∆n−1
reg (Ω, p) is the maximum order of contact of n − 1 dimensional

complex manifolds through p with the boundary.

D’Angelo[7] defined a type ∆ (M,p) which is the maximum order of contact
of complex analytic varieties with the boundary. It is this type value that
Catlin used to prove the necessary and sufficient condition for subelliptic
estimates on pseudoconvex domains.

We now discuss the relation between the types c (L, p) and R (L, p), defined
in Section 1. It is clear that if (Re(aL))m λL (p) 6= 0, then there is a polynomial
f of degree m such that f

(
L,L

)
λL (p) 6= 0. Hence

c (L, p) ≤ R (L, p) .

There are many cases in which we can prove the reverse inequality. In partic-
ular, this is true in the following two important cases.

Proposition 6. Let Ω be a smooth domain in Cn and p ∈ bΩ. Suppose
that

(a) Ω is pseudoconvex, and L ∈ T 1,0 (bΩ) minimizes c (L, p), or
(b) for some L ∈ T 1,0 (bΩ), {L,L, T} is closed under the Lie bracket.

Then
c (L, p) = R (L, p) .

Proof. (a) First we consider the case n = 2. If c (L, p) = m, then

(1) L1L2 . . . [Li, Li+1]Li+2 . . . Lm−2λL (p) = 0,

where Li equals L or L (see Kohn [19], Lemma 5.32 and Lemma 5.34). Now
there is a choice of Li such that L1L2 . . . Lm−2λ (p) 6= 0 and L1L2 . . . Ljλ (p) =
0 for all j ≤ m − 3. Let X = ReL and Y = ImL. We need to show that
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(aX + bY )m−2λ(p) 6= 0 for some real numbers a and b. This will imply that
(Re (αL))m−2

λ (p) 6= 0 for some complex number α. Otherwise we have(
am−2Xm−2 + am−3b

(
Xm−3Y +Xm−4Y X + · · ·+ Y Xm−3

)
+ · · ·+ bm−2Y m−2

)
λ(p) = 0

for all a and b, and hence

Xm−2λ (p) =
(
Xm−3Y +Xm−4Y X + · · ·+ Y Xm−3

)
λ (p)

= · · · = Y m−2λ (p) = 0.

We use (1) to conclude that the terms A1A2 . . . Am−2λ (p), where each Ai
equals X or Y , all vanish. But this contradicts the fact that, for some choice
of the Li, L1L2 . . . Lm−2λ (p) 6= 0.

Now suppose n > 2 and that L minimizes c (L, p). We need to show that

L1L2 . . . [Li, Li+1]Li+2 . . . Lm−2λL (p) = 0

for all choices of Li ∈ {L,L}. This will then imply the desired conclusion as
in the above case. If this is not true, then by Kohn’s definition of type we
have

min
L∈T 1,0(bΩ)

typep L < min
L∈(1)T 1,0(bΩ)

c (L, p) ,

which contradicts Theorem 5.
(b) The proof is the same as in the case n > 2 of (a) since (1) is true by

the assumption of the closedness of the Lie bracket. �

Example. The domain defined by r = 2 Re z3−|z1 − z1z2|2 + |z2|10 is an
example that does not satisfy assumption (b) in Proposition 6 for the following
holomorphic vector field L at the origin:

L = z1
∂

∂z1
+

∂

∂z2
+
(
− |z1|2 z2 + z2

1 |z2|2 − 5z4
2z

5
2

) ∂

∂z3

The Levi-form of L is

λL = 2 |z1|2 − |z1|2 |z2|2 − z2
1z2 − z2

1z2 + 25 |z2|8 ≥ 0

near the origin. But[
L,L

]
= −z1

∂

∂z1
+ z1

∂

∂z1
+ α

∂

∂z3
+ β

∂

∂z3

is not a linear combination of L, L and T = L3−L3. Though the hypotheses
of Proposition 6 are not satisfied here, the conclusion c(L, p) = R(L, p) still
holds: in fact, we have c(L, p) = R (L, p) = 10 in this case. We have not yet
found an example in which both λL ≥ 0 and c(L, p) < R (L, p) hold.

For small values of R (L, p), we can give the following estimates for c (L, p):

Proposition 7. Let Ω be a domain in Cn, p ∈ bΩ, and L ∈ T 1,0 (bΩ).



SHARP SUBELLIPTIC ESTIMATES FOR n− 1 FORMS 1407

(1) If R (L, p) = 4, then c(L, p) = 4.
(2) If R (L, p) = 6, then 5 ≤ c(L, p) ≤ 6.
(3) If R (L, p) = 8, then 6 ≤ c(L, p) ≤ 8.
(4) If R (L, p) = 10, then 7 ≤ c(L, p) ≤ 10.

Proof. We first note that R (L, p) is always even, since we are considering
the derivatives of a real vector field on a non-negative function (see Kohn [19],
Lemma 5.28). It is not clear whether the type c (L, p) is always even. Also,
note that

R (L, p) = 2 + min
{
m | (aX + bY ))m λL (x0) 6= 0

for some C∞ functions a, b near x0

}
.

We now move on to the proof of the four statements. The first statement
is trivial since R (L, p) = 4 implies Xλ = Y λ = 0, which in turn implies
Lλ = Lλ = 0, from which c (L, p) = 4 follows. (All derivatives are evaluated
at p.) We outline the proof of the fourth statement here; the proofs of the
second and third statements are similar.

If R (L, p) = 10, then setting X = ReL and Y = ImL we have

(aX + bY )4
λ = (aX + bY )5

λ = (aX + bY )6
λ = (aX + bY )7

λ = 0

for all smooth functions a and b defined near the point p. We will show that
we get the following linear system, which implies that all four terms are 0:

XXXY λ+ XXYXλ+ XYXXλ+ Y XXXλ = 0
4XXXY λ+ 3XXYXλ+ 2XYXXλ+ Y XXXλ = 0

10XXXY λ+ 6XXYXλ+ 3XYXXλ+ Y XXXλ = 0
20XXXY λ+ 10XXYXλ+ 4XYXXλ+ Y XXXλ = 0

Consider the equation (aX + bY )4
λ = 0 for constants a and b. The left

hand side of the first equation in the above system is just the coefficient of
a3b in (aX + bY )4

λ, and we conclude that it equals to 0 as in the proof of
Proposition 6.

Next we consider the equation (aX + bY )5
λ = 0. This time we need to

consider a and b as smooth functions. The expansion of (aX + bY )5
λ will

involve X and Y derivatives of the functions a and b. We get

(aX + bY )5
λ = a5X5λ+ · · ·+ b5Y 5λ

+ a4(Xb)(4XXXY λ+ 3XXYXλ+ 2XYXXλ+ Y XXXλ)
+ · · · = 0

where · · · stands for terms involving the second, third, fourth, and fifth X
and Y derivatives of the functions a and b. Since a and b are allowed to be any
smooth functions, (Xb) (p) is just another variable. Hence we conclude that
the coefficient of a4 (Xb) must be equal to 0. This gives the second equation
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in the above system. In a similar manner, the third equation is obtained by
considering the coefficient of a5(X2b) in (aX + bY )6

λ = 0, and the fourth
equation comes from the coefficient of a6(X3b) in (aX + bY )7

λ = 0.
Next we need to set up six equations for the six terms XXY Y λ, XYXY λ,

XY Y Xλ, Y XXY λ, Y XY Xλ, and Y Y XXλ. Here the computations and
the equations involved are more complicated. By considering the coefficients
of a2b2 in (aX + bY )4λ = 0, of a3b (Xb) in (aX + bY )5

λ = 0, of a2b2 (Xa)
in (aX + bY )5

λ = 0, of a4b
(
X2b

)
in (aX + bY )6

λ = 0, of a2b2 (Xa) (Xb) in
(aX + bY )6

λ = 0, and of a5b
(
X3b

)
in (aX + bY )7

λ = 0, we get the following
six equations:

XXY Y λ+ XYXY λ+ XY Y Xλ+ Y XXY λ

+ Y XY Xλ+ Y Y XXλ = 0
7XXY Y λ+ 6XYXY λ+ 5XY Y Xλ+ 5Y XXY λ

+ 4Y XY Xλ+ 3Y Y XXλ = 0
5XXY Y λ+ 2XYXY λ+ 5XY Y Xλ+ 5Y XXY λ

+ 6Y XY Xλ+ 7Y Y XXλ = 0
16XXY Y λ+ 13XYXY λ+ 9XY Y Xλ+ 11Y XXY λ

+ 7Y XY Xλ+ 4Y Y XXλ = 0
43XXY Y λ+ 44XYXY λ+ 41XY Y Xλ+ 43Y XXY λ

+ 38Y XY Xλ+ 31Y Y XXλ = 0
30XXY Y λ+ 24XYXY λ+ 14XY Y Xλ+ 21Y XXY λ

+ 11Y XY Xλ+ 5Y Y XXλ = 0

This clearly implies that

XXY Y λ = XYXY λ = XY Y Xλ = Y XXY λ = Y XY Xλ = Y Y XXλ = 0.

Finally, in a similar way as in the proof of the first four equations above, we
see that

XY Y Y λ = Y XY Xλ = Y Y XY λ = Y Y Y Xλ = 0.

Hence c (L, p) ≥ 7. �

4. Lemmas

We need the following lemmas for the proof of the Main Theorem. For
the sake of convenience we will assume that x0 = 0. The constants C in the
following proofs are not necessarily the same at each occurrence.

Lemma 8. Let Ω be a domain in Cn with smooth boundary, and let L ∈
T 1,0 (bΩ) with λ = ∂∂r(L,L) ≥ 0. Then, given any ε > 0, there exists a
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neighborhood U of the origin such that for any function u ∈ C∞0
(
U ∩ Ω

)
we

have

(2) ‖Lu‖2 ≥
∥∥Lu∥∥2

+
∫
bΩ

λ |u|2 dS− ε

(
n−1∑
i=1

‖Liu‖2 +
∥∥Lnu∥∥2

)
−O

(
‖u‖2

)
The proof is standard and can be found in Folland and Kohn [11] or Ho [14].

Lemma 9. Let Ω be a domain in Cn with smooth boundary, let X be a
real tangential vector field defined in Ω, and let φ ∈ C2(Ω). Then, given any
ε > 0, there exists a neighborhood U of the origin such that for all functions
u ∈ C∞0

(
U ∩ Ω

)
we have

(3)
∫

Ω

(
X2φ

)
|u|2 e−φ dV ≤ 4 ‖(Xφ)u‖2φ + 2 ‖Xu‖2φ + C ‖u‖2φ .

Furthermore, assume ψ ∈ C2
(
Ω
)

is a bounded function and M is a constant
so that M ≥ 4eψ. Define φ = 1

M eψ and X = Re (aL) for some smooth
function a. Then we have the following estimate:

(4)
∫

Ω

(
X2ψ

)
|u|2 e−(φ−ψ) dV +

∫
bΩ

λ |u|2 dS

≤ C
(
‖Lu‖2 + ‖u‖2

)
+ ε

(
n−1∑
i=1

‖Liu‖2 +
∥∥Lnu∥∥2

)
.

Proof. Letting g denote a smooth function, we have((
X2φ

)
u, u

)
φ

=
(
X ((Xφ)u) , e−φu

)
−
(
(Xφ) (Xu), e−φu

)
= −

(
(Xφ)u,X

(
e−φu

))
+
(
g (Xφ)u, e−φu

)
−
(
(Xφ) (Xu), e−φu

)
=
(
(Xφ)u, e−φ (Xφ)u

)
−
(
(Xφ)u, e−φXu

)
+
(
g (Xφ)u, e−φu

)
−
(
(Xφ) (Xu), e−φu

)
≤ 4 ‖(Xφ)u‖2φ + 2 ‖Xu‖2φ + C ‖u‖2φ .

To prove the second statement, we note that if φ = 1
M eψ and M ≥ 4eψ,

then

(5) X2φ− 4 |Xφ|2 ≥ 1
M
eψX2ψ.
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Also, using Lemma 8 to estimate
∥∥Lu∥∥2

we get

‖Xu‖2φ ≤ C
(
‖Lu‖2 +

∥∥Lu∥∥2
)

(6)

≤ C
(
‖Lu‖2 + ‖u‖2

)
+ ε

(
n−1∑
i=1

‖Liu‖2 +
∥∥Lnu∥∥2

)
.

If we put (5) and (6) into (3) and add the resulting inequality to inequality
(2), we get the desired inequality (4). �

Lemma 10. If there is a neighborhood U of the origin such that for all
k ≥ 1 we can find a function µk ∈ C2

(
U ∩ Ω

)
that is uniformly bounded in

k, and a constant C > 0 independent of k such that

2kλ+X2µk ≥ C 2
2k
N

in U ∩ Ω, then there is a subelliptic estimate of order 1
N for (p, n− 1) forms

at the origin.

The proof of this lemma is very similar to the proof of Theorem 1 in Ho [16];
the only difference is that we need to use inequality (4) of Lemma 9 instead
of inequality (8) in [16]. Hence we omit the proof here.

For the construction of µk we also need the following technical lemmas.

Lemma 11. Given any ε > 0 and K large enough we can find a non-
negative function µ ∈ C∞0 [0,∞) that satisfies the following properties, where
µ depends on K, but the constants C and M are independent of K.

(1) µ(x) = x for x ≤ 40.
(2) µ is supported in [0,MK].
(3) There exists x0 independent of K such that µ′ (x) = 0 on

[
x0,

1
100K

]
(4) µ′ (x) ≥ 0 if x ≤ 1

100K.
(5) xµ′′ (x) ≥ −ε if x ≤ 1

100K.
(6) |µ′ (x)| ≤ C

K if x ≥ 1
100K.

(7) |µ′′ (x)| ≤ C
K2 if x ≥ 1

100K.

Proof. By Lemma 3 of Ho [16] we can find φ ∈ C∞0
(
R+
)

such that
(1) φ (x) = x for 0 ≤ x ≤ 40;
(2) φ′ (x) ≥ −ε for all x ≥ 0;
(3) xφ′′ (x) ≥ −ε for all x ≥ 0.

In fact, the proof given in [16] shows that φ′ is a decreasing function on
[0, x0], where x0 > 0 is some number that φ′ (x0) = 0. By slightly modifying
this proof, we can assume that φ(n) (x0) = 0 for all n ≥ 1. We define the
function µ(x) by

(1) µ (x) = φ (x) for x ≤ x0;
(2) µ (x) = φ (x0) for x0 ≤ x ≤ 1

100K;
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(3) µ (x) = φ
(
x− 1

100K

K + x0

)
for x ≥ 1

100K.

If φ is supported in [0, A], then µ is supported in
[
0,K

(
A− x0 + 1

100

)]
.

We now verify that the properties stated in the lemma are all satisfied. In
fact, properties (1)–(5) are obvious from the construction, and (6) and (7)
follow easily from the fact that when x ≥ 1

100K,

|µ′ (x)| = 1
K

∣∣∣∣φ′(x− 1
100K

K
+ x0

)∣∣∣∣ ≤ C

K

and

|µ′′ (x)| = 1
K2

∣∣∣∣φ′′(x− 1
100K

K
+ x0

)∣∣∣∣ ≤ C

K2
. �

Lemma 12. There exists a function χ ∈ C∞
(
R+
)

which satisfies the
following properties:

(1) χ (x) = 0 when x ≤ 20K and χ (x) = 1 when x ≥ 40K.
(2) χ′ ≥ 0.
(3) |χ′| ≤ 1

2K .
(4) |χ′′| ≤ 1

10K2 .

Proof. First, we can find a function θ (t) ∈ C∞0 (R) with the following
properties:

(1) θ (t) is supported in [20, 40].
(2) θ (t) ≥ 0 in [20, 30].
(3) θ (t) ≤ 1

10 .
(4)

∫ 25

20
θ (t) dt ≥ 1

10 and
∫ 30

20
θ (t) dt ≤ 1

2 .
(5) θ (t− 30) = −θ (30− t).

Next, we set θ1 (t) =
∫ t

0
θ (y) dy. Then it is clear that θ1 (t) has the following

properties:
(1) θ1 (t) = 0 for x ≤ 20.
(2) 0 ≤ θ1 (t) ≤ 1

2 and θ1 is supported in [20, 40].
(3)

∫ 40

0
θ1 (t) dt ≥ 1.

We may assume that
∫ 40

0
θ1 (t) dt = 1.

Finally, we set ξ (x) =
∫ x

0
θ1 (t) dt, and define χ (x) = ξ

(
x
K

)
, so that

χ′ (x) = 1
K ξ
′ ( x
K

)
. It is clear that χ satisfies the required properties. �

5. Proof of the Main Theorem

In view of Lemma 10 the following proposition implies the Main Theorem.

Proposition 13. Assume that there is a neighborhood U of the origin, a
non-negative function f ∈ C∞

(
U ∩ Ω

)
, and a C∞ real vector field X in U∩Ω
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such that Xmf (0) 6= 0 and Xif (0) = 0 for all i ≤ m − 1. Then there exists
a neighborhood V ⊂ U of 0 and a function µ̃ ∈ C∞

(
V ∩ Ω

)
that satisfies

2kf +X2µ̃ ≥ C2
2k
m+2

in V ∩ Ω, where the constant C is independent of k.

We define

µ̃ =
m∑
i=1

ciµi

(
2

2k
m+2

∣∣∣∣Xi−1f

Xif

∣∣∣∣2
)
m−1∏
j=i

χj

(
2

2k
m+2

∣∣∣∣ Xjf

Xj+1f

∣∣∣∣2
)

=
m∑
i=1

ciφi,

where we let Xmf = 1 in the above definition of the functions µm and χm−1,
the constants ci will be chosen later, and the functions µi and χj are defined
as follows:

(1) µi (x) = µ
(

x
Ki−1

)
for 1 ≤ i ≤ m;

(2) χj (x) = χ
(

x
Kj−1

)
for 1 ≤ j ≤ m− 1.

From the properties of the functions µ and χ given in Lemmas 11 and 12
it is clear that for i ≥ 1 we have:

(m1) µ′i (x) = 1
Ki−1 for x ≤ 40Ki−1.

(m2) µi is supported in
[
0,MKi

]
, where M is independent of K.

(m3) µ′i (x) ≥ 0 if x ≤ 1
100K

i.
(m4) xµ′′i (x) ≥ −ε

Ki−1 if x ≤ 1
100K

i.
(m5) |µ′i (x)| ≤ C

Ki for x ≥ 1
100K

i.
(m6) |µ′′i (x)| ≤ C

K2i for x ≥ 1
100K

i.

Also for j ≥ 1 we have:

(c1) χj = 0 for x ≤ 20Kj .
(c2) χj = 1 for x ≥ 40Kj .
(c3) χ′j ≥ 0 and is supported in between 20Kj ≤ x ≤ 40Kj .
(c4)

∣∣χ′j∣∣ ≤ 1
2Kj .

(c5)
∣∣χ′′j ∣∣ ≤ 1

10K2j .

The number K here will be specified at the end of our estimates. In the
following argument C is independent of K.

The above function µ̃ is well-defined in a small neighborhood V of the
origin since Xmf (x) 6= 0 if V is small enough. Hence if Xif = 0 in some

term µi

(
2

2k
m+2

∣∣∣Xi−1f
Xif

∣∣∣2), then there will be a term equal to 0 in the product∏m−1
j=i χj

(
2

2k
m+2

∣∣∣ Xjf
Xj+1f

∣∣∣2).

To show why this function µ̃ gives the desired result, we first prove two
lemmas.
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Lemma 14. With the same notations as in Proposition 13, given any ε > 0
there exists a neighborhood V of the origin so that when K is large enough
the following inequalities are satisfied in V ∩ Ω:

(1) X2φm ≥ C
Km−1 2

2k
m+2 if

∣∣Xm−1f
∣∣2 ≤ 40 · 2−

2k
m+2 ·Km−1;

(2)
∣∣X2φm

∣∣ ≤ ε
Km−1 2

2k
m+2 if

∣∣Xm−1f
∣∣2 ≥ 40 · 2−

2k
m+2 ·Km−1.

Proof. We have

X2φm = X2µm

(
2

2k
m+2

∣∣Xm−1f
∣∣2)

= 2
2k
m+2µ′m

(
2

2k
m+2

∣∣Xm−1f
∣∣2)(2 (Xmf)2 + 2Xm+1fXm−1f

)
+ 2

4k
m+2µ′′m

(
2

2k
m+2

∣∣Xm−1f
∣∣2) (2XmfXm−1f

)2
.

It is clear that if the neighborhood V is small enough, then

(Xmf)2 +Xm+1fXm−1f ≥ C > 0.

Hence when
∣∣Xm−1f

∣∣2 ≤ 40 · 2−
2k
m+2 · Km−1, then from property (m1) and

the fact that µ′′m = 0 we get X2φm ≥ C
Km−1 2

2k
m+2 .

If
∣∣Xm−1f

∣∣2 ≥ 40 · 2−
2k
m+2 ·Km−1, then we distinguish two cases:

(1) When 2
2k
m+2

∣∣Xm−1f
∣∣2 ≤ 1

100K
m, we have by (m4)

2
2k
m+2µ′′m

(
2

2k
m+2

∣∣Xm−1f
∣∣2) (Xm−1f

)2 ≥ −ε
Km−1

and µ′m ≥ 0 by (m3). Hence X2φm ≥ − εC
Km−1 2

2k
m+2 .

(2) When 1
100K

m ≤ 2
2k
m+2

∣∣Xm−1f
∣∣2 ≤ MKm, we have by (m5) and

(m6), |µ′m| ≤ C
Km and |µ′′m| ≤ C

K2m . Hence∣∣X2φm
∣∣ ≤ C

Km
2

2k
m+2 +MKm C

K2m
2

2k
m+2 .

This proves (2) when K is large. �

Lemma 15. With the same notations as in Proposition 13, given any ε > 0
there exists a neighborhood V of the origin so that when K is large enough
the following inequalities are satisfied in V ∩ Ω:

(1) X2φm−1 ≥ C
Km−2 2

2k
m+2 if

∣∣∣Xm−2f
Xm−1f

∣∣∣2 ≤ 40 · 2−
2k
m+2 ·Km−2 and∣∣Xm−1f

∣∣2 ≥ 40 · 2−
2k
m+2 ·Km−1.

(2)
∣∣X2φm−1

∣∣ ≤ ε
Km−2 2

2k
m+2 if

∣∣∣Xm−2f
Xm−1f

∣∣∣2 ≥ 40 · 2−
2k
m+2 ·Km−2.
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The complete proof of this lemma follows from the proof of the proposition,
so we will only give an outline. Since

φm−1 = µm−1

(
2

2k
m+2

∣∣∣∣Xm−2f

Xm−1f

∣∣∣∣2
)
χm−1

(
2

2k
m+2

∣∣Xm−1f
∣∣2) ,

when
∣∣Xm−1f

∣∣2 ≥ 40 ·2−
2k
m+2 ·Km−1, we have χm−1 = 1 from (c2), and hence

φm−1 = µm−1 there. The rest of the proof is similar to the proof of the above
lemma. Of course we need to estimate the derivatives of µm−1 and χm−1.
This will be carried out later.

From these two lemmas we see that the only “bad part” in X2
(∑m

j=i cjφj

)
is the part where Xi−1f is ’large’. When i = 1 this part is covered by the
function f itself. �

Proof of Proposition. Let us consider the first term

φ1 (x) = µ1

(
2

2k
m+2

∣∣∣∣ fXf
∣∣∣∣2
)
m−1∏
j=1

χj

(
2

2k
m+2

∣∣∣∣ Xjf

Xj+1f

∣∣∣∣2
)
.

We need to compute X2φ1. We write

X2φ1 = 2
2k
m+2 (I + II + III + IV + V + VI ) ,

where

I = µ′1

(
2

2k
m+2

∣∣∣∣ fXf
∣∣∣∣2
)(

2− 6fX2f

(Xf)2 +
6f2

(
X2f

)2
(Xf)4 − 2f2X3f

(Xf)3

)

×
m−1∏
j=1

χj

(
2

2k
m+2

∣∣∣∣ Xjf

Xj+1f

∣∣∣∣2
)
,

II = 2
2k
m+2µ′′1

(
2

2k
m+2

∣∣∣∣ fXf
∣∣∣∣2
)(

2f
Xf
− 2f2X2f

(Xf)3

)2 m−1∏
j=1

χj

(
2

2k
m+2

∣∣∣∣ Xjf

Xj+1f

∣∣∣∣2
)
,

III =
m−1∑
j=1

χ′j

(
2

2k
m+2

∣∣∣∣ Xjf

Xj+1f

∣∣∣∣2
)(

2− 6XjfXj+2f

(Xj+1f)2 +
6
(
Xjf

)2 (
Xj+2f

)2
(Xj+1f)4

−
2
(
Xjf

)2
Xj+3f

(Xj+1f)3

)
µ1

(
2

2k
m+2

∣∣∣∣ fXf
∣∣∣∣2
)
m−1∏
l=1
l 6=j

χl

(
2

2k
m+2

∣∣∣∣ X lf

X l+1f

∣∣∣∣2
)
,

IV = 2
2k
m+2χ′′j

(
2

2k
m+2

∣∣∣∣ fXf
∣∣∣∣2
)(

2Xjf

Xj+1f
−

2
(
Xjf

)2
Xj+2f

(Xj+1f)3

)2



SHARP SUBELLIPTIC ESTIMATES FOR n− 1 FORMS 1415

× µ1

(
2

2k
m+2

∣∣∣∣ fXf
∣∣∣∣2
)
m−1∏
l=1
l 6=j

χl

(
2

2k
m+2

∣∣∣∣ X lf

X l+1f

∣∣∣∣2
)
,

V = 2
2k
m+2 +1

m∑
j=1

µ′1

(
2

2k
m+2

∣∣∣∣ fXf
∣∣∣∣2
)
χ′j

(
2

2k
m+2

∣∣∣∣ Xjf

Xj+1f

∣∣∣∣2
)(

2f
Xf
− 2f2X2f

(Xf)3

)

×

(
2Xjf

Xj+1f
−

2
(
Xjf

)2
Xj+2f

(Xj+1f)3

)
m−1∏
l=1
l 6=j

χl

(
2

2k
m+2

∣∣∣∣ X lf

X l+1f

∣∣∣∣2
)
,

VI = 2
2k
m+2 +1

m−1∑
j,l=1
j<l

χ′j

(
2

2k
m+2

∣∣∣∣ Xjf

Xj+1f

∣∣∣∣2
)
χ′l

(
2

2k
m+2

∣∣∣∣ X lf

X l+1f

∣∣∣∣2
)

×

(
2Xjf

Xj+1f
−

2
(
Xjf

)2
Xj+2f

(Xj+1f)3

)(
2X lf

X l+1f
−

2
(
X lf

)2
X l+2f

(X l+1f)3

)

× µ1

(
2

2k
m+2

∣∣∣∣ fXf
∣∣∣∣2
)
m−1∏
p=1
p6=l,j

χp

(
2

2k
m+2

∣∣∣∣ Xpf

Xp+1f

∣∣∣∣2
)
.

We will estimate I –VI in different regions of
∣∣∣ Xif
Xi+1f

∣∣∣. First we note that

by (c1) we have, in the support of χ1, 2
2k
m+2

∣∣∣ XfX2f

∣∣∣2 ≥ 20K, i.e.,
∣∣∣X2f
Xf

∣∣∣ ≤
1√

20K1/2 2
k

m+2 . In general, in the support of χj we have
∣∣∣Xj+1f
Xjf

∣∣∣ ≤ 1√
20Kj/2 2

k
m+2 .

Case 1.
∣∣∣ fXf ∣∣∣2 ≤ 40·2

−2k
m+2 and 2

2k
m+2

∣∣∣ Xif
Xi+1f

∣∣∣2 ≥ 40Ki for all 1 ≤ i ≤ m−1.
In this case µ′1 = 1, µ′′1 = 0, and we have χj = 1 for all j and χ′j , χ

′′
j = 0

for 1 ≤ j ≤ m− 1. Hence the terms II , III , IV , V and VI are all 0, and we
only need to estimate I. We have

|I| ≥ 2− 6
(√

40 · 2
−k
m+2

)( 1√
20K1/2

2
k

m+2

)
− 6

(
40 · 2

−2k
m+2

)( 1
20K

2
2k
m+2

)
− 2

(
40 · 2

−2k
m+2

)( 1√
20K1/2

2
k

m+2

)(
1√

20K
2

k
m+2

)
= 2− 6

√
2

K1/2
− 12
K
− 4
K3/2

.

Hence, when K is large enough, we get

X2φ1 ≥ 2
2k
m+2 .

Case 2.
∣∣∣ fXf ∣∣∣2 ≤ 40 · 2

−2k
m+2 and 2

2k
m+2

∣∣∣ Xif
Xi+1f

∣∣∣ arbitrary.
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We want to find a lower bound for X2φ1 in this and the following cases.
As in Case 1, we have, for K large enough, I ≥ 0 and II = 0.

We use (c4) and (c5), i.e.,
∣∣χ′j∣∣ ≤ 1

2Kj ,
∣∣χ′′j ∣∣ ≤ 1

10K2j , and the fact that
χ′j (x) is supported in

[
20Kj , 40Kj

]
to obtain, for all j ≥ 1,

(7)
√

20Kj/2 ≤ 2
k

m+2

∣∣∣∣ Xjf

Xj+1f

∣∣∣∣ ≤ √40Kj/2.

Also note that |µ1| ≤ C.
Estimate for III. Using (c4) and (7), we get

|III | ≤
∑
j

C · 1
2Kj

(
2 + 6

√
40Kj/22

−k
m+2

1√
20K(j+1)/2

2
k

m+2

+ 6 · 40Kj2
−2k
m+2

1
20Kj+1

2
2k
m+2

+ 2 · 40Kj2
−2k
m+2

1√
20K(j+1)/2

2
k

m+2
1√

20K(j+2)/2
2

k
m+2

)

≤
∑
j

C · 1
2Kj

(
2 +

6
√

2
K1/2

+
12
K

+
4

K3/2

)
.

Estimate for IV. Using (c5) and (7), we get

|IV | ≤
∑
j

C · 2
2k
m+2

1
10K2j

· 2

(
4 · 40Kj2

−2k
m+2

+ 4 ·
(

40Kj2
−2k
m+2

1√
20K(j+1)/2

2
k

m+2

)2
)

≤
∑
j

C
1

5Kj

(
160 +

320
K

)
.

Estimate for V. Using (m1), (c4), and (7), we get

|V | ≤
∑
j

C · 2
2k
m+2

2
2Kj

(
2
√

402
−k
m+2 + 2 · 40 · 2

−2k
m+2

1√
20K1/2

2
k

m+2

)

×
(

2
√

40Kj/22
−k
m+2 + 2 · 40Kj2

−2k
m+2

1√
20K(j+1)/2

2
k

m+2

)
≤
∑
j

C

Kj

(
2
√

40 +
4
√

20
K1/2

)(
2
√

40Kj/2 + 4
√

20K(j−1)/2
)

=
∑
j

C

Kj/2

(
2
√

40 +
4
√

20
K1/2

)2

.
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Estimate for VI. Using (c4) and (7), we get

|VI | ≤
∑
j,l

C · 1
2Kj

1
2Kl

(
2
√

40Kj/2 + 4
√

20K(j−1)/2
)

×
(

2
√

40Kl/2 + 4
√

20K(l−1)/2
)

≤
∑
j,l

C · 1
K(j+l)/2

(
2
√

40 +
4
√

20
K1/2

)2

.

Combining these estimates, it is easily seen that if K is large enough, we
have

X2φ1 ≥ −
(
C ·K−1/2

)
2

2k
m+2 .

Case 3. 40 · 2
−2k
m+2 ≤

∣∣∣ fXf ∣∣∣2 ≤ x02
−2k
m+2 ≤ 1

100K · 2
−2k
m+2 .

We first note that, in this and all subsequent cases, the estimation of the
terms III , IV and VI is the same as in Case 2, since the terms do not involve
f
Xf . Hence we only need to consider the terms I , II , and V .

Estimate for I. By (m3), we have µ′1 ≥ 0 in this part, and hence

I ≥ µ′1

(
2− 6 · 1

10
K1/2

(
1√

20K1/2

)
− 6

(
1

100
K

)(
1

20K

)

− 2
(

1
100

K

)(
1√

20K1/2

)(
1√

20K

))
≥ 0.

Estimate for II. If µ′′1 ≥ 0, then II ≥ 0, for otherwise using (m4) and (7)
we get

|II | ≤ ε

(
2−

2f
(
X2f

)
(Xf)2

)2

≤ 8ε
(

1 +
1

100
K

1
20K

)
≤ 9ε.

Estimate for V. Using |µ′1| ≤ C and (c4) we get

|V | ≤
∑
j

2 · 2
2k
m+2 · C · 1

2Kj

(
√
x02

−k
m+1 + x02

−2k
m+1

1√
20K1/2

2
k

m+2

)

×
(

2
√

40Kj/22
−k
m+2 + 2 · 40Kj2

−2k
m+2

1√
20K(j+1)/2

2
k

m+2

)
≤
∑
j

C

Kj/2

(
√
x0 +

x0√
20K1/2

)(
2
√

40 +
4
√

20
K1/2

)
.

Combining these estimates we get

X2φ1 ≥ −
(

9ε+ CK−1/2
)

2
2k
m+2 ,
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where ε > 0 is independent of K.

Case 4. x02
−2k
m+2 ≤

∣∣∣ fXf ∣∣∣2 ≤ 1
100K · 2

−2k
m+2 .

In this part µ1 = C. Hence µ′1 = µ′′1 = 0 and I = II = III = 0.

Case 5. 1
100K · 2

−2k
m+2 ≤

∣∣∣ fXf ∣∣∣2 ≤ MK · 2
−2k
m+2 . (This is the last case since

µ1 = 0 when
∣∣∣ fXf ∣∣∣2 ≥MK · 2

−2k
m+2 .)

Estimate for I. Using (m5) we get

|I | ≤ C

K

(
2 + 6

√
MK2

−k
m+2

1√
20K1/2

2
k

m+2 + 6MK2
−2k
m+2

1
20K

2
2k
m+2

+ 2MK2
−2k
m+2

1√
20K1/2

2
k

m+2
1√

20K
2

k
m+2

)

≤ C

K

(
2 +

6
√
M√
20

+
3M
10

+
M

10K1/2

)
.

Estimate for II. Using (m6) we get

|II | ≤ 2
2k
m+2

C

K2

(
8MK · 2

−2k
m+2 + 8M2K22

−4k
m+2

1
20K

2
2k
m+2

)
≤ C

K

(
8M +

2
5
M2

)
.

Estimate for V. By (m5) we have

|V | ≤
∑
j

2 · 2
2k
m+2

C

K

1
2Kj

(√
MK2

−k
m+1 +MK2

−2k
m+1

1√
20K1/2

2
k

m+2

)

×
(

2
√

40Kj/22
−k
m+2 + 2 · 40Kj2

−2k
m+2

1√
20K(j+1)/2

2
k

m+2

)
≤
∑
j

C

K(j+1)/2

(√
M +

M√
20

)(
2
√

40 +
4
√

20
K1/2

)
,

and we get again
∣∣X2φ1

∣∣ ≤ C ·K−1/22
2k
m+2 .

Combining Cases 2–5, we conclude that in each of these cases

X2φ1 ≥ −C(ε+K−1/2)2
2k
m+2 .

Performing the same computations for X2φ1 it is not hard to see that for
any φi, i ≥ 1, we have:

(1) If
∣∣∣Xi−1f
Xif

∣∣∣2 ≤ 40Ki−12
−2k
m+2 and

∣∣∣Xj−1f
Xjf

∣∣∣2 ≥ 40Kj−1 for i + 1 ≤ j ≤

m− 1, then X2φi ≥ 1
Ki−1 2

2k
m+2 if K is large enough.
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(2) In all other cases, X2φi ≥ −C(ε+K−1/2)
Ki−1 2

2k
m+2 .

We set ci = Ki−1. We now choose ε > 0 small enough and K > 0 large
enough that for all i we have ciX2φi ≥ −δ2

2k
m+2 , where δ is as small as we

please. We then have:

(i) If 2
2k
m+2

∣∣Xm−1f
∣∣2 ≤ 40Km−1, then µm = 1, and cmX

2φm ≥ 2
2k
m+2 .

From (1) and (2) above, we have
m−1∑
i=1

ciX
2φi ≥ − (m− 1) δ2

2k
m+2 ,

and it is clear that X2µ̃ ≥ 1
22

2k
m+2 .

(ii) If (i) is not satisfied, then 2
2k
m+2

∣∣Xm−1f
∣∣2 ≥ 40Km−1. If in addition

2
2k
m+2

∣∣∣Xm−2f
Xm−1f

∣∣∣2 ≤ 40Km−2, then as in (i) we have X2µ̃ ≥ 1
22

2k
m+2 .

(ii) Repeating this argument shows that if

2
2k
m+2

∣∣Xm−1f
∣∣2 ≥ 40Km−1, 2

2k
m+2

∣∣∣∣Xm−2f

Xm−1f

∣∣∣∣2 ≥ 40Km−2,

. . . , 2
2k
m+2

∣∣∣∣Xi−1f

Xif

∣∣∣∣2 ≤ 40Ki−1,

then X2µ̃ ≥ 1
22

2k
m+2 .

(iv) Finally, if

2
2k
m+2

∣∣Xm−1f
∣∣2 ≥ 40Km−1, 2

2k
m+2

∣∣∣∣Xm−2f

Xm−1f

∣∣∣∣2 ≥ 40Km−2,

. . . , 2
2k
m+2

∣∣∣∣ fXf
∣∣∣∣2 ≥ 40,

then
|f |2 ≥ 2

−2mk
m+2 40mKm(m−1)/2.

Hence 2kf ≥ 2
2k
m+2 .

Combining Cases (i)–(iv) we get

2kf +X2µ̃ ≥ C2
2k
m+2 ,

which is the desired inequality. �
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