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HARMONIC MAPS FROM FINSLER MANIFOLDS

XIAOHUAN MO

ABSTRACT. A Finsler manifold is a Riemannian manifold without the
quadratic restriction. In this paper we introduce the energy functional,
the Euler-Lagrange operator, and the stress-energy tensor for a smooth
map ¢ from a Finsler manifold to a Riemannian manifold. We show
that ¢ is an extremal of the energy functional if and only if ¢ satisfies
the corresponding Euler-Lagrange equation. We also characterize weak
Landsberg manifolds in terms of harmonicity and horizontal conserva-
tivity. Using the representation of a tension field in terms of geodesic
coefficients, we construct new examples of harmonic maps from Berwald
manifolds which are neither Riemannian nor Minkowskian.

1. Introduction

Harmonic maps between Riemannian manifolds are mappings ¢: (M, g) —
(N, h) for which the “Dirichlet energy functional”

1
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is extremal. Harmonic maps are solutions to an elliptic system of partial
differential equations, which in general is non-linear. They are very important
in both classical and modern differential geometry.

On the other hand, Riemannian manifolds are a special case of Finsler
manifolds [9], namely Finsler manifolds with the quadratic restriction [8].

Let ¢: (M,F) — (N,h) be a smooth map from a Finsler manifold to a
Riemannian manifold. In this paper we introduce a natural energy functional
and the Euler-Lagrange operator of ¢. We show that ¢ is an extremal of the
energy functional if and only if ¢ satisfies the corresponding Euler-Lagrange
equation.

The weak Landsberg manifolds (see Definition 4.2) are special Finsler man-
ifolds. They have constant volume of Finsler spheres and therefore satisfy the
Gauss-Bonnet formula [4][13]. The weak Landsberg spaces have the following
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interesting geometric characterization: a Finsler manifold is of weak Lands-
berg type if and only if all projective spheres in the projective sphere bundle
are minimal [6].

In this paper we introduce a notion of stress-energy tensor for maps from
a Finsler manifold to a Riemannian manifold and characterize weak Lands-
berg manifolds in terms of harmonicity and horizontal conservativity. Here
horizontal conservativity means that the stress-energy tensor is divergence-
free with respect to the horizontal subbundle of the projective sphere bundle.
We refer to [15] for the relation between horizontally conservative maps and
harmonic morphisms.

2. Preliminaries

Let M be a C* m-dimensional manifold and TM = TM\{0}. A function
F:TM — [0,00) is called a Finsler structure on M if F has the following
properties:

(i) F(tY)=tF(Y) forallt € RT.
(ii) Fis C* on TM.
(iii) For every non-zero Y € T, M, the induced quadratic form gy given
by

1 0%
gy(U, V) =

b (F2(Y + sU +tV))

s=t=0
is an inner product in T, M.

A Finsler manifold is a C'°° manifold M with a Finsler structure F'.

Important examples of Finsler manifolds are Riemannian manifolds and
Minkowski manifolds. Let (M, F) be a Finsler manifold, SM the projective
sphere bundle of M, with canonical projection map w: SM — M given by
(z,[y]) — z, and let S, M := 7~ !(z) be the projective sphere at z. We
denote the pull-backs of TM and T*M by 7n*TM and 7*T* M, respectively,
and consider these as vector bundles (with m-dimensional fibres) over the
(2m — 1)-dimensional base SM.

Given local coordinates (z') on M, we can write any y € T, M as y'52.
This generates local coordinates (z%;y%) on SM.

At each point of SM, the fiber of 7*T'M has a basis {8‘; } Hence F
inherits the Hilbert form, the fundamental tensor, and the Cartan tensor as
follows:

OF . L 1
W= 8y1 dzx ’ 9= gij(x’y) dx ®dxj’ 9ij = |:2F2:| yiyd ’

afhj
oy’

A= Hyj do' @ da? @ dz*, Hijp:=F
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where 1 < 4,4, k--- <m = dim M. From the Cartan tensor one can construct
the Cartan form by setting

n= Z Hijpg’" dat,  (¢7%) = (g56) "
i3,k
This is a global section of 7*T*M C T*SM. We introduce a dual adapted
orthonormal frame {e;} on the Riemannian vector bundle (7*T'M,g) and a
coframe {w;} with w, = w. Putting w; = > v;;dz’, we have det(v;;) =
Vdet(gr) and g = > w? € T(@?*7*T*M).

Taking the exterior derivative of w yields the Chern connection on 7*7T M
described by an mxm matrix of 1-forms (w;;) on SM. These connection forms
determine horizontal and vertical derivatives, Riemannian and Minkowski cur-
vature, the Riemannian metric on SM and its Riemannian connection [11].
Notice that

WA AW Awm1 A AW om—1

is the volume form with respect to the Riemannian metric on SM. We denote
it by II.
The following lemmas will be used later.

LEMMA 2.1. If M is a compact Finsler manifold, then for any function

f:SM—R
fﬂ=/ dw/ fy/det (gi5)x,
SM M S. M

where dz = dz' A --- Adz™ and
X=Wmi A A Wim—1 mod  dz’.

In particular, if M is Riemannian and f is defined on M, then

fII = Vol (s™71) / fdv,
M

SM
where Vol(S™~1) is the volume of standard (m — 1)-dimensional sphere.

Proof. Obvious. O
Set
1<AuT,...<m—1, A=m+X, 1<a,bec,...<2m—1.
The first structure equation for (M, F') can be written as
(2.1) dw; = ij A wji, wij +wji = —22Aij>\wm>\,

where A;jr = A(e;, ej,ex). Taking the exterior derivative of (2.1) we see that
the curvature 2-forms €Q;; := dw;; — Y wir Awg; can be expressed in the form

1
Qij = B} Z Rijriwr Awp + Z Pijrawr A wm,
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where Rijkl = _Rijlk« Set
PA;J,V = Pmpv-

Py, is called the Landsberg curvature [14]. From [4] we have
(2.2) Py =0, Z P, = Z Ay,
A

where the dot denotes the covariant derivative along the Hilbert form.
Denote the Riemannian metric on SM by G (cf. [11]). The divergence of
a form ¥ on SM with respect to G is defined by

divV¥ := Z (De, W) ( ,€a),

a

where {¢,} is the dual basis of {w1,...,wWm,wWm1,.-.,Wm,m-1} on T(SM) and
D, is the covariant derivative induced by G along e,.

€a

LEMMA 2.2.
(1) For S = ZSlwi S F(’JT*T*M), divS = ZStll + ZS#P)\ML,
(ii) ForT =Y Tjww; € T(@*m*T*M), divT (&) = 3. Tijj;+2 TinPrau-

Proof. With the abbreviations

Vi = ws, Py = Wi,

denote the Levi-Civita connection with respect to {¢s} by {¢ap}. Then

(cf. [11])
Yij =wji modyy, Py =— Z Pixytp  modiy,
and

div S = Z (DS,) (€q)

=3 (48 = 30 S50 () = D Sy (ex)
:Z(dS ZS w”) 6Z ZSIL P)\A“
= Z Sz|z + Z SLLPA)\;M

where the covariant derivative of S is defined by

DS; =dS; — ZSjwij = Z Si‘jw + Z Si;,\wmk.

This proves (i).
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Similarly, for T we have
(divT) () =Y (dTib = Tatbei — Y Ecwcb) (ev)
=3 (4T — Trgwn — Y Tawie) () + 3 TiuPors
= Ty + > TinPros
which proves (ii). O

The energy density of a map ¢: (MF) — (N, h) from a Finsler manifold
to a Riemannian manifold is the function e(¢): SM — R>( defined by

(2.3 (D)) = 5 31 (0ucisbes)

where {e;} is the orthonormal basis with respect to g (the fundamental tensor
of F) at (z,[y]).

If Q is a compact domain in M, we use the canonical volume element IT
associated with F to define the energy of ¢: (2, F) — (N, h) by

1
B9 = [ elom
¢ Jsa
where ¢ := Vol(S™1) is the volume of the standard (m — 1)-dimensional

sphere and S€) the projective sphere bundle of 2. If M is compact, we write
E(¢) = E(¢, M).

REMARK. By Lemma 2.1, our notion of energy reduces to the usual notion
of energy if M is a compact Riemannian manifold.

A smooth map ¢: (M, F) — (N, h) from a Finsler manifold to a Riemann-
ian manifold is said to be harmonic if it is an extremal of the restriction of E
on every compact subdomain of (M, F').

3. The first variation

Let (M, F) be a smooth Finsler manifold and ¢g the fundamental tensor
of F. Let (N,h) be a Riemannian manifold. Let ¢: (M,F) — (N,h) be a
smooth map. Set

(3.1) h=Y 02€l(’T*N), 1<a,B,7,...<n
The first structure equation for (N, h) is
(3.2) 0o = 05 NOsa, Bap+ 050 =0.

A vector field v along ¢ determines a variation ¢; by ¢¢(z) = expy(,[tv(2)],
where ¢t € I := (—¢,¢) for some € > 0. Noting that

¢t € T (T*M) C T (x*T*M),
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we put

(3~3) ¢:6a = Z QWi

where a,; = aq:(t). It follows that

(3.4) 01 (h) = 67 (D02) = D 1010a]” = 3 awitajwicos.

Since {e;} is the dual frame field of {w;}, from (2.3) and (3.4) we obtain

2e (¢y) = Z (Z aajaakijk) (eirei) = Zaii'

?

If v has compact support 2 C M, then

80,0”‘
= o X

(3.5) e LB (6,0)

t=0 t=0

Define &: M x I — N by
(z,1) 2 ¢y ().

It is easy to see that

30y = ¢700, D 0np =700y mod dt.

(3.6) O 0, = ¢30, + ba dt,
@*Gaﬁ = (,25:9045 + Baﬁ dt.

Then ) baval,_q = b is the deformation vector field, where {v,} is the dual
frame field of {6,}, and B,g satisfies

(3.8) Bap = —Bga-
Using (3.2), (3.3), (3.6), and (3.7), we obtain
(39)  d(®*0.) = * (db,)

- (Z 05 A eﬁa)

= Z @*9[3 AN @*Qﬁa

= Z <Z agiw; + bgs dt) AN (gf):@ﬁa + Bﬂa dt) .
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On the other hand, from (3.3) and (3.6), we have
(3.10)

d ((I)*Qa) =d [Z AaiW; + ba dt]
= (dagi) Awi + Y aqi dw; + dbg A dt
= Z (dSMam- + % dt) N w; + Zaai dw; + dgprba N dt.

Comparing the coefficients of dt in (3.9) and (3.10), we obtain

3aai *
(3.11) 5 Wi~ dsmba = za: <bﬁ¢t 00 — ;Bﬁaaﬁiwi> :
Define the covariant derivative of {b,} by
(3.12) Dbo = dsnba — Z bpoibap
B

= Z ba\iwi + Z ba;)\wm)\-
Substituting (3.12) into (3.11) we obtain

aaai
ot = ba|z - ZBﬁaaﬁh ba;)\ =0.

From (3.5), (3.8) and (3.13) we have

Sl o)
— / (Z ambali — Zam-Bgaam) II
S (S, 1 [ S

(3.13)

—E ¢t

where

Aoilj = [daai - Zaakwik - Zamd?*oaﬁ} (e;)
Z (D daiba) wi = (do,b)

is a global section on the dual Finsler bundle 7*T*M. Using (2.2) and Lemma
2.2 we get
— [ awtdonn- [ (ro)4n
t=0 JSM SM

= _/ <T(¢)vb>H7
SM

and

d

EE(@)
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where
(3.14) 7(¢) := —{dp,n) + TrDdp € T ((d) om)” TN)

and 7 (resp. Dd¢) denotes the Cartan form (resp. the second fundamental
form) of ¢. The field 7(¢) is called the tension field of ¢.

THEOREM 3.1. Let ¢ be a smooth map from a Finsler manifold M to a
Riemannian manifold N. Then ¢ is harmonic if and only if it has vanishing
tension field.

Let us now express the tension field in local coordinates (z*) on M and
(u®) on N. We denote by g;; and M ij the components of the fundamental
tensor and the Christoffel symbols of the Chern connection on (M, F'), and by
hap and NF% the corresponding objects on (N, k). Note that NI‘gW are just
the Christoffel symbols of Levi-Civita on N because h,g are Riemannian.

Let D denote the covariant differentiation (of sections of tensor products of
7*TM and 7*T*M) on SM with respective to the Chern connection. Then,
by (2.46) and (2.47a) in [3], we have

a M i l a
Dger = Thde © 55,
where
(3.15) Myt = g oM,
1 /0g; 0 0g;; 1
(3.16)  MIju = 3 ( ;;lk - % + %) +t3 (Mjgr — Myij + Miji)
agu oG}
3.17 M,y = — 295
( ) Jjk ayl ayk

and G! are the geodesic coefficients of (M, F) (cf. [12]). Using the Leibniz
rule, we obtain (cf. [5, p. 41])

(3.18) Ddx' = —MIt, da® @ da'.

Suppose that ¢: (M, F) — (N, h) is a smooth map. Locally, we can write
¢ = (¢) where each ¢® is a smooth function defined an open subset in M.
Let D denote the covariant differentiation on 7*T*M ® (¢pom)*T'N. Then (cf.
[10])

o j a
Dajori(dp) = Dgoui (%— dx1%>

«a ;0 oy T M ;0 a j y(pom)* TN 9
= @iy dv’ 5 5+ 0505500 dv’ 52 + 85 da’ Dy i o2
where )
o 09 09"
¢i = a4 ¢ij = O ia.i
ox oxtoxI
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Now

Dg;g;M dod = M1 da*
and

0 0
T ¢*TN AN
D3joai - g =9 Lapgy
so that
a «@ ] 6
Dajous (d0) = (88 — MTof + V15,6007 da oo,

where we have used the fact that (cf. [3])
Mk _ Mpk

It follows that the components of the second fundamental form D d¢ satisfy

(Dde)§; = o5 — MTE 6 + VTG, ¢l 0],
Now consider a smooth function f defined on an open subset in M. Set
9 ,
I I 3
and
Da/azi (df) = (D df)ij da’.
Then

df = f;da?,

Dd; = &) (g0 5 ) = Fo =Tl

Thus (3.14) reduces to
(3.19) T(f) = —{df,n) + Tr Ddf
=g" [fi; = M5 fu — &5

where

(3.20) @zﬁ(é%).

Suppose that ¢: (M, F) — (N, h) is a smooth map. By (3.19) we have
(3.21) T(¢%) = g" [6f; — Mot — &ef] -

Hence the tension field of ¢ is

(3.22) 78 = du® (—(dg,n) + Tr D do)

= g [0y + oy — VTl +VT5,69)
=7(¢%) + g7 TG, 6] 0.
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A direct calculation using (2.2), (3.15), (3.16), and (3.17) yields (cf. [5, (3.3.3)])
M1k
& = _yja—r_jk
i 8yl

, o 9G" 9 SN
Myi _ [ Y Y .
Thi = (axk oy* ayi) log y/det (g;u).

4. The stress-energy tensor

Let ¢: (M, F) — (N,h) be a smooth map from a Finsler manifold (M, F')
to a Riemannian manifold (N, k). The stress-energy tensor Sy is a tensor on
SM defined by

and

Sd) = e((b)g - ¢*h7
where e(¢) (resp. g) denotes the energy density (resp. the fundamental tensor)
of ¢ and ¢*h denotes the pull back of the tensor h to a tensor on SM. We
say that Sy is horizontally divergence-free if .. | (De,Se)(€;,Y) = 0 for all
Y € H), where {¢;} is any orthonormal basis for the horizontal space H,, and
H, :={X € T,SM,wn (X))} =0 (cf. [11]).
Let ¢: (M, F) — (N, h) be a smooth map. Define on M

<9aa d¢> = Z AiWi,

where {0,} is an orthonormal coframe of h. Then

(4.1) d (Z amwi> =d(¢*04)
i = ¢" db,
=¢" (Z O3 N 95&)
= ¢"05 N ¢ 0pa,

by (3.2). Consider (4.1) as a two-form defined on the projective sphere bundle
SM. We have

d (Z aaiwi> = Z dae; N w; + Z Qi dw;
= Zdaai A w; + Zamwj Awji

= Z agiw; N\ ¢*06a
It follows that
(42) Z Day; Nw; =0,
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where
(43) Dag; :=dagy; — Z QqjWij + Z a5i¢*05a

= E Q| §W5 + E AaisAWmA-

Substituting (4.3) into (4.2) yields the following result.

PROPOSITION 4.1.  The second fundamental form of ¢: (M, F) — (N,g)
satisfies aqi|j = Aqji and aqix = 0.

Denote the stress-energy Sy of ¢ by
S¢, = Z Sijwi S wj.
Then
(4.4) Sij = e(@)dij — Y Gailay,
where e(¢) is the energy density of ¢. Then the horizontal divergence of Sy is
(4.5) divg Sy = Z Sijiwi
= Z (Z Sijlj + Z Sipp)\)\u> w;
= Z { Z |:e(¢)6ij - Zaaiaa]} 1
i J
+ Z |:e(¢)6l,u - Z aaiaau] P)x)\u}wi
= Z [e(¢)\i - Z Qi) jGaj — Zam‘aaﬂj
+ Z 6(¢)P)\)\i - Z aaiaappk)\u} Wj
= Z [Z AojQali — Zaai\jflag‘
- Z aaiaaj\j + Z e(¢)PAAi - Z aoziaa,u,P)\)\;Lj| %
- [t
+ Z aaiaauP)\)\u} w; + e(¢) Z P)\)\p,w,u,
= —(7(¢),dp) — e(¢)7,

where 77 denotes the covariant derivative of the Cartan form along the Hilbert
form, and where we have used (2.2) and (ii) of Lemma 2.2.
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DEFINITION 4.2. A Finsler manifold is said to be of weak Landsberg type
if 7 = 0.

The following theorems are immediate consequences of (4.5).

THEOREM 4.3. Let ¢: (M, F) — (N, h) be a non-constant harmonic map
from a Finsler manifold to a Riemannian manifold. Then Sy is horizontally
divergence-free if and only if (M, F) is of weak Landsberg type.

Combining this with Shen’s theorem ([6], [11]) (see the Introduction) we
obtain the following Wood type result (cf. [15, Theorem 2.9]).

THEOREM 4.4. Let ¢: (M, F) — (N, h) be a submersion from a Finsler
manifold to a Riemannian manifold. Then any two of the following conditions
imply the third condition:

(i) ¢ is harmonic;
(ii) Sy is horizontally divergence-free;

(iii) m: SM — M has minimal fibers.

5. Harmonicity of the identity map

In this section we present the harmonic equation of the identity map from
a Finsler manifold to a Riemannian manifold in terms of their geodesic coef-
ficients, and we construct harmonic maps from Berwald manifolds which are
neither Riemannian nor Minkowskian to Riemannian manifolds.

Let I: (M, F) — (M, h) be the identity map from a Finsler manifold (M, F)
to a Riemannian manifold (M, h). As usual we put

I=(I"):U(CM)—R,

where locally I’(z!,...,2™) = . It follows that
i oI

Using (3.21) and (3.22) we have
T (I*) = —g"" Tl — gM¢;,
and hence
(5.1) T = gij [}ng‘ - FFZ‘] - gkjgj-
Denote the geodesic coefficients of (M, F) and (M,h) by FG* and "G,
respectively. By [5, (3.8.3)] we have

e

yiyk
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where Hi jk is the covariant derivative of the Cartan tensor along the Hilbert
form. It follows that

(5:2) g7 T+ g6 =97 | (TGY) ., — HE | + 9" Hi
1 .. . . 1 ..
_ — 15 (Frk Tk k _ — ij (F ik
=597 ("G") iy —HF + HE =57 (FG7) s

where in the second step we used [5, (2.5.11)]. Similarly, for the Riemannian
metric h we have

1

h i hi
(5.3) 5 ("G )yjyk ="T%.
Substituting (5.2) and (5.3) into the harmonic equation (5.1) gives
1 ..
k hevk _ F ok
(5.4 o g (),

Thus we have the following result.

PROPOSITION 5.1.  Let (M, h) be a flat Riemannian space. Then, for any
local Minkowski structure F' on M, the identity map
I:(M,F)— (M,h)

is harmonic.

Proof. By [12, (3.23)] we have

| i ls09a  Ogin|
Fery § 7l . i, k
(5:5) ¢ 2 & lg [28xk ot | VY

On the other hand, F' is local Minkowskian if and only if

(5.6) 9i (2, y) = 9ij ().

The conclusion is now immediate from (5.3)—(5.5). O

DEFINITION 5.2. A Finsler manifold (M, F) is said to be of

(i) Randers type it F = a4 3, where « is a Riemannian metric on M
and 8 = B; dz’ is a 1-form;

(ii) Berwald type if F has vanishing Minkowski curvature, i.e., if P;jzy =0
for all ¢, 4, k, A (cf. [7]).

It is easy to see that a Randers manifold (M, a + () is a Berwald manifold
if and only if 3;; = 0, where 3;); is the covariant derivative of 3 with respect
to the Riemannian metric o, that is, if the 1-form 8 is parallel with respect to
a. In this case, the Randers metric @+ 3 and Riemannian metric o have same
geodesic coefficients (cf. [5, 11.3.11]). Combining this with (5.4) we obtain:
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PROPOSITION 5.3.  Let (M, a+ (3) be a Randers manifold. If B is parallel
with respect to the Riemannian metric o, then the identity

I: (M,a+0) — (M,«)

is harmonic.

Antonelli, Ingarden, and Matsumoto [1] showed that Berwald manifolds
which are neither Riemannian nor Minkowskian can be constructed using cer-
tain Randers metrics. In view of this, our results give examples of harmonic
maps from Berwald manifolds which are neither Riemannian nor Minkowskian.
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