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HOMOLOGICAL PROPERTIES OF BIGRADED ALGEBRAS

TIM ROMER

ABSTRACT. We investigate the z- and y-regularity of a bigraded K-
algebra R as introduced in [2]. These notions are used to study asymp-
totic properties of certain finitely generated bigraded modules. As an
application we get for any equigenerated graded ideal I upper bounds
for the number jo for which reg(I7) is a linear function for j > jo. Fi-
nally, we give upper bounds for the z- and y-regularity of generalized
Veronese algebras.

Introduction

Let S = K[z1,...,%n,Y1,---,Ym) be a standard bigraded polynomial ring
with deg(z;) = (1,0) and deg(y;) = (0,1), and let J C S be a bigraded
ideal. In this paper we study homological properties of the bigraded algebra
R=S/J.

First we consider the z- and the y-regularity of R. According to [2] they
are defined as follows:

reg” (R) = max{a € Z: ﬁf(aJri_’b)(R) # 0 for some 4,b € Z},
regi(R) = max{b € Z: Bf(a7b+i) (R) # 0 for some i,a € Z},

where ﬁf(a)b) (R) = dimg Tor} (K, R) (a,p) is the i*™ bigraded Betti number of R
in bidegree (a,b). We give a homological characterization of these regularities
similarly as in the graded case (see [3]). As an application we generalize a
result of Trung [13] concerning d-sequences. Furthermore we prove that

reg; (S/J) = reg? (S/ bigin(J))
where bigin(J) is the bigeneric initial ideal of J with respect to the bigraded
reverse lexicographic order induced by y1 > -+ >y, > 21 > -+ > Ty
It was shown in [7] (or [12]) that for j > 0, reg(I’) is a linear function
¢j +d in j, for a graded ideal I in the polynomial ring. In [12] the constant

¢ is described in terms of invariants of I. In this paper we give, in case I is
equigenerated, bounds jo such that for j > jg the function is linear, and we
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also give a bound for d. Our methods can also be applied to reg(S7 (1)), where
Si(I) is the j*" symmetric power of I.

In the last section we introduce a generalized Veronese algebra in the
bigraded setting. For a bigraded algebra R and A = (s,t) € N? with
(s,t) # (0,0) we set

Rz = @ Ras,bt)-
(a,b)eN?
In the same manner as it was done in [6] for diagonal subalgebras, we prove
that for these algebras

regy? (Rx) =0 and regiA(RA) =0if s> 0and t>> 0.

1. Preliminaries

Throughout this paper, let K be an infinite field and let S = K[x1,..., 2,
Y1,---,Ym] be a standard bigraded polynomial ring with deg(z;) = (1,0) and
deg(y;) = (0,1). Let M be a finitely generated bigraded S-module. For
some bihomogeneous w € M with deg(w) = (a,b) we set deg,(w) = a and
deg,(w) = b. Sometimes we will consider the Z-graded modules M, .) =
@beZ M(a,b) or M(*,b) = @an M(a,b)~ If in addition M is N™ x N"-graded,
we write M, ,) for the homogeneous component in bidegree (u,v), where
u € N™ and v € N™. For u € N we set supp(u) = {i: u; > 0}.

Define m,, = (x1,...,2,) = (x), my = (Y1,.--,Ym) = (¥), and m = m, +
my. Let Sy = K[z1,...,2,] and S, = K[y1,. .., ym] be the polynomial rings
with respect to the z-variables and the y-variables.

For any u = (u1,...,un) € N*and v = (v1,...,vm) € N we write 2"y for
the monomial z}* ... zt»y* ... yim. For u,u’ € N" welet u < v’ if u; < u} for
all 4. Furthermore we set |u| = uy + -+ u,. Let g, = (0,...,0,1,0,...,0) €
N", where the entry 1 is at the i*® position. For ¢ € N define [t] = {1,...,t}.

We consider bigraded algebras R = S/J, which are quotients of S by some
bigraded ideal J. For a finitely generated bigraded R-module M and a,b € N
let Bf(a,b)(M) = dimg Tor*(M, K)(a,p) be the i** bigraded Betti number in
bidegree (a,b). We recall from [2] that

reg?(M) = sup{a € Z: ﬁf(aﬂ’b)(M) # 0 for some i,b € Z},

regff(M) =sup{b € Z: ﬂf(mbﬂ-) (M) # 0 for some i,a € Z}

is the 2- and y-regularity of M. In the case R = S we set reg, (M) = reg? (M)
and reg, (M) = regf(M).

Let K, (k,1; M) denote the Koszul complex of M and H, (k,[; M) the Koszul
homology of M with respect to z1,...,2; and y1,...,y; (see [5] for de-
tails). If it is clear from the context, we write K, (k,l) and H,(k,l) instead
of K (k,l;M) and H, (k,l; M). Note that K, (k,I;M) = K.(k,[;5) ®s M
where K, (k,1;S) is the exterior algebra on ey,...,ex and fi,...,f; with
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deg(e;) = (1,0) and deg(f;) = (0,1) together with a differential 9 induced
by 0(e;) = z; and O(f;) = y;. For a cycle z € K, (k,l; M) we denote by
[2] € H,(k,l; M) the corresponding homology class. There are two long exact
sequences relating the homology groups:

- — Hi(k,1; M)(=1,0) =5 H,(k,1; M)
— Hy(k+1,1; M) — H,;_y(k,1; M)(—1,0) 25 ..
— Ho(k,1; M)(—1,0) == Ho(k,l; M) — Ho(k+1,1; M) — 0

and
. — Hy(k,1; M)(0,—1) 5 H,(k, 1; M)
— H;(k, 1+ 1; M) — H;_1(k,1; M)(0,—1) 25 .
— Hy(k,1; M) (0, 1) 5 Hy(k,1; M) — Ho(k, 1+ 1; M) — 0.

The map H;(k,l; M) — H;(k + 1,1; M) is induced by the inclusion of the
corresponding Koszul complexes. Every homogeneous element z € K, (k +
1,1; M) can be uniquely written as eg41 A 2’ + 2 with 2/, 2" € K (k,1; M).
Then H;(k+1,l; M) — H;_1(k,l; M)(—1,0) is given by sending [z] to [2].
Furthermore H;(k,1; M)(—1,0) plass H;(k,1; M) is just the multiplication with
Zr+1. The maps in the other exact sequence are defined analogously.

2. Regularity

Let R be a bigraded algebra. To simplify the notation we do not distinguish
between the polynomial ring variables x; or y; and the corresponding residue
classes in R. Following [3] (or [13] under the name filter regular element) we
call an element x € Ry o) an almost regular element for R (with respect to
the x-degree) if

(0:r x)(q) = 0 for a > 0.

A sequence z1,...,2: € R ) is an almost regular sequence (with re-
spect to the z-degree) if for all i € [t] the element x; is almost regular for
R/(l‘l, ce ,in_l)R.

Analogously we call an element y € R 1) an almost reqular element for R
(with respect to the y-degree) if

(0:R Y)(sp) = 0 for b>> 0.

A sequence yi,...,y: € R, is an almost regular sequence (with re-
spect to the y-degree) if for all i € [¢] the element y; is almost regular for
R/(y1, .- yi-1)R.

It is well-known that, provided |K| = oo, by a generic choice of coordinates
we can ensure that a K-basis of R(; o) is almost regular for R with respect to
the z-degree and a K-basis of R 1) is almost regular for R with respect to
the y-degree. For the convenience of the reader we give a proof of this fact,
which follows from the following lemma (see also [13]).
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LEmMMA 2.1. Let R be a bigraded algebra. If dimg Ry > 0 (resp.
dimg Rg,1y) > 0), then there exists an element x € Ry (resp. y € Ro,1))
which is almost reqular for R.

Proof. By symmetry it is enough to prove the existence of x. We claim
that it is possible to choose 0 # = € R(1 o) such that for all Q € Assg(0 :r )
one has @ D m,. It follows that Rads(Anng(0 :g x)) 2 m,. Hence there
exists an integer i such that m%(0 :g #) = 0 and this proves the lemma.

It remains to show the claim. If P D m, for all P € Assg(R), then we may
choose 0 # = € Ry o) arbitrarily because Assg(0 :g x) C Assg(R). Otherwise
there exists an ideal P € Assg(R) with P 2 m,. In this case we may choose

T € R(1,0) such that
T ¢ U P

PeAssg(R),P2m,

since |K| = oco. Let @ € Assg(0 :g x) be arbitrary. Then = € @ because
x € Anng(0 :p ). We also have that Q € Assg(R), and this implies Q DO m,
by the choice of z, as claimed. O

Let x and y be almost regular for R with respect to the z- and y-degree.
Define

SZE = max({a: (0 ‘R/(z1,...,xi—1)R xi)(a,*) # 0} U {0})7
¥ =max{s{,..., s}

and
S? = max({b: (O ‘R/(y1,--yi—1)R yi)(*,b) # 0} U {O})7
s¥ = max{sy,...,s¥ }.

The following theorem characterizes the x- and y-regularity. It is the ana-
logue of the corresponding graded version proved in [3].

For its proof we consider Ho(k — 1,0) = (0 ‘R/(z1,.on_1)R Tk) for k € [n]
and ﬁo(n, k—1) = (0:r/(mp+yr,...yn_1)R Yk) for k € [m]. Then the beginning
of the long exact Koszul sequence of the Koszul homology groups of R for
k € [n] is modified to

. — Hy(k—1,0)(—1,0) & Hy(k —1,0)
— Hy(k,0) — Hy(k —1,0)(=1,0) — 0,
and for k € [m] to
. — Hy(n,k—1)(0,-1) 25 Hi(n,k — 1)
— Hy(n, k) — Ho(n,k —1)(0,—1) — 0.

Note that for k € [n] and @ > 1 one has H;(k,0)(q+) = 0 for a > 0.
Similarly for k € [m] and i > 1 one has H;(n, k)5 = 0 for b > 0.
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THEOREM 2.2. Let R be a bigraded algebra, x almost reqular for R with
respect to the x-degree and 'y almost regular for R with respect to the y-degree.
Then

reg, (R) = s" and reg,(R) = s".

Proof. By symmetry it is enough to show this theorem only for x. Let
7(k,0) = max({a: H;(k,0)(qqi # 0 for i € [k]} U{0})
for k € [n] and
T(n,k) = max({a: Hi(n,k)(qyi,«) 7 0 for i € [n 4k} U{0})
for k € [m]. Then 7, ,) = reg,(R) because Hy(n,m) = K. We will prove:
(i) For k € [n] one has r( ) = max{s{,...,s{}.
(i) For k € [m] one has 7, ) = max{s{,...,s}}.
These two assertions yield the theorem.
We show (i) by induction on k € [n]. For k = 1 we have the following exact
sequence
0 — Hy(1,0) — H(0,0)(—1,0) — 0,
which proves this case. Let k£ > 1. Since
. — Hy(k,0) — Ho(k —1,0)(—1,0) — 0,

we get T(ko0) = Sp- I T(k—1,0) = 0, then 7 0y = r(r_1,0)- Assume that
T(k—1,0) > 0. There exists an integer i such that H;(k — 1)(7«(,@7110)“—’*) # 0.
Since H;(k — 1, 0)(7.(,671’0)-&-1'-&-1,*) = 0 and since we have the exact sequence

= Hip1 (5, 0) oy gy it e) — Hilk = 1,0) (g, gy ie)

— Hz(k - 170)(r(k,110)+i+1,*) T e

it follows that H; 1 (k, O)(T(k_lyo)ﬂ»“,*) # 0. This gives again 0y > 7(x—1,0)-
On the other hand, let a > max{r_1,0),s5}. If i > 2, then by the exact
sequence

— Hi(k —1,0)(a4i,5) — Hi(k,0)(a4i) — Hiz1(k = 1,0)(qqiz1,4) —

we get H;(k,0)(q1i,%) = 0 because H;(k—1,0)q44,) = Hi—1(k—1,0)(q4i-1,4) =
0. Similarly Hy(k,0)(q41,.) = 0. Therefore, by the induction hypothesis, we
obtain 7 o) = max{ry_1,0), s;} = max{s{,...,si}.

We prove (ii) also by induction on k € {0,...,m}. The case k = 0 was
shown in (i), so let £ > 0. Assume that a > s®. For i > 2 one has

— Hi(n, k — 1) (aqi,5) — Hi(n, k) (agi0) — Hi1(n,k — 1) (apie) —

Then Hi(n, k)(a+i,*) = 0 because HZ‘(TL, k— 1)(a+i,*) = Hi_l(n, k— 1)(,1_‘_1-7*) =
0. Similarly, Hy(n,k)+1,.) = 0 and therefore 7, 1) < s*. If s* = 0, then
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T(nk) = 7. Assume that 0 < s = 7(, ;_1). There exists an integer i such
that H;(n,k —1)(s=4i+) # 0. Consider the sequence

I Hz(n7 k — 1)(s“°+i,*) L Hz(na k — 1)(5“‘—1—1’,*) - Hz(n7 k)(s“°+i,*) -

If Hi(n, k/’)(szJ’,i’*) =0, then Hi(n, k— 1)(Sm+i’*) = kai(n, k— 1)(Sz+i7*). This
is a contradiction by Nakayama’s lemma because H;(n,k — 1)(Sm+i’*) is a
finitely generated S,-module. Hence we see that H;(n, k)14 7 0 and thus
T(n,k) = s*. U

3. d-sequences and s-sequences

The concept of a d-sequence was introduced by Huneke [11]. Recall that a
sequence of elements f1,..., f, in a ring is called a d-sequence, if

(i) f1,..., fris a minimal system of generators of the ideal I =(f1, ..., f).
(11) (fl, ey fifl) : fz N 1= (fl, e ,fifl).
A result in [13] motivated the following theorem. For a bigraded algebra R
let n, denote the ideal generated by the (1, 0)-forms of R and let n, denote
the ideal generated by the (0, 1)-forms of R.

ProPOSITION 3.1. Let R be a bigraded algebra. Then:

(i) reg,(R) =0 if and only if a generic minimal system of generators of
(1,0)-forms for n, is a d-sequence.

(ii) reg,(R) =0 if and only if a generic minimal system of generators of
(0,1)-forms for n, is a d-sequence.

Proof. By symmetry we only have to prove (i). Without loss of generality
X = Z1,...,%Ty is an almost regular sequence for R with respect to the z-
degree because a generic minimal system of generators of (1,0)-forms for n,
has this property.

By Theorem 2.2 one has reg, (R) = 0 if and only if s* = 0. By the definition
of s* this is equivalent to the fact that, for all ¢ € [n] and all a > 0, we have

<(1‘1,...,(Ei1) ZR(EZ‘> :0

(3?1,-~-,33z‘—1) (a,%)
Equivalently, for all i € [n] we obtain (z1,...,2;—1) :r ©;MNg = (T1,...,2Ti—1).
This concludes the proof. O

If n, (resp. ny) can be generated by a d-sequence (not necessarily generic),
then the proof of Proposition 3.1 shows that reg, (R) = 0 (resp. reg,(R) = 0).
For an application we recall some further definitions. Let I = (f1,..., fm) C
Sy be a graded ideal generated in degree d. Let R(I) denote the Rees algebra
of I and let S(I) denote the symmetric algebra of I. It is well known that
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both algebras are bigraded and have a presentation S/J for a bigraded ideal
J C S. For example, let R(I) = S, [It] C S;[t]. Define

w: 8 — R(I), i — x;, y; — fjt,

and let J = Ker(p). Under the assumption that I is generated in one degree
we have that J is a bigraded ideal. We will always assume that R(I) =
S/J. Note that then I7 = (S/J)(, j)(—jd) for all j € N. Similarly we may
assume that S(I) = S/J for a bigraded ideal J C S. We also consider the
finitely generated Sy-module S7(I) = (5/J)(. j)(—jd), which we call the j*™
symmetric power of I.

For the notion of an s-sequence see [10]. The following results were shown
in [10] and [13].

COROLLARY 3.2. Let I = (f1,...,fm) C Sz be a graded ideal generated
in degree d. Then:

(i) I can be generated by an s-sequence (with respect to the reverse lexi-
cographic order) if and only if reg, (S(I)) = 0.
(ii) I can be generated by a d-sequence if and only if reg, (R(I)) = 0.

Proof. In [10] and [13] it was shown that

(i) I can be generated by an s-sequence (with respect to the reverse
lexicographic order) if and only if n, C S(I) can be generated by a
d-sequence;

(i) I can be generated by a d-sequence if and only if n, C R(I) can be
generated by a d-sequence.

Combining these results with Proposition 3.1 concludes the proof. O

4. Bigeneric initial ideals

We recall the following definitions from [2]. For a monomial z%y” € S we
set

mg(z"y") = m(u) = max{0,s with u; > 0},
my(z*y?) = m(v) = max{0,¢ with v; > 0}.
Similarly we define for L C [n]
m(L) = max{0,¢ with i € L}.
Let J C S be a monomial ideal. Let G(J) denote the unique minimal system
of generators of J. If G(J) = {z1,..., 2} with deg(z;) = (u’,v") € N* x N™,
then we set m,(.J) = max{|u’|} and m,(J) = max{|v’|}.

J is called bistable if for all monomials z € J, all i < mg(z), all j < my(2)
one has z;z/x,, (») € J and yjz/ymy(z) € J. J is called strongly bistable if for
all monomials z € J, all i < s with zs divides z, all j < t with y; divides z
one has z;z/xs € J and y,z/y, € J.
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LEMMA 4.1. Let J C S be a bistable ideal and R = S/J. Then:

(i) Zn,--.,x1 is an almost reqular sequence for R with respect to the x-
degree.

(ii) Ym,-.-,y1 is an almost reqular sequence for R with respect to the y-
degree.

Proof. This follows easily from the fact that J is bistable. O

We fix a term order > on S by defining z%y” > z*'y* if either (Ju| +
ol [ol; [ul) > (Ju'] + [v'],[0']; |u']) lexicographically or ([u| + [v],[v], [u]) =
(Ju'| 4 [o'],|v/], |v]) and 2*y” > 2%y reverse lexicographically with respect
to the order induced by y1 > -+ >y, > @1 > -+ > 2. (See [8] for details on
monomial orders.) For a bigraded ideal .J let in(J) denote the monomial ideal
generated by in(f) for all f € J. In [2] the bigeneric initial ideal bigin(J) was
constructed in the following way: For ¢t € N let GL(t, K') be the general linear
group of the ¢ X t-matrices with entries in K. Let G = GL(n, K) x GL(m, K)
and g = (d;j,ex) € G. Then g defines an S automorphism by extending
g(xj) = >, dijz; and g(y) = > eryr- There exists a non-empty Zariski
open set U C G such that for all g € U we have bigin(J) = in(gJ). We call
these g € U generic for J. If char(K) = 0, then bigin(.J) is strongly bistable
for every bigraded ideal J. See, for example, [3] for similar results in the
graded case.

PROPOSITION 4.2. Let J C S be a bigraded ideal. If char(K) =0, then
reg, (S/J) = reg,(S/ bigin(J)).

Proof. Set x = x,,...,x1, choose g € G generic for J and let x =
Zn, - .., Z1 such that ; = g(Z;). We may assume that the sequence x is almost
regular for S/J with respect to the z-degree. Furthermore, by Lemma 4.1 the
sequence x is almost regular for S/ bigin(J) with respect to the az-degree. We
have

(O 5/ (@, tir)+7) Ti) Z (0 15/ (@n,onri41)+9()) Ti)-
It follows from [8, 15.12] that

(O 5/ (@n .o wirn)+9() i) = (0 15/ ((@n,mris1)+bigin()) Li)-
By Theorem 2.2 we get the desired result. O

REMARK 4.3.
(i) In general it is not true that

reg, (S/J) = reg, (S/ bigin(J)).
For example, let S = Klz1,...,23,y1,...,y3] and J = (y222 — y123, Y321 —
y123). Then the minimal bigraded free resolution of S/J is given by

0 — S(=2,-2) — S(~1,-1) & §(~1,-1) — S — 0.
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Therefore reg, (S/J) = 0 and reg, (S/J) = 0. On the other hand, bigin(.J) =
(yo1, 3171, Y3 22) With the minimal bigraded free resolution of S/ bigin(J)
0— S(_27 _2) ® S(_la _2)
— S(-1,-)®eS(-1,-1)® S(-1,-2) — S — 0.
Hence reg, (S/ bigin(J)) = 0 and reg, (S/ bigin(J)) = 1.
(ii) It is easy to calculate the z- and the y-regularity of bistable ideals. In
fact, in [2] it was shown that for a bistable ideal J C S we have

reg,(J) = m,(J) and reg, (J) = m,(J).
5. Regularity of powers and symmetric powers of ideals

Consider a bigraded algebra R = S/.J where J is a bistable ideal. Note that
by Lemma 4.1 the sequence z,, ...,z is almost regular for R with respect to
the z-degree. For i € [n] and j > 0 we define

m; = max({a e N: (0 'R/ (%n,zis1)R xi)(a’j) 75 0} U {0})
Furthermore, for a bistable ideal J and v € N" we set J(, ,) = I,y where

I, C S; is again a monomial ideal, which is stable in the usual sense, that is,
if 2" € I, then z;2" /T,y € I, for i < m(u).

PROPOSITION 5.1.  Let J C S be a bistable ideal and R = S/J. Then:
(i) For every i€ [n] and for j >0 we have m!; < max{m,(J) —1,0}.

(i) For every i € [n] and for j > my(J) we have mz' = miny(J)'

Proof. It G(J) = {a""y*": k = 1,...,r}, then I, = (z*": v* < v) for
v € N, This means that for all % € G(I,) one has |u] < m,(J). For fixed v
with |v| = j we have
(@, -y ig1) + 1y is, i)
(xna"'axi+l)+Iv .

(0 ‘R/(%p,sxit1)R xi)(*,v) =
As a K-vector space

((xn7.-~71i+1) I’U :Sz . 'l) v o__ 1< xu x'm z‘/v
ny ey v T v i
(:E x + ) +-Z “’E(;(I’ ),m(u)f'b

because I, is stable. Thus m} < max{m,(J) — 1,0}, which is (i).

To prove (ii) we replace J by J(x,>m, (7)) and may assume that J is gen-
erated in y-degree t = my(J). Then G(J) = {x“ky”k: k=1,...,r} where
|vk| = ¢ for all k € [r]. Let |u*| be maximal with m(u*) = i and define
¢ = max{[u¥| — 1,0}. We will show that m} = ¢ for j > ¢. This gives (ii).

By a similar argument as in (i) we have m{,, < ¢ for all s > 0. If ¢/ = 0.
Then m!,, = 0. Assume that ¢’ # 0. We claim that

k k
(*) 0 7é [(xu /zi)yv y;} € (0 ‘R/(%n,...,xit1)R xi)(*,8+t) for s > 0.
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Assume this is not the case, then either

(@ Jwi)y" yy = mia'y”
for some u/,v" and [ > i + 1, which contradicts to m(u*) =i, or

’
uk v

(@ fai)y" g =y 2y
for 24" " € G(J). Tt follows that |v'| = s. Let k1 be the largest integer [
such that yﬁl|y“k . Then

(@ Ja)y = (@ g ) ) i € T
because J is bistable, and this is again a contradiction. Therefore (%) is true
and we get quﬂ > ¢t for s > 0. This concludes the proof. O

REMARK 5.2. Proposition 5.1 can also be formulated with the roles of x
and y interchanged.

Let A be a standard graded K-algebra. For a finitely generated graded
A-module M the usual Castelnuovo-Mumford regularity is defined as

reg (M) = sup{r € Z: fl-+r(M) # 0 for some integer i}.

In [7] and [12] it was shown that for a graded ideal I C S, the function
reg®= (I7) is a linear function pj + ¢ for j > 0. In the case that I is generated
in one degree we give an upper bound for ¢ and find an integer jg such that
reg®+(I7) is a linear function for all j > jo.

THEOREM 5.3. Let I = (f1,..., fm) C Sz be a graded ideal generated in
degree d € N. Let R(I) = S/J for a bigraded ideal J. Then:

(1) reg®(I7) < jd + regy (R(I)).
(ii) regSe(I7) = jd + ¢ for j > my(bigin(J)) and some constant 0 < ¢ <
reg; (R(I)).

Proof. We choose an almost regular sequence X = &y, ..., & for R(I) over
S with respect to the z-degree. For all j € N the sequence x is almost regular
for I7 over S, in the sense of [3] because R(I)(. j)(—dj) = I’ as graded S,-
modules and
(0 :R(1) /(.o i) R Ti) (x5) (=) = (0215 /@, 0 0) 15 Ti)-
Define m§- for bigin(J) as in Proposition 5.1. Since

>~

(0 :R(1)/(Gnesiir )R Ti) Z (0 15/ (... mis1)+bigin(J)) Ti)s

it follows that
jd + mz- = rjv =max({l: (0:1s/(z,,...5.0)09 Ti)1 7 0} U{0}).
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By a characterization of the regularity of graded modules in [3] we have
reg®s (I7) = max{jd, rjl., ce T

Hence the assertion follows from Proposition 4.2, Remark 4.3(ii) and Propo-

sition 5.1. O

Analogously to Theorem 5.3 one has:

THEOREM 5.4. Let I = (f1,..., fm) C Sz be a graded ideal generated in
degree d € N. Let S(I) = S/J for a bigraded ideal J. Then:

() e (S9(1)) < jd + regS(S(1)).
(ii) regS+(SI(I)) = jd + ¢ for j > m,(bigin(J)) and some constant 0 <
c < reg?(S(I)).

Blum [4] proved the following result with different methods.

COROLLARY 5.5. Let I = (f1,...,fm) C Sy be a graded ideal generated
in degree d € N.

(i) Ifreg,(R(I)) =0, then regS+(I7) = jd for j > 1.
(ii) Ifreg,(S(I)) =0, then regSI(Sj(I)) = jd for j > 1.

Proof. This follows from Theorems 5.3 and 5.4. U

Next we give a more theoretical bound for the regularity function becom-
ing linear. Consider a bigraded algebra R. Let y be almost regular for all
Tor? (S/m,, R) with respect to the y-degree. Define

w(R) = max{b: (0 xors(5/m,,r) ¥)(xp) # 0 for some i € [n]}.

LEMMA 5.6. Let I = (f1,...,fm) C Ss be a graded ideal generated in
degree d € N.

(1) For j > w(R(I)) we have reg®* (ijl) > reg= (17) +d.
(ii) For j > w(S(I)) we have reg® (S7+1(I)) > reg®=(S7(I)) + d.

Proof. We prove the case R = R(I). For j > w(R) one has the exact
sequence
0 — Torf (S/my, R)(wj) —— Tor} (S/my, R)( j11)-
In [7, 3.3] it was shown that
Tor} (S/Ma, R)(a,5) = Tor}” (K, I7)atja.
and this concludes the proof. O
LEMMA 5.7. Let R be a bigraded algebra. Then
H,(0,m) 5 =0 for j > reg,(R) +m.
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Proof. We know that
H.(0,m) = Tor¥ (S/m,, R) = H.(S/m, ©s F.),
where F, is the minimal bigraded free resolution of R over S. Let

Fi = @ S(~a,~b)Fen®.

Then, by the definition of y-regularity, we have b < regy(R) + m for all
Bf(a’b)(R) # 0. Thus (S/(y) ®s Fi)(xj) = 0 for j > reg,(R) + m. The
assertion now follows. O

We obtain the following exact sequences.

COROLLARY 5.8. Let I = (f1,...,fm) C Sz be a graded ideal generated
in degree d € N.

(i) For j > reg,(R(I)) +m we have the exact sequence

0— I~"(=md) — @I~ (~(m—1)d) — ...

— @Ij_l(—d) — I —0.
m
(ii) For j > reg,(S(I)) +m we have the exact sequence

0 — 77" (I)(=md) — @ (I)(~(m — 1)d) —
— P I (—d) — ST (I) — 0.

Proof. This statement follows from Lemma 5.7 since R(I)(, jy(—jd) = I/
or S(I) ;) (—jd) = S7(I), respectively. O

COROLLARY 5.9. Let I = (f1,...,fm) C Sz be a graded ideal generated
in degree d € N. Then:

(i) For j > max{reg,(R(I)) +m,w(R(I)) +m} we have
reg®s (I'11) = d + reg® (IY).
(ii) For j > max{reg,(S(I)) +m,w(S(I)) +m} we have
reg®e (S7H(I)) = d + reg®= (S?(I)).
Proof. We prove the corollary for R(I). By Corollary 5.8 and standard ar-
guments (see Lemma 6.1 for the bigraded case) we obtain for j > reg, (R(1))+

m
reg¥s (I’ 1) < max{reg® (I’ T'=%) +id —i+1: i € [m]}.
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Since j + 1 — i > w(R(I)), it follows from Lemma 5.6 that
reg”s ([IT171) < reg® (IPF171HY) —d < ... < regSe(IPH1) —id.
Hence reg®s (I7*1) = reg® (I7) + d. O
We now consider a special case where reg®=(I7) can be computed precisely.

PROPOSITION 5.10. Let R = S/J be a bigraded algebra which is a complete
intersection. Let {z1,...,2:} be a homogeneous minimal system of generators
of J which is a reqular sequence. Assume that deg,(z¢) > --- > deg,(z1) >0
and deg, (zx) = 1 for all k € [t]. Then for all j >t

reg”s (Resjt1)) = reg>s (R(x5))-
If in addition deg,(zx) = 1 for all k € [t], then for j > 1
regS“(R(*yj)) =0.

Proof. The Koszul K,(z) complex with respect to {z1,...,2:} provides a
minimal bigraded free resolution of R because these elements form a regular
sequence. Observe that (x,j) is an exact functor on complexes of bigraded
modules. Note that K, (z)(. ;) is a complex of free S;-modules because

Ki(z) = . @ S(_deg(zjl) - deg(zji))’

and
S(—a, =b) () = @ Sy (—a)y’ as graded S,-modules.
lv|=j—b
Furthermore K, (z)(, ;) is minimal by the additional assumption deg, (zx) > 0.
We have for j >t

reg® (R(xj)) = max{deg, (z) + -+ + deg, (z—i+1) — i+ i € [t]},

and this is independent of j. If in addition deg,(zx) = 1 for all k, then we
obtain

reg” (Rx,5y) = 0 for j > 1. O

Recall that a graded ideal I is said to be of linear type, if R(I) = S(I).
For example, ideals generated by d-sequences are of linear type. Let I =
(f1,---,fm) C Sz be a graded ideal, which is Cohen-Macaulay of codim 2.
By the Hilbert-Burch theorem S, /I has a minimal graded free resolution

m—1 m
0— P So(~b:) = P Sul—a:) — So — 8/ — 0,
i=1 i=1
where B = (b;;) is a m x m — l-matrix with b;; € m and we may assume
that the ideal I is generated by the maximal minors of B. The matrix B is
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said to be the Hilbert-Burch matrix of I. If I is generated in degree d, then
S(I) = S/J where J is the bigraded ideal (>_i", bijyi: j =1,...,m —1).

COROLLARY 5.11. Let I = (f1,..., fm) C Sz be a graded ideal generated
in degree d € N, which is Cohen-Macaulay of codim 2 with m x m —1 Hilbert-
Burch matriz B = (b;j) and of linear type. Then for j > m —1

reg”s (I T1) = reg (I7) + d.
If additionally deg,(b;;) = 1 for b;; # 0, then the equality holds for j > 1.
Proof. Since I is of linear type, we have R(I) = S(I) = S/.J with the ideal
J =" bijyit 5 =1,...,m—1). One knows that (Krull-) dim(R(I)) =

n + 1. Since J is defined by m — 1 equations, we conclude that R(I) is a
complete intersection. Now apply Proposition 5.10. O

6. Bigraded Veronese algebras
Let R be a bigraded algebra and fix A = (s,t) € N? with (s,t) # (0,0).

We call
Ri= @D R
(a,b)eN?

the bigraded Veronese algebra of R with respect to A (see, for example, [9]
for the graded case and [6] for similar constructions in the bigraded case).

Note that Rz is again a bigraded algebra. We want to relate reng (Ry) and
1“eg;jA (Ra) to reg? (R) and regy (R). We follow the presentation in [6] for the

case of diagonals.
LEMMA 6.1. Let R be a bigraded algebra and let
0—M,—...— My— N —0
be an exact complex of finitely generated bigraded R-modules. Then
reg(N) < sup{regf (M) —k: 0 <k <r}
and
reg?(N) < sup{regé%(Mk) —k:0<k<r}
Proof. We prove by induction on r € N the above inequality for regf(N).
The case r = 0 is trivial. Now let » > 0, and consider
0— N — My — N —0,

where N’ is the kernel of My — N. Then for every integer a we have the
exact sequence

. — Torf (Mo, K)(ati) — Tor/ (N, K) (4 pi

— TOrﬁl(N/,K)(a+l+i_17*) — ...
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We get
reg?(N) < sup{regf(My), reg?(N') — 1}
< sup{regf (M) —k: 0 < k <r},
where the last inequality follows from the induction hypothesis. Analogously

we obtain the inequality for reg[f(N). O

LEMMA 6.2. Let A and B be graded K-algebras, let M be a finitely gen-
erated graded A-module and let N be a finitely generated graded B-module.
Then M Q@ N is a finitely generated bigraded A ® x B-module with

regf‘@KB(M QK N) = regA(M) and regf/l@KB(M ®K N) = regB(N).

Proof. Let F, be the minimal graded free resolution of M over A and G,
be the minimal graded free resolution of NV over B. Then H, = F, ®k G,
is the minimal bigraded free resolution of M ®x N over A ® B with H; =

Dt Fr ® Gi. Since A(—a) @k B(—b) = (A ®k B)(—a, —b), the assertion
follows. O

THEOREM 6.3. Let R be a bigraded algebra, A = (s,t) € N? with (s,t) #
(0,0). Then
reng(RA) < max{c: c=[a/s] — i,ﬂf(a,b)(R) #0 fori,b e N}
and

regiA(RA) < max{c: ¢ = [b/t] — i,ﬁis,(a’b) (R) #0 fori,a € N}.

Proof. Tt suffices to show the inequality for reng (Ry). Let
0—F, —...—Fp—R—0

be the minimal bigraded free resolution of R over S. Since ()z is an exact
functor, we obtain the exact complex of finitely generated Sz-modules

0—’(FT)A — ... —>(FO)A — Rz — 0.
By Lemma 6.1 we have
regs (Ry) < max{regs® ((Fi)5) — i}

Since
Fi= @ S(-a,-b)en®),
(a,b)eN?
one has

regs ((F)z) = max{regs® (S(—a, ~b)5): 854 (R) # 0}.

We have to compute reng (S(—a,—b)x). Let My,...,Ms_y the relative
Veronese modules of S, and Ny, ..., N;_1 be the relative Veronese modules of
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Sy. That is, M; = @, y(Sz)kstj for j =0,...,s—1and Nj = @, o (Sy)ri+j
for j=0,...,t —1. Then

S(_a7 _b)A = @ (Sa:)ksfa QK (Sy)ltfb
(k,l)eN2
= M;(—[a/s]) ®Kx N;(—[b/t]),
wherei = —amod sfor0<i<s—1land j=—-bmodtfor0<j<t—1.

By [1] the relative Veronese modules over a polynomial ring have a lin-
ear resolution over the Veronese algebra. Hence Lemma 6.2 implies that

regh® (S(—a,—b)z) = [a/s]. This concludes the proof. O

COROLLARY 6.4. Let R be a bigraded algebra.
. X Sx
(i) Fors>0,teN and % = (s,t) one has regz* (RR)
(ii) Fort> 0,s € N and A = (s,t) one has reggjA (Rx) =

0.
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