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COMPLEX SCALING AND DOMAINS WITH
NON-COMPACT AUTOMORPHISM GROUP

KANG-TAE KIM AND STEVEN G. KRANTZ

Abstract. In this paper we study the boundary orbit accumulation
points of smoothly bounded domains in C2 with non-compact auto-

morphism group. We prove that a boundary orbit accumulation point
cannot be exponentially flat. This confirms a version of a conjecture
of Greene and Krantz. The proof uses a new result on the a priori
convergence of convex scaling methods, which in particular implies the
equivalence of two different scaling methods on convex domains.

0. Introduction

The notion of studying the automorphism group (i.e., the group of biholo-
morphic self-maps) of a domain in complex space is an old one. Certainly the
primacy of this idea comes in part from Poincaré’s study of the biholomorphic
inequivalence of the ball in C2 and the bidisc in C2. The nub of his proof is
to note that if the domains were equivalent then their automorphism groups
would be isomorphic; then he provides a clever argument to show that in fact
those groups cannot be isomorphic.

More generally, following from Poincaré’s program, and from more recent
work of Burns/Shnider/Wells [BSW] and Greene/Krantz [GRK2], it is known
that two topologically equivalent domains in any given Cn are generically
biholomorphically inequivalent. While it makes sense, in principle, to distin-
guish or to compare domains by using boundary differential invariants (i.e.,
the so-called Chern-Moser invariants), in practice it is not feasible to do so.
Even if all the Chern-Moser invariants of two given domains “match up” in
some sense, it does not follow that these domains are biholomorphically equiv-
alent.
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Thus it is natural to seek other “invariants” by means of which we might
compare and contrast various domains in space. The automorphism group
is a natural invariant to use, for it has interesting algebraic, topological, and
differential-geometric properties. While automorphism groups cannot always
be computed, it is often possible to infer properties of the automorphism
groups of domains (compactness vs. non-compactness, dimension, transitivity,
size of isotropy subgroups, orbit structure, etc.) that allow them to be useful
tools.

Of particular interest in recent years has been the study of those domains
that have non-compact automorphism groups. Part of the motivation for this
study is the following consideration: A domain with transitive automorphism
group (especially a bounded, symmetric one, and particularly one with smooth
boundary) is restricted to live on a very short list. Transitivity is just too rigid
a condition to impose on the automorphism group of a domain in Cn. Non-
compactness of the automorphism group still captures some of the robustness
of a “large” automorphism group, but is not nearly so restrictive.

It is a fundamental fact—following on work of Cartan, and amounting to a
rather sophisticated normal families argument (see [NAR]) that if a bounded
domain Ω ⊆ Cn has non-compact automorphism group then there is a point
q ∈ Ω, a point p ∈ ∂Ω, and automorphisms φj ∈ Aut(Ω) such that φj(q)→ p.
The converse is true as well. We call the boundary point p a “boundary orbit
accumulation point” or “orbit accumulation point” for short. Recent studies
(see [GRK1]–[GRK7], [BEP1]–[BEP4], [KIM1]–[KIM6]) demonstrate that the
(Levi) geometry of the boundary accumulation point reveals important global
information about the geometry of the domain and vice versa. It is therefore
of interest to know what sorts of points in ∂Ω can be orbit accumulation
points.

The primordial result in this subject is the theorem of Bun Wong [BW],
later generalized by Rosay [ROS]. A version of the result is as follows:

Let Ω ⊆ Cn be a bounded domain. Let p ∈ ∂Ω be a point
of strong pseudoconvexity (in particular, ∂Ω is C2 and is
strongly pseudoconvex near p). If p is an orbit accumulation
point for the action of Aut(Ω) on Ω then Ω is biholomorphic
to the unit ball in Cn.

It was this theorem that first suggested to Greene and Krantz that the Levi
geometry of a boundary orbit accumulation point can be a determining factor
in the global geometry of the domain (see [GRK1]). A survey of their studies
up to 1986 appears in [GRK2]. Later work, particularly [GRK3], [GRK4],
led to specific conjectures about the geometric nature of orbit accumulation
points. A discussion of more recent results appears in [IK].

Recent work of Cheung, Fu, Krantz, and Wong [CFKW] shows that a
version of the Bun Wong/Rosay theorem is also true on complex manifolds.
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In particular, the paper [CFKW] gives a characterization of domains in a
complex manifold that have compact quotient.

One of the first results along the lines just suggested (see [GRK4]) is that a
boundary orbit accumulation point must be pseudoconvex. The ideas in that
same paper led to a conjecture, now the object of much attention, known as
the Greene/Krantz conjecture:

Let Ω ⊆ Cn have C∞ boundary and non-compact automor-
phism group. If p ∈ ∂Ω is an orbit accumulation point then p
is of finite type in the sense of Catlin, D’Angelo, and Kohn.

The first substantial result to support the conjecture is due to Kim [KIM3].
It says that if Ω ⊆ Cn is convex, if p ∈ ∂Ω is a boundary orbit accumulation
point, and if there is an open neighborhood of p in which ∂Ω is Levi flat, then
Ω must be a product domain. Such a point p must be of infinite type, but
Kim’s result shows that the domain Ω cannot have smooth boundary. So the
result can be considered a special case of the Greene/Krantz conjecture.

The second result supporting the conjecture is due to Fu, Isaev, and Krantz
[FIK]. It says that if Ω is a smoothly bounded Reinhardt domain with non-
compact automorphism group then Ω has a defining function that is a poly-
nomial. Certainly it follows that the domain in question must be of finite
type. Thus the Greene/Krantz conjecture is confirmed (in a strong form) for
Reinhardt domains.

The present paper is another step in the verification of the Greene/Krantz
conjecture. We formulate the results here for convex domains in C2 (although
a careful examination of the proof shows that the results are true for a limited
class of domains in Cn, and for some non-convex domains as well). Informally,
the result is that if Ω is a convex domain in C2 and if a point p ∈ ∂Ω is infinitely
flat in a certain calculable sense, then p cannot be an orbit accumulation point
of the action of Aut(Ω). While our “infinitely flat” condition is not literally
equivalent to “infinite type” in the sense of Catlin, D’Angelo, and Kohn, it
includes all known examples and many new ones as well; consequently—at
least in dimension two—the theorem provides some theoretical framework for
understanding points of infinite type and why the Greene/Krantz conjecture
should be true.

One of the main difficulties in proving the Greene/Krantz conjecture has
been coming to grips with C∞ functions that vanish to infinite order. Work on
non-compact automorphism groups, to now, has typically hypothesized that
the orbit accumulation point in question be of finite type. Such an assump-
tion has made it possible to exploit Taylor polynomial analysis. Analysis of
points of infinite type has proved, so far, to be resistive. One of the main
contributions of the present work is to demonstrate how to analyze a function
that vanishes to infinite order and thereby to understand a point of a certain
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infinite type. In particular, the points of infinite type that we treat are ob-
tained by composition of the function exp(−1/|z|2) with the defining function
for a finite type point.

An additional technique introduced here is a new, sharpened form of scaling
(as introduced in [FRA], [PIN], [KIM1]–[KIM3]) together with some careful
analysis of possible orbits and orders of contact of orbits. We anticipate
developing these techniques further, and applying them to a broader class of
domains, in later papers.

We present two significant new technical results in this paper. One of them
(Section 4) is an a priori convergence result for Pinchuk scaling. The other
(Section 5) is an equivalence statement for the scaling methods of Pinchuk
and of Frankel. In addition to being crucial for the theorems developed here,
these tools should prove, both conceptually and practically, useful in future
work.

Section 1 of the paper introduces essential notation and definitions and
enunciates the principal results. It also describes the proof strategy. Section
2 performs an analysis of the so-called “model domain”. It is here that all the
hard analysis takes place. Section 3 provides proofs of the two main theorems,
and ties together all the preceding ideas. Section 4 considers convergence
of the scaling methods; indeed it is proved there that the Pinchuk scaling
method, suitably formulated, always converges on a convex domain. Section
5 proves an equivalence statement for the scaling method of Pinchuk and the
scaling method of Frankel. It should be noted that the results of Sections 4
and 5 are used in earlier arguments, but they are given independent proofs
in these later sections. Section 6 provides concluding remarks and proposes
ideas for future investigation.

1. Basic notions and enunciation of principal results

1.1. The class Gp. Throughout, we denote by Gp the collection of boun-
ded domains Ω in C2 with p ∈ ∂Ω satisfying the property that (after a nor-
malization of coordinates and an application of the implicit function theorem)
p = 0 and there is a neighborhood U of p and a C∞ function ϕ of a single
real variable, vanishing at the origin, such that

U ∩ Ω = {(z, w) ∈ U : Re z > ϕ(|w|2)}.

Here we assume:

(A) ϕ(x) = 0 , ∀x ≤ 0.
(B) ϕ(x) > 0 and ϕ′′(x) > 0, ∀x > 0.
(C) For x > 0, the function ψ(x) = −1/ logϕ(x) (defined to be 0 for

x < 0) extends to a function that is C∞ smooth at 0, vanishing to a
finite order m at that point.
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1.2. Principal results. The main result of the present paper is as follows:

Theorem 1.2.1. Let Ω ⊆ C2 be a bounded domain that belongs to the class
Gp. Then there cannot exist a point q ∈ Ω and automorphisms ϕj ∈ Aut(Ω)
such that ϕj(q)→ p as j →∞.

In addition to this theorem pertaining to the Greene-Krantz conjecture,
we have obtained an a priori convergence of the Pinchuk scaling sequence
when an automorphism orbit accumulates at a variety-free convex boundary
point. We also show in this article that the scaling method of S. Frankel is
equivalent to the Pinchuk scaling. However, we choose to keep the statement
in the exposition of this paper.

1.3. Organization of the proofs. In order to make the entire exposition
as clear as possible, we now give a rough sketch of the proof of Theorem 1.2.1.

First assume that 0 = (0, 0) ∈ ∂Ω and that Ω ∈ G0. Seeking a contradiction
we assume that

there exists q ∈ Ω and fj ∈ Aut(Ω) for j = 1, 2, . . . such that
lim
j→∞

fj(q) = (0, 0).

Then we prove (using an a priori convergence theorem for convex scaling
methods; see Section 4 of this paper):

Ω is biholomorphic to either the bidisc or to a certain strongly
pseudoconvex Kobayashi hyperbolic tube domain.

One may use boundary geometry and an application of the scaling methods
developed by S. Pinchuk (for instance) to show that Ω cannot be biholomor-
phic to a strongly pseudoconvex Kobayashi hyperbolic tube domain; details
are presented in Sections 3 and 4. Now we are left with the possibility that Ω
is biholomorphic to the bidisc. In this case, Ω is in particular homogeneous.
Since Ω has a strongly pseudoconvex boundary point, Rosay’s generalization
of Wong’s theorem implies that Ω is biholomorphic to the ball. This leads to
the desired contradiction, since the ball cannot be biholomorphic to the bidisc
by the previously cited theorem of Poincaré.

A careful application of the scaling method followed by a new a priori
convergence theorem for Pinchuk’s scaling method plays a crucial role in our
arguments.

2. The model domain case

2.0. Introductory remarks. In this section we will scale the given (mo-
del) domain along the hypothesized non-compact orbit. The argument divides
into a great many cases and sub-cases. In each instance, we will see that the
scaling does not yield any hyperbolic limit domain except the bidisc or a
certain tube domain (as described in Section 1.3). We will then show that
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the model domain cannot be biholomorphic to either of those limit domains,
whereas our a priori paradigm mandates that the limit domains must exist and
be biholomorphic to the model domain. Proposition 2.7.1 gives a summary
statement of the conclusions that our calculations yield.

2.1. The standard model. Let Ω0 ∈ C2 be defined by

(†) Ω0 = {(z, w) ∈ C2 | Re z > ϕ(|w|2)}

where ϕ : R→ R is a C∞ function that satisfies the conditions (A), (B) and
(C) of Section 1.1.

Throughout this article, this domain will serve as the standard model for
the class Gp (despite its unboundedness, which is immaterial).

2.2. Notation. Let fj ∈ Aut (Ω0), for j = 1, 2, . . ., and q ∈ Ω0 satisfy
that fj(q) → (0, 0) as j → ∞. Write fj(q) = (aj , bj). We will usually drop
the subscripts for the sake of convenience. For instance, we drop the subscript
j and write (aj , bj) = (a, b). Observe that we have Re a > ϕ(|b|2).

2.3. Centering of the orbit. Choose a∗ ∈ C such that (a∗, b) ∈ ∂Ω0,
i.e.,

Re a∗ = ϕ(|b|2).
For convenience, we will also choose a∗ so that it satisfies the condition

Im a∗ = Im a.

Then we perform a linear coordinate change ψ(z, w) = (ζ, ξ) such that{
ζ = (z − a∗) + c(w − b)
ξ = w − b

for some c ∈ C to be chosen later.
We set the notation:

ρ(z, w) = Re z − ϕ(|w|2),
ρ∗ = ρ ◦ ψ−1.

The domain ψ(Ω0) near (0, 0) is defined by the equation ρ∗(ζ, ξ) > 0, that is

ρ∗(ζ, ξ) ≡ Re a∗ + Re(ζ − cξ)− ϕ(|ξ + b|2) > 0.

We now require that

∂ρ∗

∂ξ

∣∣∣∣
0

= 0,
∂ρ∗

∂ξ

∣∣∣∣
0

= 0, and
∂ρ∗

∂(Im ζ)

∣∣∣∣
0

= 0.

In our situation, the third condition is automatically satisfied. The first and
the second conditions are equivalent to each other. Hence we only consider
the first condition, which is equivalent to

c = −2ϕ′(|b|2) · b.
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Therefore the resulting defining equation for ψ(∂Ω) near (0, 0) now becomes

Re ζ = ϕ(|ξ + b|2)− ϕ(|b|2)− 2ϕ′(|b|2) Re bξ.

2.4. Pinchuk’s scaling and its convergence. We write

µ = a− a∗

and choose λ ∈ C such that

(µ, λ) ∈ ψ(∂Ω) and |λ| = min{|η| : η ∈ C, (µ, η) ∈ ψ(∂Ω))}.
Then we let L(z, w) = (z/µ,w/λ) for (z, w) ∈ C2.

In order to state the convergence theorem precisely, we revive the subscripts
for the sequences for a moment. Let us write

Φj ≡ Lj ◦ ψj ◦ fj : Ω0 → C
2

for each j = 1, 2, . . .. Now we present one of the key techniques.

Proposition 2.4.1. Every subsequence of the {Φj} admits a subsequence
that converges uniformly to a holomorphic embedding, say Φ̂ : Ω0 → C

2,
on compact subsets of Ω0 in such a way that Φ̂(Ω0) coincides with the local
Hausdorff limit of the corresponding subsequence of Φj(Ω0).

We give a more general statement and its proof in Section 5.

2.5. Analysis of the scaling of the model domain. Denote by (aj , bj)
= (a, b) the jth automorphism orbit point for the scaling process. Since the
defining inequality (†) above for the model domain is rotationally symmetric
in the w-variable, we may assume that

(1) b > 0

throughout.
Given (a, b) with b > 0, we consider the “centered” defining inequality

(2) Re ζ > ϕ(|ξ + b|2)− ϕ(b2)− 2bϕ′(b2) Re ξ

and denote by Ωj the domain defined by (2). Then we choose λ ∈ C satisfying

(3) (µ, λ) ∈ ∂Ωj and |λ| = min{|η| | (µ, η) ∈ ∂Ωj},
where

(4) µ = Re a− ϕ(b2).

Now we analyze λ. In order to do this, we write λ = x +
√
−1 y with

x, y ∈ R. Then λ realizes the minimum value of the function x2 + y2 under
the constraint equation

ϕ((x+ b)2 + y2)− ϕ(b2)− 2bϕ′(b2)x = µ.

This is a typical Lagrange multiplier problem; one immediately arrives at
the following two cases:
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Case 1. λ ∈ R.
Case 2. λ /∈ R and |λ+ b|2 = b2.

We will take this branching into account when we apply the scaling method
to (†).

2.5.1. The non-tangential orbit case. It is enough to consider the
limit expression

(2.5.1.1) Re ζ > lim
λ→0+

ϕ(|λξ|2)
ϕ(|λ|2)

.

Since Conditions (A), (B) and (C) imply that

(2.5.1.2) lim
r→0+

ϕ(rx)
ϕ(r)

=∞ for every x > 1,

we see that the expression (2.5.1.1) becomes

(2.5.1.3) Re ζ >

{
∞ if |ξ| > 1,
0 if |ξ| < 1.

Consequently, the scaled limit domain Ω̂ defined by (2.5.1.3) is biholomorphic
to the bidisc.

2.5.2. Several cases with tangential orbits. In this case, we are con-
cerned with the convergence of the expression

(2.5.2.1) Re ζ >
ϕ(|λξ + b|2)− ϕ(|b|2)− 2bϕ′(|b|2) Reλξ
ϕ(|λ+ b|2)− ϕ(|b|2)− 2bϕ′(|b|2) Reλ

.

We shall analyze the possible limits of this expression with several possible
choices for λ.

At this point, we remark that the a priori convergence theorem for Pinchuk’s
scaling sequence (Proposition 2.4.1) says that every subsequence of a scaling
sequence must have a subsequence that converges and consequently yields a
scaled limit domain which is biholomorphic to the original domain. Now, in
the below, we shall extract subsequences whenever necessary and show that
the scaled subsequential limits obtained thereof are either non-existent or the
ones that can never be biholomorphic to the original domain. Notice that this
immediately yields a contradiction to the hypothetical assumption that the
non-compact automorphism orbit existed.

Division of our arguments into several cases and sub-cases below is also
based upon extracting subsequences as such.

2.5.2.A. The case λ > 0. Recall the convexity of ϕ and the centering
process. It follows that

(2.5.2.A.1) ϕ((λ+ b)2) > ϕ(b2) + 2bϕ′(b2)λ ,
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and each term in this expression is non-negative. (In fact, the convexity and
the process of centering guarantees that the numerator of (2.5.2.1) is positive
for all ξ near 0.) Thus, choosing a subsequence (from the given noncompact
sequence of automorphisms), we may assume that

(2.5.2.A.2) c1 ≡ lim
ϕ(b2)

ϕ((λ+ b)2)
and c2 ≡ lim

2bϕ′(b2)λ
ϕ((λ+ b)2)

.

Then (2.5.2.1) becomes
(2.5.2.A.3)

Re ζ >
1

1− (∼ c1)− (∼ c2)

{
ϕ(|λξ + b|2)
ϕ((λ+ b)2)

− (∼ c1)− (∼ c2) Re ξ
}
.

Therefore we focus upon the convergence of lim
ϕ(|λξ + b|2)
ϕ((λ+ b)2)

in several dif-

ferent cases.

2.5.2.A.I. b/λ has a bounded subsequence. This case allows us to choose
a subsequence (of the given automorphism orbit) so that

β ≡ lim
b

λ

Then the limit expression of (2.5.2.1) (or, equivalently, (2.5.2.A.3)) becomes

(2.5.2.A.4) Re ζ >

{
∞ if |ξ + β|2 > |1 + β|2,
(−c1 − c2 Re ξ)

/
(1− c1 − c2) if |ξ + β|2 < |1 + β|2,

Since the limit domain has to exist, be biholomorphic to the original domain
(in this note the model defined by Re z > ϕ(|w|2)), and be supported by the
hyperplane Re ζ = 0, we must have c1 = c2 = 0. In conclusion, the scaled
limit domain Ω̂ is defined by

(2.5.2.A.5) Re ζ >

{
∞ if |ξ + β|2 > |1 + β|2,
0 if |ξ + β|2 < |1 + β|2,

which is clearly biholomorphic to the bidisc.

2.5.2.A.II. b/λ diverges to infinity. Again, we look at the limit

lim
ϕ(|b+ λξ|2)
ϕ(|b+ λ|2)

with the condition that λ/b → 0 as the automorphism orbit approaches the
boundary.

In order to handle this situation, we consider ψ(x) = −1
/

log(ϕ(x)) (x ∈
R), where we have (by Conditions (A),(B) and (C) above)

(2.5.2.A.6) ψ(x) = amx
m + · · ·

for some integer m > 0, and am > 0.
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Then

(2.5.2.A.7)
ϕ(|b+ λξ|2)
ϕ(|b+ λ|2)

= exp
ψ(|b+ λξ|2)− ψ(|b+ λ|2)
ψ(|b+ λξ|2) · ψ(|b+ λ|2)

.

Since

ψ(|b+ λξ|2)− ψ(|b+ λ|2) = mamb
2m {2|λ/b|Re(ξ − 1) + o(|λ/b|)}

we have that

ϕ(|b+ λξ|2)
ϕ(|b+ λ|2)

∼ exp
{

2m|λ/b| Re(ξ − 1) + o(|λ/b|)
b2mam ((∼ 1) + (∼ 0))

}
.

Since λ/b→ 0, observe that the term o(|λ/b|) in the last expression makes
no contribution to the limit values. We will again consider several sub-cases.

2.5.2.A.IIa. λ
/
b2m+1 has a convergent subsequence. Choosing a subse-

quence again, we may assume that

limλ
/
b2m+1 = c4.

Then the limit domain Ω̂ is expressed by the inequality

(2.5.2.A.8) Re ζ > A1 (exp{A2 (Re ξ − 1)} − c1 − c2 Re ξ)

for some non-negative constants A1 and A2.
Since the limit domain must be biholomorphic to the model—which is

Kobayashi hyperbolic—we must have A1 > 0. We also see that A2 cannot be
zero. For, if A2 = 0 (i.e., c4 = 0), then to have the hypersurface Re ζ = 0
support the limit domain, the only choice for the limit domain comes from
c2 = 0 and that is the one defined by

Re ζ > A1c1,

which cannot be Kobayashi hyperbolic.
Therefore the limit domain is given by the inequality (2.5.2.A.8) with A1 >

0, and A2 > 0. In this case, the limit domain is biholomorphic to the domain
defined by the inequality

(2.5.2.A.9) Re ζ > exp(Re ξ).

2.5.2.A.IIb. λ
/
b2m+1 diverges to infinity. Then we obtain the limit

domain immediately:

Re ζ >

{
∞ if Re(ξ − 1) > 0,
−(c1 + c2 Re ξ)

/
(1− c1 − c2) if Re(ξ − 1) < 0.
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In order for the limit domain to be supported by the hyperplane Re ζ = 0, we
must have c1 = c2 = 0. But then this limit domain is given by

Re ζ >

{
∞ if Re(ξ − 1) > 0,
0 if Re(ξ − 1) < 0.

This domain is biholomorphic to the bidisc.

2.5.2.B. The case λ < 0. We are led at first to compare the sequences
ϕ(|λ + b|2), ϕ(|b|2), and 2bλ · ϕ′(|b|2), all of which tend to zero. Choosing a
subsequence whenever necessary, we may consider the following three cases,
which cover all the cases but are not mutually exclusive.

2.5.2.B.I. Both ϕ(|b|2)/ϕ(|λ+b|2) and 2bλϕ′(|b|2)/ϕ(|λ+b|2) admit bounded
subsequences. In this case, there exist non-negative constants C1, C2 such that

lim
ϕ(b2)

ϕ((λ+ b)2)
= C1 and lim

2bλ · ϕ′(b2)
ϕ((λ+ b)2)

= −C2.

Here we have to choose a subsequence if necessary.
Then the expression (2.5.2.1) is equivalent to

Re ζ >
1

1− (∼ C1) + (∼ C2)
·
{
ϕ(|λξ + b|2)
ϕ((λ+ b)2)

− (∼ C1) + (∼ C2) Re ξ
}
.

Therefore the analysis of this limit expression is similar to the case of λ > 0.
The only possible scaled limit domains are either biholomorphic to the bidisc
or the strongly pseudoconvex tube domain of Case 2.5.2.A.

2.5.2.B.II. Both ϕ(|λ+ b|2)/ϕ(|b|2) and 2bλϕ′(|b|2)/ϕ(|b|2) admit bounded
subsequences. In this case, choosing a subsequence again if necessary, we may
assume that

lim
ϕ((b+ λ)2)
ϕ(b2)

= A1 and lim
2bλ · ϕ′(b2)
ϕ(b2)

= A2

for some constants A1 ≥ 0 and A2 ≤ 0. From the conditions satisfied by ϕ,
we deduce that

A2 = 2bλ · m
am
· 1
b2m+2

· (∼ 1) = (∼ 1) · 2m
am
· λ

b2m+1
.

Consequently,

lim
λ

b2m+1
=
A2am
2m

as λ, b→ 0. In particular, we see that

lim
λ

b
= 0.
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Now we observe:
ϕ(|b+ λξ|2)

ϕ(b2)
∼ exp

(
m

am
· |λ|
b2m+1

· Re ξ − 1 + o(1)
1 + o(1)

)
→ c1 exp(c2 Re ξ)

for some constants c1 > 0 and c2 ≥ 0. As a consequence, we deduce that the
expression (2.5.2.1) is equivalent to

Re ζ >
1

(∼ A1)− 1− (∼ A2)
· (c1 exp(c2 Re ξ)− 1−A2 Re ξ) .

Since c2 ≥ 0 and A2 ≤ 0, and since the limit domain must be supported by
the hyperplane defined by Re ζ = 0, we can see immediately that this case
yields no limit domain that can be Kobayashi hyperbolic.

2.5.2.B.III. Both ϕ(|λ+b|2)/(2bλϕ′(|b|2)) and ϕ(|b|2)/(2bλϕ′(|b|2)) admit
bounded subsequences. Choosing a subsequence we may again assume that

lim
ϕ((λ+ b)2)
2bλ · ϕ′(b2)

= B1 and lim
ϕ(b2)

2bλ · ϕ′(b2)
= B2

for some non-positive constants B1, B2.
Notice that the crucial term to handle in the scaling of this case is

lim
ϕ(|λξ + b|2)
2bλ · ϕ′(b2)

.

Since ϕ is a strictly increasing function on the positive real axis, we may
choose µ = µ(λ, b) > 0 such that ϕ(µ2) = −2bλ · ϕ′(b2). Thus the limit above
can be re-written as

− lim
ϕ(|λξ + b|2)

ϕ(µ2)
.

2.5.2.B.IIIa. The value ∞ or γ > 0 is a subsequential limit for λ/b. The
value for − limϕ(λ2|ξ + b/λ|2)/ϕ(µ2) depends upon the subsequential limits
of λ2/µ2. If∞ is a subsequential limit of λ/µ, then the value of the above limit
becomes identically −∞. This fact will imply that the scaled limit domain is
not Kobayashi hyperbolic. If 0 is a subsequential limit of λ/µ, then the value
of the above limit becomes identically 0. Again, the scaled limit domain in
this case cannot be Kobayashi hyperbolic. Finally, if β > 0 is a subsequential
limit of λ/µ, then we have

− lim
ϕ(λ2|ξ + b/λ|2)

ϕ(µ2)
=

{
0 if |ξ + γ−1|2 < β−2,

−∞ if |ξ + γ−1|2 > β−2.

In this case the scaled limit domain is given by

Re ζ > lim
1

(∼ B1)− (∼ B2) + 1
·
{
−ϕ(|λξ + b|2)

ϕ(µ2)
− (∼ B2)− Re ξ

}
,
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so this domain cannot be supported by the hyperplane defined by Re ξ = 0.

2.5.2.B.IIIb. The sequence λ/b tends to 0. Recall the conditions which
the function ϕ satisfies. We first have that

ϕ(|b+ λξ|2)
ϕ(µ2)

= exp
{
ψ(|b+ λξ|2)− ψ(µ2)
ψ(µ2)ψ(|b+ λξ|2)

}
.

Moreover, ψ(x) is smooth and vanishes to finite order m > 0 at the origin,
i.e., its Taylor expansion at the origin is given by ψ(x) = amx

m + Rm(x),
where Rm(x) = o(|x|m).

Now

ψ(|b+ λξ|2) − ψ(µ2)

= am(b2m − µ2m) + amb
2m

(
λ

b
Re ξ + o((λ/b) Re ξ)

)
+Rm(b2|1 + λξ/b|2)−Rm(µ2).

At this point, we need to compare b2m − µ2m and λb2m−1. We do this by
considering sub-cases again:

2.5.2.B.IIIb′. The sequence (b2m−µ2m)/(λb2m−1) has a subsequence that
converges. Let the subsequential limit be L1. Note that L1 is a real number.
Then it turns out that

ψ(|b+ λξ|2)− ψ(µ2) = amb
2m−1λ (Re ξ + L1 + o(1 + |ξ|)) .

Thus
ϕ(|λξ + b|2)

ϕ(µ2)
= exp

{
1
am
· b

2m−1λ

b2mµ2m
· Re ξ + L1 + o(1 + |ξ|)

1 + o(1 + |ξ|)

}
.

If a subsequence of λ/(bµ2m) has a bounded limit, the corresponding scaled
limit domain is biholomorphic either to a strongly pseudoconvex tube domain
of Case 2.5.2.A or to the bidisc. If λ/(bµ2m) → −∞, then either the scaled
limit has to be biholomorphic to the bidisc, or the scaled limit domain cannot
be supported by the hyperplane Re ζ = 0.

2.5.2.B.IIIb′′. The sequence (b2m−µ2m)/(λb2m−1) diverges to ±∞. Then
we see that

ψ(|b+ λξ|2)− ψ(µ2) = am(b2m − µ2m)(1 + o(1 + |ξ|)).
Hence,

ϕ(|λξ + b|2)
ϕ(µ2)

= exp
{

1
am
· b2m−1λ

b2m − µ2m
· (1 + o(1 + |ξ|))

}
.

If this last expression is convergent, then it converges to a constant that is
independent of ξ. If this expression diverges, the scaled limit domain, at its
best choices, cannot be a Kobayashi hyperbolic domain.
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2.5.2.C. The case λ ∈ C \ R. In this case, we have ϕ(|λ + b|2) = ϕ(b2).
Therefore the scaling is dependent upon the analysis of the expression

Re ζ >
1

2ϕ′(b2)bReλ
{
ϕ(|λξ + b|2)− ϕ(b2)− 2ϕ′(b2)bReλξ

}
.

Since the function ϕ is strictly increasing over the positive real axis, we also
have

|λ+ b|2 = b2.

Thus it follows that

Reλ ≤ 0 and
∣∣∣∣λb + 1

∣∣∣∣2 = 1.

In particular, λ/b stays bounded. Choosing a subsequence, we may assume
that

lim
λ

b
= L.

Furthermore, notice that

Reλ
|λ|

= −1
2
· |λ|
b
−→ −1

2
|L|.

Now we consider subcases.

2.5.2.C.I. L 6= 0. In this case, we see that

ϕ(b2)
2bϕ′(b2) Reλ

∼ ϕ(b2)
−|L|2b2ϕ′(b2)

∼ −mam|L|−2b2m−2

→
{

0 if m > 1,
−mam|L|−2 if m = 1.

Hence, choosing a subsequence, we see that the scaled limit is determined by
the expression

Re ζ >
ϕ(|λξ + b|2)
2bϕ′(b2) Reλ

+ c1 + c2 Re(γ̄ξ),

where c1 and c2 are constants with c1 ≥ 0 and c2 > 0, and where γ is a
complex number with modulus 1. Therefore the analysis of the scaled limit
domain again focuses upon

lim
ϕ(|λξ + b|2)
2bϕ′(b2) Reλ

.

Notice that in our case |λ|/b → |L| > 0. Hence, the analysis of the above
expression is similar to that of Sub-Case 2.5.2.B.IIIa. However, since c1 ≥ 0
and c2 > 0, our scaled limit domain can never by supported by the hyperplane
Re ξ = 0. In order to avoid repeating elementary ideas that we have used
before, we omit the details of this argument.
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2.5.2.C.II. L = 0, i.e., λ/b → 0. Choose a subsequence again so that
λ/|λ| → γ in C. Now, notice that

2bϕ′(b2) Reλξ
2bϕ′(b2) Reλ

=
|λ|

Reλ
· Re

λ̄

|λ|
ξ

→ ∞

for all ξ ∈ C away from the line Re γ̄ξ = 0. Let us write

S(ξ, λ, b) =
ϕ(b2)

2bϕ′(b2) Reλ
+

2bϕ′(b2) Reλξ
2bϕ′(b2) Reλ

.

Then limS(ξ, λ, b) =∞ for almost all ξ ∈ C.
Now we consider the term

T (ξ, λ, b) ≡ ϕ(|λξ + b|2)
2bϕ′(b2) Reλ

.

As in the case of Sub-Case 2.5.2.B.IIIb, we let µ = µ(λ, b) > 0 be chosen such
that

ϕ(µ2) = −2bϕ′(b2) Reλ.

Then we have

T (ξ, λ, b) = exp
{
am(b2m − µ2m) + amb

2m (Re(λ/b)ξ)
a2
mb

2mµ2m
· [1 + o(1 + |ξ|)]

}
.

Recall the analysis of Sub-Case 2.5.2.B.IIIb. With some minor adjustments,
we can deduce that for all ξ away from a thin subset of C we have the following
four possibilities for the value of limT (ξ, λ, b):

(a) It converges to a constant independent of ξ.
(b) It converges to a function of type exp(A Re γξ + B) for some real

constants A,B and a constant γ ∈ C with norm 1.
(c) It diverges and the speed of its divergence is not affected by Re ξ.

More precisely, for any ξ1, ξ2 ∈ C, and for any ε > 0, we have

lim
T (ξ1, λ, b)

(T (ξ2, λ, b))
1+ε . = 0

(d) There is an open region G ⊂ C such that limT (ξ, λ, b) = 0 for every
ξ ∈ R and limT (ξ, λ, b) = ∞ for every ξ ∈ C \ R except possibly for
a thin set. Moreover, we have one more property. For points ξ1, ξ2
at which limT diverges, we consider the case of Re ξ1 < Rex2. Then
there is a constant r = r(ξ1, ξ2) > 0 such that

lim
T (ξ2, λ, b)

(T (ξ1, λ, b))1+δ
=∞

for every δ with 0 < δ < r.
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In the cases (a), (b) and (c), it follows immediately that the scaled limit
domain cannot exist as a Kobayashi hyperbolic domain. In the case (d), we
reach at the same conclusion as well because the speeds of divergence for
T (ξ, λ, b) and S(ξ, λ, b) vary quite differently according to the values of ξ.

In conclusion, the assumptions of this section do not yield any Kobayashi
hyperbolic scaled limit domain other than the bidisc or the tube.

2.6. Holomorphic inequivalences. Now we establish the needed biholo-
morphic inequivalences.

Proposition 2.6.1. The model domain Ω0 is not biholomorphic to the
bidisc.

Proof. The proof is immediate. First of all, considering two complex inde-
pendent supporting hyperplanes of Ω0, a linear fractional transform maps Ω0

onto a bounded domain, say G0, in C2. Then G0 has a C2 smooth strongly
pseudoconvex boundary point. If Ω0 were biholomorphic to the bidisc, then
Ω0 (and hence G0 also) would be homogeneous. Then Rosay’s generalization
of Wong’s theorem would imply that G0 is biholomorphic to the unit ball
in C2. Consequently, we have to conclude that the ball and the bidisc are
biholomorphic to each other, which contradicts the previously cited theorem
of Poincaré. �

Proposition 2.6.2. The model domain Ω0 is not biholomorphic to the
tube domain R = {(z, w) ∈ C2 : Re z > exp(Re w)}.

Proof. This proof is again by the scaling method of Pinchuk. Seeking a
contradiction, we suppose that Ω0 and R are biholomorphic to each other.
We choose two supporting hyperplanes for R that are complex linearly inde-
pendent, and use linear fractional transformations to realize R as a bounded
domain, say R̃, in C2. Notice that R̃ is strongly pseudoconvex at every bound-
ary point except possibly at one point, say p̃∞ ∈ ∂R̃, which corresponds to
the point at infinity for R.

Now consider the induced biholomorphic mapping F : Ω0 → R̃. Let

A = Ω0 ∩ {(z, 0) ∈ C2} = {(z, 0) ∈ C2 : Re z > 0} .

Then consider F (A) ⊂ R̃. By Fatou’s theorem, F |A has non-tangential bound-
ary limits almost everywhere. If the boundary limits consisted of one single
boundary point, then Privalov’s theorem would imply that F |A is constant.
Since F is a biholomorphic mapping, this cannot happen. Therefore we may
choose p ∈ ∂A and a sequence pj ∈ A approaching p radially such that F (pj)
accumulates at a boundary point p̃ of R̃ with p̃ 6= p̃∞. Thus p̃ is a strongly
pseudoconvex boundary point of R̃. Now consider the scaling sequence Λj ◦ψj
(centering followed by scaling; see Sections 2.2–2.4 for notation) with respect
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to pj in Ω0, the scaling sequence Λ̃j ◦ ψ̃j (again, centering followed by scaling)
with respect to F (pj) in R̃ respectively, and the sequence of mappings

Λ̃j ◦ ψ̃j ◦ F ◦ (Λj ◦ ψj)−1 .

It is not hard to see that there is a subsequence that converges to a holo-
morphic mapping; this mapping in turn gives rise to a holomorphic mapping,
say F̂ , from a bidisc into the ball. This last is true because Ω0 scales to the
domain biholomorphic to a bidisc along such a point sequence and any con-
vex domain scales to the domain biholomorphic to the ball along any point
sequence that accumulates at a strongly pseudoconvex point. Consider the
inverse of the above sequence. Choosing subsequences if necessary, it is easy
to see that the mapping F̂ is in fact a biholomorphic mapping from the bidisc
to the ball, which is absurd. Therefore the proof is complete. �

2.7. Compactness of Aut (Ω0). Summarizing the arguments presented
so far in this section, we arrive at the following result:

Proposition 2.7.1. In the model domain Ω0, there do not exist a point
q ∈ Ω0 and a sequence {fj : j = 1, 2, . . .} ⊂ Aut(Ω0) satisfying limj→∞ fj(q) =
(0, 0).

In fact, one may even conclude that the model domain Ω0 admits no
automorphism orbit accumulating at any boundary point. This shows that
Aut (Ω0) is compact with respect to the topology of uniform convergence on
compact subsets.

3. Proof of the main theorem

We first need the following modification of convex scaling techniques.

Proposition 3.0.2. Suppose that Ω is a bounded domain in C2 with p ∈
∂Ω and Ω ∈ Gp. Suppose also that there exists q ∈ Ω and fj ∈ Aut(Ω)
(j = 1, 2, . . .) satisfying lim

j→∞
fj(q) = p. Then every subsequence of Pinchuk’s

scaling sequence Φj defined in the preceding section admits a subsequence, say
Φjk , that converges to a holomorphic embedding Φ̂ : Ω → C

2 uniformly on
compact subsets of Ω. Furthermore, Φ̂(Ω) is the limit domain of the sequence
Φjk(Ω) in the sense of local Hausdorff set-convergence.

The detailed proof of this proposition is given in Section 4, in a more general
setting.

Now we can finish the proof of Theorem 1.2.1. If Ω ∈ Gp admits an au-
tomorphism orbit fj(q) as in the hypothesis of the proposition above with
fj(q) → p as j → ∞, then our scaling method applies to Ω. So we are left
with the conclusion that Ω is biholomorphic to either the bidisc or the tube
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domain {(z, w) ∈ C2 : Re z > exp(2 Rew)}. As a result, the same arguments
as in the preceding section on “inequivalences” imply that neither conclusion
is possible. Such a contradiction originates from the assumption that Ω ad-
mits a non-compact automorphism orbit accumulating at p. Therefore the
assertion of Theorem 1.2.1 follows. �

4. Convergence of the scaling

We prove the convergence of Pinchuk’s scaling on convex domains. We first
treat the globally convex case, and then generalize it to the locally convex
orbit accumulation point case. Since the proof that we present in complex
dimension two actually applies to two-dimensional slices in any dimension,
the argument applies to convex domains in all dimensions. In fact, we explain
how the proof works in all dimensions in a later part of this section in which
we show that the two scaling methods of Pinchuk and Frankel are equivalent.

4.1. Globally convex case. Let Ω ⊂ C2 be a bounded, convex domain
admitting

0 = (0, 0) ∈ ∂Ω, q ∈ Ω, and fj ∈ Aut(Ω) (j = 1, 2, . . .)

which satisfy lim
j→∞

fj(q) = 0.

4.1.1. Normalization at the orbit accumulation point. Let us denote
by (z, w) the standard coordinates of C2, and let z = x+ iy, w = u+ iv, where
x, y, u, v are real variables.

Changing the coordinates of C2 at 0 linearly, if necessary, we may assume
that Ω near 0 is represented by the inequality

v > ψ(x, y, u)

where ψ is a non-negative convex function.

4.1.2. Centering the orbit. For each j = 1, 2, . . ., denote by fj(q) =
(qj1, qj2) ∈ C2. Then consider the C-affine change of coordinates Λj : C2 →
C

2 : (z, w) 7→ (ζ, ξ) defined by

ζ = z − qj1,
ξ = eiθj (w − q∗j2)− cj(z − qj1).

We may select the values θj ∈ R, cj ∈ C and q∗j2 ∈ C so that we have

• (qj1, q∗j2) ∈ ∂Ω,
• Λj(Ω) is supported by the hyperplane Im ξ = 0,
• Λj(Ω) is contained in the half space Im ξ > 0, and
• Λj(fj(q)) = (0, iεj) for some εj > 0.
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4.1.3. Scaling with the centered orbit. Let

λj = min{|z| : z ∈ C, (z,
√
−1 εj) ∈ ∂(Λj(Ω))}

and define the linear map Sj : C2 → C
2 by

Sj(z, w) =
(
z

λj
,
w

εj

)
for each j = 1, 2, . . .. The Pinchuk scaling sequence is

Φj ≡ Sj ◦ Λj ◦ fj : Ω→ C
2 (j = 1, 2, . . .).

4.1.4. Convergence. We derive the convergence in three steps.

Step 1: Horizontal discs. Choose a point (ζj ,
√
−1εj) ∈ ∂(Λj(Ω)) such that

|ζj | = λj , for each j. Then the set

Ej = {(z,
√
−1εj) ∈ C2 : |z| ≤ λj}

is contained in the domain Λj(Ω) and touches the boundary of Λj(Ω) at
(ζj ,
√
−1εj). Therefore the set

E = {(z,
√
−1) ∈ C2 : |z| < 1}

is contained in Sj ◦ Λj(Ω) = Φj(Ω) for every j. (Notice that E = Sj(Ej) for
every j.) Moreover, there exists zj ∈ C with |zj | = 1 such that (zj ,

√
−1) ∈

∂E ∩ ∂(Λj(Ω)) for every j.

Step 2: Vertical rhombi. Now consider the planar domain

Xj = {(0, w) ∈ C2 : w ∈ C} ∩ Λj(Ω).

For α > 0, consider the rhombus

Rj ≡ {(0, u+
√
−1v) ∈ C2 : |u|+ α|v − εj | < αεj}.

Since Ω is convex, and since fj(q) → 0 as j → ∞, we see that there exists a
positive real value for α independent of j satisfying Rj ∈ λj(Ω) for every j.
Thus the rhombus R ≡ {(0, u+

√
−1v) ∈ C2 : |u|+α|v− 1| < α} is contained

in Sj ◦ Λj(Ω) = Φj(Ω), since Sj(Rj) = R for every j.

Step 3: Two supporting hyperplanes. Let us consider the convex hull Q of
E and R above. It is an open subset of C2 containing (0,

√
−1). Moreover,

(zj , i) ∈ ∂Q∩Λj(Ω) for every j. Choosing a subsequence (from fj) whenever
necessary, we have the following:

• The sequence Φj(Ω) converges to some convex domain Ω̂ in the topol-
ogy of local Hausdorff set convergence. (Notice that Ω̂ exists because
of the Blaschke selection theorem on convex bodies, taking subse-
quences whenever necessary.)
• The point sequence zj converges to z∞ ∈ C with |z∞| = 1.
• The supporting planes Πj of Φj(Ω) at (zj ,

√
−1) converge to the hy-

perplane Π, which supports Ω̂ at (z∞,
√
−1).
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Recall that the origin 0 = (0, 0) ∈ C2 is always a boundary point of Φj(Ω)
for every j, and the hyperplane

Ξ ≡ {(0, w) : Imw = 0}
is a supporting hyperplane of Φj(Ω) for every j.

Since Ξ and Πj also support Q at 0 and at (zj ,
√
−1), respectively, for

every j, the hyperplanes Ξ and Π must support Q at 0 and at (z∞,
√
−1),

respectively. Consequently, their normal lines are linearly independent over
C. This shows that the limit domain Ω̂ of the Pinchuk scaling sequence is
contained in the region bounded by two hyperplanes whose normal lines are
C-linearly independent. This implies:

Proposition 4.1.1. The sequence of maps Φj : Ω → C
2 is pre-compact,

in the sense that every one of its subsequences has itself a subsequence that
converges uniformly on compact subsets.

We have yet to establish that the subsequential limits are holomorphic
embeddings of Ω into C2.

4.1.5. Holomorphic re-embedding. Pinchuk’s original method will now
play a decisive role. Let us consider a compact exhaustion K` of Ω̂. Then
consider the sequence of mappings

Φj−1 : K` → Ω

for j = 1, 2, . . .. Since Ω is bounded, the sequence is clearly a pre-compact
normal family. We also have Φj(q) = (0,

√
−1) for every j, and (0, i) is an

interior point of Ω̂. (See Section 4.1.4 above.) Therefore we must have that
‖(dΦj(q))−1‖ is a bounded sequence, by the Cauchy estimates. Since Propo-
sition 4.1.1 above has shown that ‖dΦj(q)‖ is a bounded sequence, Hurwitz’s
theorem together with local uniform convergence yields:

Proposition 4.1.2. Every subsequence of the Pinchuk scaling sequence
Φj : Ω → C

2 contains a subsequence that converges uniformly on compact
subsets to a holomorphic mapping, say Φ̂, of Ω into C2 whose holomorphic
Jacobian determinant is nowhere vanishing in Ω.

We further demonstrate the following result:

Proposition 4.1.3. The map Φ̂ : Ω→ C
2 in the preceding proposition is

globally injective.

Proof. Seeking a contradiction, we assume the contrary that the map Φ̂ :
Ω → C

2 is not injective. Then there exist two distinct points x, y ∈ Ω such
that

Φ̂(x) = Φ̂(y) = ξ
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Choose r > 0 so that we may have
• B(x; 2r) ∪B(y; 2r) ⊂⊂ Ω,
• B(x; 2r) ∩B(y; 2r) = ∅ (the empty set),
• The restricted maps Φ̂|B(x;2r) and Φ̂|B(y;2r) are injective, respectively.

Note that Φ̂ is an open mapping, since it is locally invertible. Thus we choose
s > 0 to satisfy

B(ξ; 2s) ⊂ Φ̂(B(x; r)) ∩ Φ̂(B(y; r)).

Then we have two open sets, G1 ≡ Φ̂|B(x;2r)
−1 (B(ξ; s)) in B(x; 2r), and

G2 ≡ Φ̂|B(y;2r)
−1 (B(ξ; s)) in B(y; 2r).

Since Φj is globally injective for every j, we must have

Φj(G1) ∩ Φj(G2) = φ (the empty set) ∀j = 1, 2, . . .

while
Φj(G1) ∪ Φj(G2) ⊂ B(ξ; 2s)

for all sufficiently large values of j. Altogether, we have

0 ≤ dis(Φj(x), B(ξ; 2s) \ Φj(G1))
≤ dis(Φj(x),Φj(y))
→ 0 as j →∞.

Therefore we have (because of uniform convergence of Φj to Φ̂ on compact
subsets of Ω)

0 = lim
j→∞

dis(Φj(x), B(ξ; 2s) \ Φj(G1))

= dis(Φ̂(x), B(ξ; 2s) \ (Φ̂(G1)))
= dis(ξ,B(ξ; 2s) \B(ξ; s))
= s

> 0 ;

this is a contradiction. �

Altogether, we arrive at the main result of this subsubsection.

Theorem 4.1.1. Every subsequence of the Pinchuk scaling sequence Φj :
Ω→ C

2 contains a subsequence that converges uniformly on compact subsets
to a holomorphic embedding of Ω into C2.

4.1.6. The local Hausdorff limit domain. As above, we denote by
Φ̂ : Ω→ C

2 the holomorphic re-embedding of Ω into C2 obtained as a subse-
quential limit of the Pinchuk scaling sequence. The aim of this subsubsection
is to analyze the set Φ̂(Ω).

First we consider the local Hausdorff set-limit of the sequence Φj(Ω). To be
precise, we take the local Hausdorff (subsequential) set limit of the sequence of
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the closures of Φj(Ω) first. It is a convex set, since each Φj(Ω) is convex. We
then denote its interior by Ω̂. Then, as in Pinchuk’s original scaling method,
we may choose a subsequence from Φj (and denote the subsequence by the
same notation) so that we have:

• for every compact subset K of Ω the sequence Φj |K : K → C
2 con-

verges uniformly;
• Φj(K) ⊂ Ω̂ for j large;
• for every compact subset K̃ of Ω̂, Φ−1

j (K̃) ⊂ Ω) for j large;
• the sequence Φ−1

j |K̃ : K̃ → Ω converges uniformly.

Letting K and K̃ grow to exhaust Ω and Ω̂, respectively, we see that the
limit maps Φ̂ ≡ lim Φj and Ψ ≡ lim Φ−1

j define the holomorphic mappings

Φ̂ : Ω→ Ω̂ and Ψ : Ω̂→ Ω.
Since Ψ ◦ Φ̂(q) = q and d(Ψ ◦ Φ̂)(q) = I and Φ̂ ◦ Ψ(0, i) = (0, i) and d(Φ̂ ◦

Ψ)(0, i) = I, a generalization (see [WU]) of Schwarz’s lemma implies that
Φ̂(Ω) ⊂ Ω̂ and furthermore that Φ̂ : Ω → Ω̂ is a biholomorphism. In conclu-
sion, we have:

Proposition 4.1.4. Φ̂(Ω) = Ω̂.

Remark 4.1.1. The main result of this paper is a proof of the Greene-
Krantz conjecture for a broad class of convex domains in C2. While many of
the techniques apply to higher dimensions, and to non-convex domains, there
are a number of technical difficulties to overcome if we are to extend our
results to a genuinely more general setting. However, we also remark that the
contents of the present section can easily be generalized to all dimensions. One
simply need to consider several vertical rhombi (see the proof of Theorem 5.1.1
for a detailed description) following the concept called the line type. For the
concept of line types see [MCS] and references therein, for instance.

4.2. Generalization to the locally convex case. Let Ω be a bounded
domain in C2. Assume that Ω admits a boundary point p ∈ ∂Ω with the
following properties:

(i) ∂Ω is variety-free at p.
(ii) p admits an open neighborhood U ⊂ C2 and a one-to-one holomorphic

mapping g : U → C
2 such that g(U ∩ Ω) is convex.

(iii) There exists fj ∈ Aut(Ω) (j = 1, 2, . . .) and a point q ∈ Ω such that
lim
j→∞

fj(q) = p.

Now we build Pinchuk’s scaling sequence for g(U ∩ Ω) for the sequence
g◦fj(q) accumulating at g(p) ∈ g(U∩∂Ω); we follow the exposition of Sections
4.1.1–4.1.3.



DOMAINS WITH NON-COMPACT AUTOMORPHISM GROUP 1295

The domain to scale is now g(U ∩Ω) and the reference sequence is g◦fj(q).
Thus we instead write

g ◦ fj(q) = (qj1, qj2)
and then repeat the construction of the scaling sequence as in subsections
4.1.1–4.1.3 with g(U ∩ ∂Ω) replacing ∂Ω in this case. We shall use the same
notation, but in such a way that

• Λj denotes the centering which transforms g(U∩∂Ω) to a hypersurface
which passes through the origin and is contained in {(z, w) ∈ C2 :
Imw > 0},
• Λj ◦ g ◦ fj(q) = (0,

√
−1 εj) for εj > 0,

• λj = min{|z| : (z, iεj) ∈ Λj ◦ g ◦ (U ∩ ∂Ω)}, and
• Sj(z, w) = (z/λj , w/εj).

Since ∂Ω is variety-free at p, we immediately have:

Lemma 4.2.1. λj → 0 as j →∞.

We also obtain:

Lemma 4.2.2. For every compact subset K of Ω, there exists a constant
JK > 0 such that fj(K) ⊂ U ∩ Ω for all j > JK .

For a detailed proof, see [KIK].
Now choose a compact exhaustion K` (` = 1, 2, . . .) of Ω. Lemma 4.2.2

implies that for each K`, we may choose j` > 0 such that the composition

Φj` ≡ Sj` ◦ Λj` ◦ g ◦ fj` |K`
is a well-defined holomorphic embedding of K` into C2. Changing the indices
and choosing a subsequence, we may say that

Φj ≡ Sj ◦ Λj ◦ g ◦ fj |Kj : Kj → C
2

defines a holomorphic embedding of Kj into C2 for each j. We again call this
Φj the Pinchuk scaling sequence.

Then the arguments in Sections 4.1.4–4.1.6 apply to the current case, start-
ing from the vertical rhombus and horizontal disc arguments which yield that
Sj ◦ Λj ◦ g(U ∩ Ω) is supported by two complex independent hyperplanes
that converge to two independent hyperplane as before. Altogether, with the
notation and terminology above, we arrive at the following result:

Theorem 4.2.1. Let Ω ⊂ C2 be a bounded domain that is locally convex
and variety-free at p ∈ ∂Ω. Assume further that there exists an automorphism
orbit {fj(q)} in Ω accumulating at p. Then every subsequence of the Pinchuk
scaling sequence Φj constructed above contains a subsequence that converges
uniformly on compact subsets to a holomorphic embedding Φ̂, say, of Ω into
C

2. Moreover, Φ̂(Ω) coincides with the unbounded convex domain which is
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the limit domain limSj ◦ Λj ◦ g(Ω ∩ U) in the sense of local Hausdorff set-
convergence.

Notice that the last statement of this theorem uses Lemma 4.2.1.

5. Equivalence of the two scaling methods

The main content of Section 4 concerns the scaling method developed by
S. Pinchuk. There is, of course, another scaling method that was developed
by S. Frankel in the late 1980s (see [FRA]). Frankel’s scaling method consists
of considering the mappings

ωj(z) ≡ (dfj(q))−1(fj(z)− fj(q))
for a convex Kobayashi hyperbolic domain Ω ⊂ C

n which admits a non-
compact automorphism orbit fj(q) accumulating at a boundary point of Ω.
The main results can be summarized as:

Theorem (Frankel [FRA]). Every subsequence of the sequence ωj : Ω→
C
n contains a sequence that converges uniformly on compact subsets of Ω that

converges to a 1-1 holomorphic mapping, say ω̂, of Ω into Cn. Moreover, ω̂(Ω)
is the limit domain (convex unbounded) of the sequence (dfj(q))−1(Ω− fj(q))
in the sense of local Hausdorff set-convergence.

First notice that the convergence of Pinchuk’s scaling on convex domains
extends immediately to all dimensions: after the centering with λj of the
orbit fj(q), one first considers the vertical rhombus, and then lets Vj,1 be its
orthogonal complement with respect to the standard Hermitian inner product
of Cn. Then Vj,1 is a complex n−1 dimensional subspace of Cn. Then consider

λj1 = min{|Λj ◦ fj(q)− ζ| : ζ ∈ Λj(∂Ω) ∩ Vj,1} .
Let ζj,1 ∈ ∂Ω ∩ Vj,1 be a point that realizes the value of λj,1. Then consider
Vj,2, which is the orthogonal complement of the vector Λj ◦fj(q)−ζj,1 in Vj,1.
Then choose λj,2 and the point ζj,2 ∈ Λj(∂Ω)∩ Vj,2 similarly. Inductively, we
are left with the orthonormal vectors

vj,` =
[
Λj ◦ fj(q)− ζj,1

] / [
|Λj ◦ fj(q)− ζj,1|

]
, j = 1, . . . , n− 1,

vj,n =
[
Λj ◦ fj(q)

] / [
|Λj ◦ fj(q)|

]
,

and the linear mapping Sj : Cn → C
n defined by

Sj(vj,`) =
vj,`
λj,`

, for ` = 1, . . . , n ,

where λj,n = |Λj ◦ fj(q)|. Then it is easy to see that the set Sj ◦ Λj(Ω) is
contained in the convex set supported by the supporting hyperplanes of the
convex hull of the union of vertical rhombus and the “horizontal” discs in each
vj,` directions. Thus all these supporting hyperplanes are linearly indepen-
dent over C, and they converge to complex linearly independent hyperplanes.
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This natural higher dimensional generalization of our considerations in Sec-
tion 4.1.4 immediately establishes the convergence of Pinchuk’s scaling on
convex domains of all dimensions.

Now the convergence of Pinchuk’s scaling sequence Sj ◦ Λj ◦ fj : Ω → C
n

implies in particular that the sequence Sj ◦dΛj ◦dfj(q) is a bounded sequence
with its determinant bounded away from zero. Therefore we may summarize
the situation as follows:

Theorem 5.1.1. The sequence of n× n matrices

dfj(q) = Aj ◦ Sj ◦ dΛj , for each j = 1, 2, . . . ,

satisfies
(a) ‖Aj‖ ≤ C for all j = 1, 2, . . ., and
(b) detAj ≥ c

for some positive constants c, C that are independent of j.

These arguments show that the end results of the scaling methods of
Frankel and of Pinchuk are equivalent up to a non-singular linear change
of coordinates on their limit domains. Furthermore, this observation gives a
quantitative understanding (for bounded convex domains) for the longstand-
ing intuition that the automorphism sequence that gives an orbit accumulating
at the boundary must in fact conform to the boundary Levi geometry at the
orbit accumulation point.

6. Concluding remarks

We have proved a version of the Green-Krantz conjecture for convex do-
mains in complex dimension two. The methods that we introduce here suggest
that progress in higher dimensions is possible, and we intend to explore that
avenue in future papers. It is also of interest to remove the hypothesis of
convexity.

Finally, our discussion of the convergence of, and the equivalence of, the
standard scaling methods is both a powerful tool in the present work and will
prove to be useful in future investigations.
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