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HARMONIC MAPS FROM FINSLER MANIFOLDS

XIAOHUAN MO

Abstract. A Finsler manifold is a Riemannian manifold without the

quadratic restriction. In this paper we introduce the energy functional,
the Euler-Lagrange operator, and the stress-energy tensor for a smooth
map φ from a Finsler manifold to a Riemannian manifold. We show

that φ is an extremal of the energy functional if and only if φ satisfies
the corresponding Euler-Lagrange equation. We also characterize weak

Landsberg manifolds in terms of harmonicity and horizontal conserva-
tivity. Using the representation of a tension field in terms of geodesic
coefficients, we construct new examples of harmonic maps from Berwald
manifolds which are neither Riemannian nor Minkowskian.

1. Introduction

Harmonic maps between Riemannian manifolds are mappings φ : (M, g)→
(N,h) for which the “Dirichlet energy functional”

1
2

∫
M

‖dφ‖2 dv

is extremal. Harmonic maps are solutions to an elliptic system of partial
differential equations, which in general is non-linear. They are very important
in both classical and modern differential geometry.

On the other hand, Riemannian manifolds are a special case of Finsler
manifolds [9], namely Finsler manifolds with the quadratic restriction [8].

Let φ : (M,F ) → (N,h) be a smooth map from a Finsler manifold to a
Riemannian manifold. In this paper we introduce a natural energy functional
and the Euler-Lagrange operator of φ. We show that φ is an extremal of the
energy functional if and only if φ satisfies the corresponding Euler-Lagrange
equation.

The weak Landsberg manifolds (see Definition 4.2) are special Finsler man-
ifolds. They have constant volume of Finsler spheres and therefore satisfy the
Gauss-Bonnet formula [4][13]. The weak Landsberg spaces have the following
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interesting geometric characterization: a Finsler manifold is of weak Lands-
berg type if and only if all projective spheres in the projective sphere bundle
are minimal [6].

In this paper we introduce a notion of stress-energy tensor for maps from
a Finsler manifold to a Riemannian manifold and characterize weak Lands-
berg manifolds in terms of harmonicity and horizontal conservativity. Here
horizontal conservativity means that the stress-energy tensor is divergence-
free with respect to the horizontal subbundle of the projective sphere bundle.
We refer to [15] for the relation between horizontally conservative maps and
harmonic morphisms.

2. Preliminaries

Let M be a C∞ m-dimensional manifold and T̃M = TM\{0}. A function
F : TM → [0,∞) is called a Finsler structure on M if F has the following
properties:

(i) F (tY ) = tF (Y ) for all t ∈ R+.
(ii) F is C∞ on T̃M .
(iii) For every non-zero Y ∈ TxM , the induced quadratic form gY given

by

gY (U, V ) :=
1
2
∂2

∂s∂t

(
F 2(Y + sU + tV )

)∣∣∣∣
s=t=0

is an inner product in TxM .

A Finsler manifold is a C∞ manifold M with a Finsler structure F .
Important examples of Finsler manifolds are Riemannian manifolds and

Minkowski manifolds. Let (M,F ) be a Finsler manifold, SM the projective
sphere bundle of M , with canonical projection map π : SM → M given by
(x, [y]) → x, and let SxM := π−1(x) be the projective sphere at x. We
denote the pull-backs of TM and T ∗M by π∗TM and π∗T ∗M , respectively,
and consider these as vector bundles (with m-dimensional fibres) over the
(2m− 1)-dimensional base SM .

Given local coordinates (xi) on M , we can write any y ∈ TxM as yi ∂
∂xi .

This generates local coordinates (xi; yi) on SM .
At each point of SM , the fiber of π∗TM has a basis

{
∂
∂xi

}
. Hence F

inherits the Hilbert form, the fundamental tensor, and the Cartan tensor as
follows:

ω :=
∂F

∂yi
dxi, g := gij(x, y) dxi ⊗ dxj , gij =

[
1
2
F 2

]
yiyj

,

A := Hijk dx
i ⊗ dxj ⊗ dxk, Hijk := F

∂gij
∂yk

,
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where 1 ≤ i, j, k · · · ≤ m = dimM . From the Cartan tensor one can construct
the Cartan form by setting

η =
∑
i,j,k

Hijkg
jk dxi,

(
gjk
)

= (gjk)−1
.

This is a global section of π∗T ∗M ⊂ T ∗SM . We introduce a dual adapted
orthonormal frame {ei} on the Riemannian vector bundle (π∗TM, g) and a
coframe {ωi} with ωn = ω. Putting ωi =

∑
vij dx

j , we have det(vij) =√
det(gkl) and g =

∑
ω2
i ∈ Γ(�2π∗T ∗M).

Taking the exterior derivative of ω yields the Chern connection on π∗TM
described by an m×m matrix of 1-forms (ωij) on SM . These connection forms
determine horizontal and vertical derivatives, Riemannian and Minkowski cur-
vature, the Riemannian metric on SM and its Riemannian connection [11].
Notice that

ω1 ∧ · · · ∧ ωm ∧ ωm1 ∧ · · · ∧ ωm,m−1

is the volume form with respect to the Riemannian metric on SM . We denote
it by Π.

The following lemmas will be used later.

Lemma 2.1. If M is a compact Finsler manifold, then for any function
f : SM → R ∫

SM

fΠ =
∫
M

dx

∫
SxM

f
√

det (gij)χ,

where dx = dx1 ∧ · · · ∧ dxm and

χ ≡ ωm1 ∧ · · · ∧ ωm,m−1 mod dxj .

In particular, if M is Riemannian and f is defined on M , then∫
SM

fΠ = Vol
(
Sm−1

) ∫
M

f dv,

where Vol(Sm−1) is the volume of standard (m− 1)-dimensional sphere.

Proof. Obvious. �

Set

1 ≤ λ, µ, τ, . . . ≤ m− 1, λ̄ = m+ λ, 1 ≤ a, b, c, . . . ≤ 2m− 1.

The first structure equation for (M,F ) can be written as

(2.1) dωi =
∑

ωj ∧ ωji, ωij + ωji = −2
∑

Aijλωmλ,

where Aijk = A(ei, ej , ek). Taking the exterior derivative of (2.1) we see that
the curvature 2-forms Ωij := dωij −

∑
ωik ∧ωkj can be expressed in the form

Ωij =
1
2

∑
Rijklωk ∧ ωl +

∑
Pijkλωk ∧ ωmλ,
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where Rijkl = −Rijlk. Set

Pλµν := Pmλµν .

Pλµν is called the Landsberg curvature [14]. From [4] we have

(2.2) Pmλµ = 0,
∑
λ

Pλλµ = −
∑
λ

Ȧλλµ,

where the dot denotes the covariant derivative along the Hilbert form.
Denote the Riemannian metric on SM by G (cf. [11]). The divergence of

a form Ψ on SM with respect to G is defined by

div Ψ :=
∑
a

(DεaΨ) ( , εa) ,

where {εa} is the dual basis of {ω1, . . . , ωm, ωm1, . . . , ωm,m−1} on T (SM) and
Dεa is the covariant derivative induced by G along εa.

Lemma 2.2.

(i) For S =
∑
Siωi ∈ Γ(π∗T ∗M), divS =

∑
Si|i +

∑
SµPλλµ.

(ii) For T =
∑
Tijωiωj ∈ Γ(�2π∗T ∗M), div T (εi) =

∑
Tij|j+

∑
TiµPλλµ.

Proof. With the abbreviations

ψi = ωi, ψλ̄ = ωmλ,

denote the Levi-Civita connection with respect to {ψa} by {ψab}. Then
(cf. [11])

ψij ≡ ωji modψλ̄, ψiλ̄ ≡ −
∑

Piλµψµ̄ modψj ,

and

divS =
∑
a

(DSa) (εa)

=
∑(

dSi −
∑

Sjψji

)
(εi)−

∑
Sjψjλ̄ (ελ̄)

=
∑(

dSi −
∑

Sjωij

)
(εi)−

∑
Sµ (−Pλλµ)

=
∑
i

Si|i +
∑

SµPλλµ,

where the covariant derivative of S is defined by

DSi = dSi −
∑

Sjωij =
∑

Si|jω +
∑

Si;λωmλ.

This proves (i).
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Similarly, for T we have

(div T ) (εi) =
∑(

dTib −
∑

Tcbψci −
∑

Ticψcb

)
(εb)

=
∑(

dTij − Tkjωik −
∑

Tikωjk

)
(εj) +

∑
TiµPλλµ

=
∑

Tij|j +
∑

TiµPλλµ,

which proves (ii). �

The energy density of a map φ : (MF ) → (N,h) from a Finsler manifold
to a Riemannian manifold is the function e(φ) : SM → R≥0 defined by

(2.3) e(φ)(x, [y]) =
1
2

∑
j

h (φ∗ej , φ∗ej) ,

where {ej} is the orthonormal basis with respect to g (the fundamental tensor
of F ) at (x, [y]).

If Ω is a compact domain in M , we use the canonical volume element Π
associated with F to define the energy of φ : (Ω, F )→ (N,h) by

E(φ,Ω) =
1
c

∫
SΩ

e(φ)Π,

where c := Vol(Sm−1) is the volume of the standard (m − 1)-dimensional
sphere and SΩ the projective sphere bundle of Ω. If M is compact, we write
E(φ) = E(φ,M).

Remark. By Lemma 2.1, our notion of energy reduces to the usual notion
of energy if M is a compact Riemannian manifold.

A smooth map φ : (M,F )→ (N,h) from a Finsler manifold to a Riemann-
ian manifold is said to be harmonic if it is an extremal of the restriction of E
on every compact subdomain of (M,F ).

3. The first variation

Let (M,F ) be a smooth Finsler manifold and g the fundamental tensor
of F . Let (N,h) be a Riemannian manifold. Let φ : (M,F ) → (N,h) be a
smooth map. Set

(3.1) h =
∑

θ2
α ∈ Γ

(
�2T ∗N

)
, 1 ≤ α, β, γ, . . . ≤ n.

The first structure equation for (N,h) is

(3.2) dθα =
∑

θβ ∧ θβα, θαβ + θβα = 0.

A vector field v along φ determines a variation φt by φt(x) = expφ(x)[tv(x)],
where t ∈ I := (−ε, ε) for some ε > 0. Noting that

φ∗t θα ∈ Γ (T ∗M) ⊂ Γ (π∗T ∗M) ,
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we put

(3.3) φ∗t θα =
∑

aαiωi,

where aαi = aαi(t). It follows that

(3.4) φ∗t (h) = φ∗t

(∑
θ2
α

)
=
∑

[φ∗t θα]2 =
∑

aαiaαjωiωj .

Since {ei} is the dual frame field of {ωi}, from (2.3) and (3.4) we obtain

2e (φt) =
∑
i

(∑
aαjaαkωjωk

)
(ei, ei) =

∑
a2
αi.

If v has compact support Ω ⊂M , then

(3.5) c · d
dt
E (φt,Ω)

∣∣∣∣
t=0

=
∫
SM

∑
aαi

∂aαi
∂t

∣∣∣∣
t=0

Π.

Define Φ: M × I → N by

(x, t) Φ→ φt(x).

It is easy to see that

Φ∗θα ≡ φ∗t θα, Φ∗θαβ ≡ φ∗t θαβ mod dt.

Put

Φ∗θα = φ∗t θα + bα dt,(3.6)

Φ∗θαβ = φ∗t θαβ +Bαβ dt.(3.7)

Then
∑

bαvα|t=0 = b is the deformation vector field, where {vα} is the dual
frame field of {θα}, and Bαβ satisfies

(3.8) Bαβ = −Bβα.

Using (3.2), (3.3), (3.6), and (3.7), we obtain

d (Φ∗θα) = Φ∗ (dθα)(3.9)

= Φ∗
(∑

θβ ∧ θβα
)

=
∑

Φ∗θβ ∧ Φ∗θβα

=
∑(∑

i

aβiωi + bβ dt

)
∧ (φ∗t θβα +Bβα dt) .
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On the other hand, from (3.3) and (3.6), we have

d (Φ∗θα) = d
[∑

aαiωi + bα dt
](3.10)

=
∑

(daαi) ∧ ωi +
∑

aαi dωi + dbα ∧ dt

=
∑(

dSMaαi +
∂aαi
∂t

dt

)
∧ ωi +

∑
aαi dωi + dSMbα ∧ dt.

Comparing the coefficients of dt in (3.9) and (3.10), we obtain

(3.11)
∑ ∂aαi

∂t
ωi − dSMbα =

∑
β

(
bβφ
∗
t θβα −

∑
i

Bβαaβiωi

)
.

Define the covariant derivative of {bα} by

Dbα = dSMbα −
∑
β

bβφ
∗
t θαβ(3.12)

=
∑

bα|iωi +
∑

bα;λωmλ.

Substituting (3.12) into (3.11) we obtain

(3.13)
∂aαi
∂t

= bα|i −
∑

Bβαaβi, bα;λ = 0.

From (3.5), (3.8), and (3.13) we have

c · d
dt
E (φt)

∣∣∣∣
t=0

=
∫ ∑

aαi

(
bα|i −

∑
Bβαaβi

)
Π

=
∫ (∑

aαibα|i −
∑

aαiBβαaβi

)
Π

=
∫ ∑

i

(∑
aαibα

)
|i

Π−
∫ ∑

aαi|ibαΠ,

where
aαi|j :=

[
daαi −

∑
aαkωik −

∑
aβiφ

∗θαβ

]
(ej)

and ∑
i

(∑
aαibα

)
ωi = 〈dφ, b〉

is a global section on the dual Finsler bundle π∗T ∗M . Using (2.2) and Lemma
2.2 we get

c · d
dt
E (φt)

∣∣∣∣
t=0

=
∫
SM

div〈dφ, b〉Π−
∫
SM

〈τ(φ), b〉Π

= −
∫
SM

〈τ(φ), b〉Π,
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where

(3.14) τ(φ) := −〈dφ, η̇〉+ TrDdφ ∈ Γ
(
(φ ◦ π)∗ TN

)
and η (resp. Ddφ) denotes the Cartan form (resp. the second fundamental
form) of φ. The field τ(φ) is called the tension field of φ.

Theorem 3.1. Let φ be a smooth map from a Finsler manifold M to a
Riemannian manifold N . Then φ is harmonic if and only if it has vanishing
tension field.

Let us now express the tension field in local coordinates (xi) on M and
(uα) on N . We denote by gij and MΓijk the components of the fundamental
tensor and the Christoffel symbols of the Chern connection on (M,F ), and by
hαβ and NΓαβγ the corresponding objects on (N,h). Note that NΓαβγ are just
the Christoffel symbols of Levi-Civita on N because hαβ are Riemannian.

Let D denote the covariant differentiation (of sections of tensor products of
π∗TM and π∗T ∗M) on SM with respective to the Chern connection. Then,
by (2.46) and (2.47a) in [3], we have

D
∂

∂xk
= MΓikl dx

l ⊗ ∂

∂xi
,

where
MΓikl = gijMΓjkl,(3.15)

MΓjkl =
1
2

(
∂gjk
∂xl

− ∂gkl
∂xj

+
∂glj
∂xk

)
+

1
2

(Mjkl −Mklj +Mljk) ,(3.16)

Mijk = −∂gij
∂yl

∂Gl

∂yk
,(3.17)

and Gl are the geodesic coefficients of (M,F ) (cf. [12]). Using the Leibniz
rule, we obtain (cf. [5, p. 41])

(3.18) Ddxi = −MΓikl dx
k ⊗ dxl.

Suppose that φ : (M,F )→ (N,h) is a smooth map. Locally, we can write
φ = (φα) where each φα is a smooth function defined an open subset in M .
Let D denote the covariant differentiation on π∗T ∗M ⊗ (φ◦π)∗TN . Then (cf.
[10])

D∂/∂xi(dφ) = D∂/∂xi

(
φαj dx

j ∂

∂uα

)
= φαij dx

j ∂

∂uα
+ φαjD

π∗T∗M
∂/∂xi dxj

∂

∂uα
+ φαj dx

jD
(φ◦π)∗TN
∂/∂xi

∂

∂uα
,

where

φαi =
∂φα

∂xi
, φαij =

∂2φα

∂xi∂xj
.
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Now
Dπ∗T∗M
∂/∂xi dxj = −MΓjki dx

k

and

Dπ∗φ∗TN
∂/∂xi

∂

∂uα
= φβi

NΓγαβ
∂

∂uγ
,

so that

D∂/∂xi(dφ) =
(
φαij −MΓkijφ

α
k + NΓαβγφ

β
i φ

γ
j

)
dxj

∂

∂uα
,

where we have used the fact that (cf. [3])
MΓkij = MΓkji.

It follows that the components of the second fundamental form Ddφ satisfy

(Ddφ)αij = φαij −MΓkijφ
α
k + NΓαβγφ

β
i φ

γ
j .

Now consider a smooth function f defined on an open subset in M . Set

fj =
∂f

∂xj
, fij =

∂fj
∂xi

,

and
D∂/∂xi(df) = (Ddf)ij dxj .

Then

df = fj dx
j ,

(Ddf)ij = (Ddf)
(

∂

∂xi
,
∂

∂xj

)
= fij −MΓkijfk.

Thus (3.14) reduces to

τ(f) = −〈df, η̇〉+ TrDdf(3.19)

= gij
[
fij −MΓkijfk − ξifj

]
,

where

(3.20) ξj = η̇

(
∂

∂xj

)
.

Suppose that φ : (M,F )→ (N,h) is a smooth map. By (3.19) we have

(3.21) τ (φα) = gij
[
φαij −MΓkijφ

α
k − ξiφαj

]
.

Hence the tension field of φ is

ταφ = duα (−〈dφ, η̇〉+ TrDdφ)(3.22)

= gij
[
−ξiφαj + φαij −MΓkijφ

α
k + NΓαβγφ

β
i φ

γ
j

]
= τ (φα) + gijNΓαβγφ

β
i φ

γ
j .
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A direct calculation using (2.2), (3.15), (3.16), and (3.17) yields (cf. [5, (3.3.3)])

ξi = −yj
∂MΓkjk
∂yi

and
MΓiki =

(
∂

∂xk
− ∂Gi

∂yk
∂

∂yi

)
log
√

det (gjl).

4. The stress-energy tensor

Let φ : (M,F )→ (N,h) be a smooth map from a Finsler manifold (M,F )
to a Riemannian manifold (N,h). The stress-energy tensor Sφ is a tensor on
SM defined by

Sφ := e(φ)g − φ∗h,
where e(φ) (resp. g) denotes the energy density (resp. the fundamental tensor)
of φ and φ∗h denotes the pull back of the tensor h to a tensor on SM . We
say that Sφ is horizontally divergence-free if

∑m
i=1(DεiSφ)(εi, Y ) = 0 for all

Y ∈ Hp, where {εi} is any orthonormal basis for the horizontal space Hp and
Hp := {X ∈ TpSM,ωmλ(X)} = 0 (cf. [11]).

Let φ : (M,F )→ (N,h) be a smooth map. Define on M

〈θα, dφ〉 =
∑

aαiωi,

where {θα} is an orthonormal coframe of h. Then

d

(∑
i

aαiωi

)
= d (φ∗θα)(4.1)

= φ∗ dθα

= φ∗
(∑

θβ ∧ θβα
)

=
∑

φ∗θβ ∧ φ∗θβα,

by (3.2). Consider (4.1) as a two-form defined on the projective sphere bundle
SM . We have

d

(∑
i

aαiωi

)
=
∑

daαi ∧ ωi +
∑

aαi dωi

=
∑

daαi ∧ ωi +
∑

aαiωj ∧ ωji

=
∑

aβiωi ∧ φ∗θβα.

It follows that

(4.2)
∑
i

Daαi ∧ ωi = 0,
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where

Daαi := daαi −
∑

aαjωij +
∑

aβiφ
∗θβα(4.3)

:=
∑

aαi|jωj +
∑

aαi;λωmλ.

Substituting (4.3) into (4.2) yields the following result.

Proposition 4.1. The second fundamental form of φ : (M,F ) → (N, g)
satisfies aαi|j = aαj|i and aαi;λ = 0.

Denote the stress-energy Sφ of φ by

Sφ =
∑

Sijωi ⊗ ωj .

Then

(4.4) Sij = e(φ)δij −
∑

aαiaαj ,

where e(φ) is the energy density of φ. Then the horizontal divergence of Sφ is

divH Sφ =
∑

Sijjωi(4.5)

=
∑
i

(∑
Sij|j +

∑
SiµPλλµ

)
ωi

=
∑
i

{∑
j

[
e(φ)δij −

∑
aαiaαj

]
|j

+
∑[

e(φ)δiµ −
∑

aαiaαµ

]
Pλλµ

}
ωi

=
∑[

e(φ)|i −
∑

aαi|jaαj −
∑

aαiaαj|j

+
∑

e(φ)Pλλi −
∑

aαiaαµPλλµ

]
ωi

=
∑
i

[∑
aαjaαj|i −

∑
aαi|jaαj

−
∑

aαiaαj|j +
∑

e(φ)Pλλi −
∑

aαiaαµPλλµ

]
ωi

= −
∑
i

[∑
aαiaαj|j

+
∑

aαiaαµPλλµ

]
ωi + e(φ)

∑
Pλλµωµ

= −〈τ(φ), dφ〉 − e(φ)η̇,

where η̇ denotes the covariant derivative of the Cartan form along the Hilbert
form, and where we have used (2.2) and (ii) of Lemma 2.2.
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Definition 4.2. A Finsler manifold is said to be of weak Landsberg type
if η̇ = 0.

The following theorems are immediate consequences of (4.5).

Theorem 4.3. Let φ : (M,F )→ (N,h) be a non-constant harmonic map
from a Finsler manifold to a Riemannian manifold. Then Sφ is horizontally
divergence-free if and only if (M,F ) is of weak Landsberg type.

Combining this with Shen’s theorem ([6], [11]) (see the Introduction) we
obtain the following Wood type result (cf. [15, Theorem 2.9]).

Theorem 4.4. Let φ : (M,F ) → (N,h) be a submersion from a Finsler
manifold to a Riemannian manifold. Then any two of the following conditions
imply the third condition:

(i) φ is harmonic;
(ii) Sφ is horizontally divergence-free;
(iii) π : SM →M has minimal fibers.

5. Harmonicity of the identity map

In this section we present the harmonic equation of the identity map from
a Finsler manifold to a Riemannian manifold in terms of their geodesic coef-
ficients, and we construct harmonic maps from Berwald manifolds which are
neither Riemannian nor Minkowskian to Riemannian manifolds.

Let I : (M,F )→ (M,h) be the identity map from a Finsler manifold (M,F )
to a Riemannian manifold (M,h). As usual we put

I =
(
Ii
)

: U(⊂M)→ R,

where locally Ii(x1, . . . , xm) = xi. It follows that

Iij =
∂Ii

∂xj
= δij , Iijk = 0.

Using (3.21) and (3.22) we have

τ
(
Ik
)

= −gijFΓkij − gkjξj ,

and hence

(5.1) τkI = gij
[
hΓkij − FΓkij

]
− gkjξj .

Denote the geodesic coefficients of (M,F ) and (M,h) by FGi and hGi,
respectively. By [5, (3.8.3)] we have

1
2
(
FGi

)
yjyk

= FΓijk + Ḣi
jk,
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where Ḣi
jk is the covariant derivative of the Cartan tensor along the Hilbert

form. It follows that

gijFΓkij + gkiξi = gij
[

1
2
(
FGk

)
yiyj
− Ḣk

ij

]
+ gkiḢi(5.2)

=
1
2
gij
(
FGk

)
yiyj
− Ḣk + Ḣk =

1
2
gij
(
FGk

)
yiyj

,

where in the second step we used [5, (2.5.11)]. Similarly, for the Riemannian
metric h we have

(5.3)
1
2
(
hGi

)
yjyk

= hΓijk.

Substituting (5.2) and (5.3) into the harmonic equation (5.1) gives

(5.4) τkI =
1
2
gij
(
hGk − FGk

)
yiyj

.

Thus we have the following result.

Proposition 5.1. Let (M,h) be a flat Riemannian space. Then, for any
local Minkowski structure F on M , the identity map

I : (M,F )→ (M,h)

is harmonic.

Proof. By [12, (3.23)] we have

(5.5) FGj =
1
2

∑
i,k,l

gjl
[
2
∂gil
∂xk
− ∂gik

∂xl

]
yiyk.

On the other hand, F is local Minkowskian if and only if

(5.6) gij(x, y) = gij(y).

The conclusion is now immediate from (5.3)–(5.5). �

Definition 5.2. A Finsler manifold (M,F ) is said to be of
(i) Randers type if F = α + β, where α is a Riemannian metric on M

and β = βi dx
i is a 1-form;

(ii) Berwald type if F has vanishing Minkowski curvature, i.e., if Pijkλ = 0
for all i, j, k, λ (cf. [7]).

It is easy to see that a Randers manifold (M,α+ β) is a Berwald manifold
if and only if βi|j = 0, where βi|j is the covariant derivative of β with respect
to the Riemannian metric α, that is, if the 1-form β is parallel with respect to
α. In this case, the Randers metric α+β and Riemannian metric α have same
geodesic coefficients (cf. [5, 11.3.11]). Combining this with (5.4) we obtain:
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Proposition 5.3. Let (M,α+ β) be a Randers manifold. If β is parallel
with respect to the Riemannian metric α, then the identity

I : (M,α+ β)→ (M,α)

is harmonic.

Antonelli, Ingarden, and Matsumoto [1] showed that Berwald manifolds
which are neither Riemannian nor Minkowskian can be constructed using cer-
tain Randers metrics. In view of this, our results give examples of harmonic
maps from Berwald manifolds which are neither Riemannian nor Minkowskian.
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