BRILL-NOETHER THEORY FOR GENERAL BRANCHED COVERINGS OF \mathbf{P}^{1}

E. BALLICO

Abstract

We study the Brill-Noether theory of special divisors of a general branched covering of the complex projective line with one total ramification point, while the other ramification points are ordinary.

1. The statements

Fix integers g, k with $2 \leq k \leq g$. Let $M_{g}(k)$ be the set of all smooth complex genus g curves, X, such that there exists $P \in X$ with $h^{0}\left(X, \mathbf{O}_{X}(k P)\right) \geq$ 2 ; this algebraic set is usually denoted by $D_{k, k}$. By [A1], [A2], [L1], or [L2] $M_{g}(k)$ is an irreducible subvariety of M_{g} with $\operatorname{dim}\left(M_{g}(k)\right)=2 g-3+k$. Let $M_{g}[k]$ be the set of all pairs (X, P) with $X \in M_{g}(k), P \in X$ and $h^{0}\left(X, \mathbf{O}_{X}(k P)\right) \geq 2$. We have $M_{g}(g)=M_{g}$, and a general $X \in M_{g}$ has $(g-1) g(g+1) / 6$ Weierstrass points, all of them of weight 1, i.e., with $h^{0}\left(X, \mathbf{O}_{X}((g-1) P)\right)=1$ and $h^{1}\left(X, \mathbf{O}_{X}((g+1) P)\right)=0$. By [D2, Th. 4.9], if $2<k<g$, for a general $X \in M_{g}(k)$ there is a unique $P \in X$ such that $(X, P) \in M_{g}[k]$.

Following [A1] and [A2], for integers $w>k \geq 2$ with $k+w$ even, let $\mathrm{WH}[k, w]$ be the set of all pairs (X, f) with X a smooth connected curve of genus $(w-k) / 2$ and $f: X \rightarrow \mathbf{P}^{1}$ a branched covering of degree k with one total ramification point and $w-1$ simple ramification points with different images in \mathbf{P}^{1}. For integers $w \geq 3 k \geq 6$ with $k+w$ even, let $\mathrm{WH}(k, w)$ be the set of all smooth curves, X, of genus $(w-k) / 2$, such that there is $f: X \rightarrow \mathbf{P}^{1}$ with $(X, f) \in \mathrm{WH}[k, w]$. By [A1, Th. 2.3] or [A2] or [D2, Lemma 3.2] $\mathrm{WH}(k, 2 g+k)$ is connected and $M_{g}(k)$ is the closure of $\mathrm{WH}(k, 2 g+k)$. In particular, for integers x, k, g with $2 \leq x<k \leq g$ we have $M_{g}(x) \subset M_{g}(k)$. For all integers g, r, and d set $\rho(g, r, d):=g-(r+1)(g+r-d)$ (the so-called Brill-Noether number).

Our main results are as follows.

[^0]Theorem 1.1. Fix integers k, g, r, d with $3 \leq k<g, r>0, d-g<$ $r \leq \min \{k-2,[(g-3) / 2]\}$ and $\rho(g, r, d) \geq 0$. Let X be a general element of $\mathrm{WH}(k, 2 g+k)$ and $P \in X$ the total ramification point of the associated degree k pencil $X \rightarrow \mathbf{P}^{1}$. Then there exists an irreducible component Z of $W_{d}^{r}(X)$ with $\operatorname{dim}(Z)=\rho(g, r, d)$ and such that for a general $M \in Z$ we have $h^{0}(X, M(-k P))=0$.

Theorem 1.2. Fix integers g, k, d with $3<k<[(g+3) / 2]$ and $2 d-g-2<$ 0 . Let X be a general element of $M_{g}(k)$ and L the associated degree k pencil. Then for every $M \in \operatorname{Pic}(X)$ with $\operatorname{deg}(M)=d$ and $h^{0}(X, M) \geq 2$ we have $h^{0}\left(X, M \otimes L^{*}\right)>0$.

Theorem 1.3. Fix integers g, k, d with $g \geq 5, k \geq[(g+3) / 2]$ and $2 d-g-2<0$. Let X be a general element of $M_{g}(k)$. Then for every $M \in \operatorname{Pic}(X)$ with $\operatorname{deg}(M)=d$ we have $h^{0}(X, M) \leq 1$.

Theorem 1.4. Fix integers g, k, d with $g \geq 5, k \geq[(g+3) / 2]$ and $g+2 \leq 2 d \leq 2 g$. Let X be a general element of $M_{g}(k)$. Then we have $\operatorname{dim}\left(W_{d}^{1}(X)\right)=\rho(g, 1, d)=2 d-g-2$.

We do not know if these results are true for the general member, X, of other subvarieties, T, of M_{g}. If T is contained in the locus of the k-gonal curves, where $k<[(g+3) / 2]$, the proofs of [CM1] and [CM2] show that essentially we need only that X has a unique degree k pencil, L, that L satisfies the conditions of Remark 2.2 below (i.e., $h^{0}\left(X, L^{\otimes t}\right)=t+1$ if $t \leq[g /(k-1)]$ and $h^{1}\left(X, L^{\otimes t}\right)=0$ if $\left.t>[g /(k-1)]\right)$, and that $\operatorname{dim}(T)$ is rather large.

2. The proofs

Remark 2.1. By [D1, Th. 2], for a general $X \in M_{g}(k)$ there exists a Weierstrass point $P \in X$ with semigroup consisting only of multiples of k until after the greatest gap, i.e., such that for every integer $x \geq 0$, we have $h^{0}\left(X, \mathbf{O}_{X}(x P)\right)=\max \{1+[x / k], x+1-g\}$. If $k \geq 1+g / 2$, this also follows from $[\mathrm{EH}]$. In particular, $\mathbf{O}_{X}(k P)$ has no base point and $h^{0}\left(X, \mathbf{O}_{X}(k P)\right)=$ 2. If $k \geq 1+g / 2$, the condition on the Weierstrass semigroup of P means that $h^{1}\left(X, \mathbf{O}_{X}((g+1) P)\right)=0$. By its very definition, for any pair $(X, f) \in$ $\mathrm{WH}[k, w]$ there exists a point $P \in X$ which is a total ramification point of f and hence satisfies $\mathbf{O}_{X}(k P) \cong f^{*}\left(\mathbf{O}_{\mathbf{P}^{1}}(1)\right)$. Thus $h^{0}\left(X, \mathbf{O}_{X}(k P)\right) \geq 2$, and $\mathbf{O}_{X}(k P)$ is spanned by its global sections, and therefore P is a Weierstrass point of X. It is easy to check that for a general (X, f) the corresponding total ramification point P satisfies $h^{0}\left(X, \mathbf{O}_{X}(k P)\right)=2$. By [Co], if $k \geq 3$, all other Weierstrass points of X are normal, i.e., their gap sequence is $(1,2,3, \ldots, g-$ $2, g-1, g+1$). This is obviously false if $k=2$ (i.e. for hyperelliptic curves).

Remark 2.2. Fix a general $X \in M_{g}(k), 2<k<g$. By [D2, Th. 4.9] there exists a unique $P \in X$ with $h^{0}\left(X, \mathbf{O}_{X}(k P)\right) \geq 2$. Set $L:=\mathbf{O}_{X}(k P)$. By Remark 2.1 we have $h^{0}\left(X, L^{\otimes t}\right)=t+1$ if $0 \leq t \leq g /(k-1)$ and $h^{0}\left(X, L^{\otimes t}\right)=$ $k t+1-g$ (i.e., $h^{1}\left(X, L^{\otimes t}\right)=0$) if $t>g /(k-1)$.

The next result is implicit in the Arbarello stratification $\mathrm{WH}[x, w], g=$ $(w-x) / 2$, of M_{g}. It can probably be deduced from [Co], but we prefer to give a direct proof because we will use that proof quite often later on.

Proposition 2.3. Fix integers g, k with $3 \leq k<[(g+3) / 2]$. Let X be a general k-gonal curve of genus g. Then the first non-gap of all Weierstrass points of X is g.

Proof. Assume that the result is not true. Thus for a general k-gonal curve X we can find $Q \in X$ and an integer t with $2 \leq t \leq g-1$ and $h^{0}\left(X, \mathbf{O}_{X}(t Q)\right) \geq$ 2. We choose t minimal (for general X), so that $h^{0}\left(X, \mathbf{O}_{X}(t Q)\right)=2$ and $\mathbf{O}_{X}(t Q)$ is spanned by its global sections. Denote by L the unique k-gonal pencil of $X([\mathrm{AC} 2$, Th. 2.6]). By the generality of X, the curve X has no pencil of degree at most $k-1$ ([AC2, Th. 2.6]). Hence we have $h^{0}(X, L)=2$, and L is spanned by its global sections. The set of all k-gonal curves of genus g has dimension $2 g+2 k-5$, while the set of all smooth curves of genus g which are multiple coverings of some curve of genus >0 has dimension at most $2 g-2$ ([L]). Thus by the generality of X the morphism $v: X \rightarrow \mathbf{P}^{1}$ induced by L does not factor through an intermediate curve. Hence the pair $\left(L, \mathbf{O}_{X}(t Q)\right)$ induces a birational morphism $u: X \rightarrow \mathbf{P}^{1} \times \mathbf{P}^{1}$ with $u(X)$ of type (k, t). The elementary theory of the deformation of branched coverings of smooth curves implies that for general X the pencil $v: X \rightarrow \mathbf{P}^{1}$ has exactly $2 g+2 k-2$ ramification points, all of them ordinary ramification points, and that no two of them are on the same fiber of v (see [L1] or apply [AC1, Scolium 5.6]).

We first assume that Q is not one of these ramification points; the other subcase will be discussed at the end of the proof. Our assumption implies that $u(Q)$ is a smooth point of a local branch of $u(X)$ at $u(Q)$. Since the second factor of u is just the map induced by $\mathbf{O}_{X}(t Q)$, there is a smooth branch of $u(X)$ at $u(Q)$ which contains a length t subscheme, Z, of the line, D_{0}, of type $(1,0)$ of $\mathbf{P}^{1} \times \mathbf{P}^{1}$ containing $u(Q)$ and with $Z_{\text {red }}=\{u(Q)\}$. Since the intersection number of $u(X)$ with D_{0} is t, this implies that $u(X)$ is unibranch at $u(Q)$. Hence $u(X)$ is smooth at $u(Q)$.

Vice versa, let $C \subset \mathbf{P}^{1} \times \mathbf{P}^{1}$ be an integral curve of type (k, t) that contains Z and is smooth at $Z_{\text {red }}$. Assume that the normalization, Y, of C has genus g. Then Y has gonality at most k and $u(Q)$ corresponds to a Weierstrass point of Y with t in its gap sequence.

Fix $B \in \mathbf{P}^{1} \times \mathbf{P}^{1}$. Choosing a basis of $H^{0}(X, L)$ and $H^{0}\left(X, \mathbf{O}_{X}(t Q)\right)$ we rigidify all triples (X, L, Q) in such a way that for the associated morphism $u: X \rightarrow \mathbf{P}^{1} \times \mathbf{P}^{1}$ we have $u(Q)=B$. Hence there is a quasi-finite covering, U,
of $M_{g}(k)$ such that for every element of U (say, corresponding to a curve X with exceptional Weierstrass point Q and with birational morphism $u: X \rightarrow$ $\mathbf{P}^{1} \times \mathbf{P}^{1}$) we have $u(Q)=B$.

Set $A_{0}:=\mathbf{P}^{1} \times \mathbf{P}^{1}$. Let A_{1} be the blowing-up of A_{0} at B. Denote by E the exceptional divisor of A_{1} and let D_{1} be the strict transform of D_{0} in A_{1}. Hence $\operatorname{card}\left(D_{1} \cap E\right)=1$. Let A_{2} be the blowing-up of A_{1} at the point $D_{1} \cap E$, and let D_{2} be the strict transform of D_{1} in A_{2}, F the strict transform of E in A_{2}, and E^{\prime} the exceptional divisor of A_{2}. Hence $F+E^{\prime}$ is the total transform of E and we have $\left(F+E^{\prime}\right) \cdot E^{\prime}=0, E^{\prime 2}=\left(F+E^{\prime}\right)^{2}=-1$. We have $\operatorname{card}\left(D_{2} \cap E^{\prime}\right)=1$. Let A_{3} be the blowing-up of A_{2} at the point $D_{2} \cap E^{\prime}$, and let D_{3} be the strict transform of D_{2} in A_{3}. We continue this construction until we arrive at a surface A_{t} obtained from A_{0} making t blowing-ups that contains a smooth rational curve, D_{t}, which is the strict transform of D_{0} and has the following properties.

Let I and J be the total transforms in A_{t} of the generators of type $(1,0)$ and of type $(0,1)$, respectively, of $\operatorname{Pic}\left(A_{0}\right)$. Let F_{i} be the strict stransform in A_{t} of the exceptional divisor of the blowing-up $A_{i} \rightarrow A_{i-1}$ with the convention that F_{t} is the exceptional divisor of $A_{t} \rightarrow A_{t-1}$. Hence $\operatorname{Pic}\left(A_{t}\right) \cong \mathbf{Z}^{\otimes(t+2)}$ with generators I and J, and $F_{i}, 1 \leq i \leq t$, which are all smooth, irreducible, and rational.

For $1 \leq i \leq t$ set $E_{i}:=\sum_{i \leq j \leq t} F_{j}$. Hence E_{i} is the total transform of the exceptional divisor of the blowing-up $A_{i} \rightarrow A_{i-1}$. Thus $E_{i}^{2}=-1$ for every i, $E_{i} \cdot I=E_{i} \cdot J=0$ for every i, and $E_{i} \cdot F_{j}=0$ if $i<j \leq t+1$. Hence $E_{i} \cdot E_{j}=0$ if $i<j$. The canonical line bundle $K_{A_{t}}$ of A_{t} is $-2 I-2 J+\sum_{1 \leq j \leq t} E_{j}$. By assumption, for every curve X associated to U the strict transform, D, of $u(X)$ in A_{t} is an element of $\left|k I+t J-\sum_{1 \leq j \leq t} E_{j}\right|$ with geometric genus g. Hence $-D \cdot K_{A_{t}}=2 k+2 t-t=2 k+t$. The family, M, of all such strict transforms has dimension $2 g+2 k-5+4$. Indeed, the subgroup of $\operatorname{Aut}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}\right)$ fixing B has dimension 4 ; by a result proved in [AC2] and contained in [Co] (see [CKM, bottom of p. 147]) we have $\operatorname{dim}(M) \leq-D \cdot K_{A_{t}}+g-1=2 k+t+g-1<$ $2 g+2 k-1$, which is a contradiction.

Now assume that Q is a ramification point of the pencil v. Since v has only ordinary ramification points, $u(X)$ has an ordinary cusp at $u(Q)$, the line D_{0} is tangent to $u(X)$ at $u(Q)$ and contains no other point of $u(X)$. We repeat the previous construction. Let D be the strict transform of $u(X)$ in A_{t} and Y the strict transform of $u(X)$ in A_{1}. Since $u(X)$ has an ordinary cusp at $u(Q)$ with the tangent to D_{0} as tangent cone of $u(X)$ at $Q, Y \in\left|k I+t J-2 E_{1}\right|$. Iterating we obtain $D \in\left|k I+t J-2 E_{1}-\sum_{1<j<t} E_{j}\right|$ and complete the proof as in the previous case.

Proof of Theorem 1.1. Set $L:=\mathbf{O}_{X}(t P)$ and $r:=r(d, g, r)$. First assume $r=k-2$ and $k<[(g+3) / 2]$. Let R be the degree k pencil on a general k-gonal curve C. By Remark 2.2 and the same assertion for C proved in [B] or
[CKM, Prop. 1.1], for any integer t we have $h^{1}\left(X, L^{\otimes t}\right)=h^{1}\left(C, R^{\otimes t}\right)$. Hence we can apply verbatim the proof of [CM2, 2.3.1] and obtain the case $r=k-2$, $k<[(g+3) / 2]$ of Theorem 1.1.

Now assume $r<k-2$ and $k<[(g+3) / 2]$. Let Y be a general element of $M_{g}(r+2)$ and Q the associated total ramification point. Set $R:=\mathbf{O}_{Y}(k Q)$. We have $h^{0}(Y, R)=2$, and $(k-r-2) Q$ is the base divisor of R. By the deformation theory of coverings or the more general theory of admissible coverings introduced in [HM, §4] (applying, for instance, part (a) of [HM, Th. 5] and keeping track of the ramification of order $r+2$ at Q, or using [AC1, Scolium 5.1], or the method of [L1]), the pair (X, R) is the flat limit of a flat family of smooth k-gonal curves, i.e., we may regard (Y, Q) as the limit of a flat family of general elements, say $\left(X_{\lambda}, Q_{\lambda}\right)$, of $M_{g}[k]$ in which the pencil $\mathbf{O}_{X \lambda}\left(k Q_{\lambda}\right)$ has as flat limit the line bundle R. Hence we can use the proof of [CM2, 2.3.2] to reduce this case to the case $k=r+2$ previously proved.

Now assume $k \geq[(g+3) / 2]$ and set $k^{\prime}:=[(g+1) / 2]$. By assumption we have $r \leq k^{\prime}-2$. We apply the degeneration argument used in the second part to reduce the case (r, k) to the case $\left(r, k^{\prime}\right)$ proved in the first two parts, and hence obtain the result.

Proof of Theorems 1.2 and 1.3. Assume the result is false and take d minimal among all counterexamples and fix a corresponding line bundle M. We first assume $h^{0}(X, M) \geq 3$. Since $h^{0}(X, M(-A))=h^{0}(X, M)-1$ for a general $A \in X$, we could take $M(-A)$ instead of M, contradicting the minimality of d. Hence $h^{0}(X, M)=2$. If M has a base point A, then similarly $M(-A)$ contradicts the minimality of d. Hence M is spanned by its global sections. Therefore the pair (L, M) induces a morphism $u: X \rightarrow \mathbf{P}^{1} \times \mathbf{P}^{1}$. Since X is general in $M_{g}(k)$, it has a unique non-ordinary Weierstrass point ([Co]), and the proof in [Co] implies that X is not a multiple covering of a smooth curve of genus at least one. The condition $h^{0}\left(X, M \otimes L^{*}\right)=0$ and the fact that X is not a multiple covering of a smooth curve of genus at least one imply that u is birational. We then let D be the line of $\mathbf{P}^{1} \times \mathbf{P}^{1}$ with type $(0,1)$, and apply the proof of Proposition 2.3 with d instead of t and with the two families of lines of $\mathbf{P}^{1} \times \mathbf{P}^{1}$ interchanged. The same argument gives Theorem 1.3.

Proof of Theorem 1.4. The inequality $\operatorname{dim}\left(W_{d}^{1}(X)\right) \geq \rho(g, 1, d)$ is obvious by the existence theorem for special divisors. Hence it suffices to prove the inequality $\operatorname{dim}\left(W_{d}^{1}(X)\right) \leq \rho(g, 1, d)$. By [ACGH, VII ex. C], it is sufficient to consider the case $d=[(g+3) / 2]$. Applying semicontinuity as in the proof of Proposition 2.3, we see that it is sufficient to prove the case $k=[(g+3) / 2]$.

Fix any $M \in W_{[(g+3) / 2]}^{1}(X)$. By Theorem 1.3 we have $h^{0}(X, M(-P)) \leq 1$ for every $P \in X$, i.e., M has no basepoint and $h^{0}(X, M)=2$. Applying the proof of Theorem 1.1 (i.e., of Proposition 2.3) with respect to the invariants
$k=[(g+3) / 2]$ and $d=[(g+3) / 2]$, we obtain $\operatorname{dim}\left(W_{[(g+3) / 2]}^{1}(X)\right) \leq \rho(g, 1,[(g+$ $3) / 2]$) for general X.

References

[A1] E. Arbarello, Weierstrass points and moduli of curves, Compositio Math. 29 (1974), 325-342.
[A2] , On subvarieties of the moduli space of curves of genus g defined in terms of Weierstrass points, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez Ia 15 (1978), 3-20.
[AC1] E. Arbarello and M. Cornalba, Su una congettura di Petri, Comment. Math. Helv. 56 (1981), 1-38.
[AC2] , Footnotes to a paper of Beniamino Segre, Math. Ann. 256 (1981), 341362.
[ACGH] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves, I, Springer, 1985.
[B] E. Ballico, A remark on linear series on general k-gonal curves, Boll. U.M.I. 3-A (1989), 195-197.
[Co] M. Coppens, The number of Weierstrass points on some special curves I, Arch. Math. 46 (1986), 453-465.
[CKM] M. Coppens, C. Keem, and G. Martens, The primitive length of a general k-gonal curve, Indag. Math. (N.S.) 5 (1994), 145-159.
[CM1] M. Coppens and G. Martens, Linear series on 4-gonal curves, Math. Nachr. 213 (2000), 35-55.
[CM2] , Linear series on a general k-gonal curve, Abh. Math. Sem. Univ. Hamburg 69 (1999), 347-371.
[D1] S. Diaz, Deformations of exceptional Weierstrass points, Proc. Amer. Math. Soc. 96 (1986), 7-10.
[D2] , Tangent spaces in moduli via deformations with applications to Weierstrass points, Duke Math. J. 51 (1984), 905-922.
[EH] D. Eisenbud and J. Harris, Existence, decomposition, and limits of certain Weierstrass points, Invent. Math. 87 (1987), 495-515.
[HM] J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), 23-86.
[L] H. Lange, Moduli spaces of algebraic curves with rational maps, Math. Proc. Cambridge Phil. Soc. 78 (1975), 283-292.
[L1] R. F. Lax, On the dimension of varieties of special divisors, Trans. Amer. Math. Soc. 203 (1975), 141-159.
[L2] , Weierstrass points on the universal curve, Math. Ann. 216 (1975), 141159.

Dept. of Mathematics, Universiti di Trento, 38050 Provo, Italy
E-mail address: ballico@science.unitn.it

[^0]: Received September 27, 2000; received in final form December 28, 2000.
 2000 Mathematics Subject Classification. 14H51, 14H55.
 This research was partially supported by MURST (Italy).

