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BRILL–NOETHER THEORY FOR GENERAL BRANCHED
COVERINGS OF P1

E. BALLICO

Abstract. We study the Brill–Noether theory of special divisors of a
general branched covering of the complex projective line with one total

ramification point, while the other ramification points are ordinary.

1. The statements

Fix integers g, k with 2 ≤ k ≤ g. Let Mg(k) be the set of all smooth com-
plex genus g curves, X, such that there exists P ∈ X with h0(X,OX(kP )) ≥
2; this algebraic set is usually denoted by Dk,k. By [A1], [A2], [L1], or [L2]
Mg(k) is an irreducible subvariety of Mg with dim(Mg(k)) = 2g − 3 + k.
Let Mg[k] be the set of all pairs (X,P ) with X ∈ Mg(k), P ∈ X and
h0(X,OX(kP )) ≥ 2. We have Mg(g) = Mg, and a general X ∈ Mg has
(g − 1)g(g + 1)/6 Weierstrass points, all of them of weight 1, i.e., with
h0(X,OX((g − 1)P )) = 1 and h1(X,OX((g + 1)P )) = 0. By [D2, Th. 4.9],
if 2 < k < g, for a general X ∈ Mg(k) there is a unique P ∈ X such that
(X,P ) ∈Mg[k].

Following [A1] and [A2], for integers w > k ≥ 2 with k + w even, let
WH[k,w] be the set of all pairs (X, f) with X a smooth connected curve of
genus (w−k)/2 and f : X → P1 a branched covering of degree k with one total
ramification point and w− 1 simple ramification points with different images
in P1. For integers w ≥ 3k ≥ 6 with k + w even, let WH(k,w) be the set of
all smooth curves, X, of genus (w− k)/2, such that there is f : X → P1 with
(X, f) ∈WH[k,w]. By [A1, Th. 2.3] or [A2] or [D2, Lemma 3.2] WH(k, 2g+k)
is connected and Mg(k) is the closure of WH(k, 2g + k). In particular, for
integers x, k, g with 2 ≤ x < k ≤ g we have Mg(x) ⊂Mg(k). For all integers
g, r, and d set ρ(g, r, d) := g − (r + 1)(g + r − d) (the so-called Brill–Noether
number).

Our main results are as follows.
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Theorem 1.1. Fix integers k, g, r, d with 3 ≤ k < g, r > 0, d − g <
r ≤ min{k − 2, [(g − 3)/2]} and ρ(g, r, d) ≥ 0. Let X be a general element
of WH(k, 2g + k) and P ∈ X the total ramification point of the associated
degree k pencil X → P1. Then there exists an irreducible component Z of
W r
d (X) with dim(Z) = ρ(g, r, d) and such that for a general M ∈ Z we have

h0(X,M(−kP )) = 0.

Theorem 1.2. Fix integers g, k, d with 3 < k < [(g+3)/2] and 2d−g−2 <
0. Let X be a general element of Mg(k) and L the associated degree k pencil.
Then for every M ∈ Pic(X) with deg(M) = d and h0(X,M) ≥ 2 we have
h0(X,M ⊗ L∗) > 0.

Theorem 1.3. Fix integers g, k, d with g ≥ 5, k ≥ [(g + 3)/2] and
2d − g − 2 < 0. Let X be a general element of Mg(k). Then for every
M ∈ Pic(X) with deg(M) = d we have h0(X,M) ≤ 1.

Theorem 1.4. Fix integers g, k, d with g ≥ 5, k ≥ [(g + 3)/2] and
g + 2 ≤ 2d ≤ 2g. Let X be a general element of Mg(k). Then we have
dim(W 1

d (X)) = ρ(g, 1, d) = 2d− g − 2.

We do not know if these results are true for the general member, X, of other
subvarieties, T , of Mg. If T is contained in the locus of the k-gonal curves,
where k < [(g + 3)/2], the proofs of [CM1] and [CM2] show that essentially
we need only that X has a unique degree k pencil, L, that L satisfies the
conditions of Remark 2.2 below (i.e., h0(X,L⊗t) = t+ 1 if t ≤ [g/(k− 1)] and
h1(X,L⊗t) = 0 if t > [g/(k − 1)]), and that dim(T ) is rather large.

2. The proofs

Remark 2.1. By [D1, Th. 2], for a general X ∈ Mg(k) there exists a
Weierstrass point P ∈ X with semigroup consisting only of multiples of k
until after the greatest gap, i.e., such that for every integer x ≥ 0, we have
h0(X,OX(xP )) = max{1 + [x/k], x+ 1− g}. If k ≥ 1 + g/2, this also follows
from [EH]. In particular, OX(kP ) has no base point and h0(X,OX(kP )) =
2. If k ≥ 1 + g/2, the condition on the Weierstrass semigroup of P means
that h1(X,OX((g + 1)P )) = 0. By its very definition, for any pair (X, f) ∈
WH[k,w] there exists a point P ∈ X which is a total ramification point of f
and hence satisfies OX(kP ) ∼= f∗(OP1(1)). Thus h0(X,OX(kP )) ≥ 2, and
OX(kP ) is spanned by its global sections, and therefore P is a Weierstrass
point of X. It is easy to check that for a general (X, f) the corresponding total
ramification point P satisfies h0(X,OX(kP )) = 2. By [Co], if k ≥ 3, all other
Weierstrass points of X are normal, i.e., their gap sequence is (1, 2, 3, . . . , g−
2, g − 1, g + 1). This is obviously false if k = 2 (i.e. for hyperelliptic curves).
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Remark 2.2. Fix a general X ∈ Mg(k), 2 < k < g. By [D2, Th. 4.9]
there exists a unique P ∈ X with h0(X,OX(kP )) ≥ 2. Set L := OX(kP ). By
Remark 2.1 we have h0(X,L⊗t) = t+1 if 0 ≤ t ≤ g/(k−1) and h0(X,L⊗t) =
kt+ 1− g (i.e., h1(X,L⊗t) = 0) if t > g/(k − 1).

The next result is implicit in the Arbarello stratification WH[x,w], g =
(w − x)/2, of Mg. It can probably be deduced from [Co], but we prefer to
give a direct proof because we will use that proof quite often later on.

Proposition 2.3. Fix integers g, k with 3 ≤ k < [(g + 3)/2]. Let X be
a general k-gonal curve of genus g. Then the first non-gap of all Weierstrass
points of X is g.

Proof. Assume that the result is not true. Thus for a general k-gonal curve
X we can find Q ∈ X and an integer t with 2 ≤ t ≤ g−1 and h0(X,OX(tQ)) ≥
2. We choose t minimal (for general X), so that h0(X,OX(tQ)) = 2 and
OX(tQ) is spanned by its global sections. Denote by L the unique k-gonal
pencil of X ([AC2, Th. 2.6]). By the generality of X, the curve X has no
pencil of degree at most k− 1 ([AC2, Th. 2.6]). Hence we have h0(X,L) = 2,
and L is spanned by its global sections. The set of all k-gonal curves of genus
g has dimension 2g+2k−5, while the set of all smooth curves of genus g which
are multiple coverings of some curve of genus > 0 has dimension at most 2g−2
([L]). Thus by the generality of X the morphism v : X → P1 induced by L
does not factor through an intermediate curve. Hence the pair (L,OX(tQ))
induces a birational morphism u : X → P1×P1 with u(X) of type (k, t). The
elementary theory of the deformation of branched coverings of smooth curves
implies that for general X the pencil v : X → P1 has exactly 2g + 2k − 2
ramification points, all of them ordinary ramification points, and that no two
of them are on the same fiber of v (see [L1] or apply [AC1, Scolium 5.6]).

We first assume that Q is not one of these ramification points; the other
subcase will be discussed at the end of the proof. Our assumption implies that
u(Q) is a smooth point of a local branch of u(X) at u(Q). Since the second
factor of u is just the map induced by OX(tQ), there is a smooth branch
of u(X) at u(Q) which contains a length t subscheme, Z, of the line, D0, of
type (1, 0) of P1 × P1 containing u(Q) and with Zred = {u(Q)}. Since the
intersection number of u(X) with D0 is t, this implies that u(X) is unibranch
at u(Q). Hence u(X) is smooth at u(Q).

Vice versa, let C ⊂ P1×P1 be an integral curve of type (k, t) that contains
Z and is smooth at Zred. Assume that the normalization, Y , of C has genus
g. Then Y has gonality at most k and u(Q) corresponds to a Weierstrass
point of Y with t in its gap sequence.

Fix B ∈ P1 × P1. Choosing a basis of H0(X,L) and H0(X,OX(tQ)) we
rigidify all triples (X,L,Q) in such a way that for the associated morphism
u : X → P1×P1 we have u(Q) = B. Hence there is a quasi-finite covering, U ,
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of Mg(k) such that for every element of U (say, corresponding to a curve X
with exceptional Weierstrass point Q and with birational morphism u : X →
P1 ×P1) we have u(Q) = B.

Set A0 := P1 × P1. Let A1 be the blowing-up of A0 at B. Denote by
E the exceptional divisor of A1 and let D1 be the strict transform of D0 in
A1. Hence card(D1 ∩ E) = 1. Let A2 be the blowing-up of A1 at the point
D1∩E, and let D2 be the strict transform of D1 in A2, F the strict transform
of E in A2, and E′ the exceptional divisor of A2. Hence F + E′ is the total
transform of E and we have (F + E′) · E′ = 0, E′2 = (F + E′)2 = −1. We
have card(D2∩E′) = 1. Let A3 be the blowing-up of A2 at the point D2∩E′,
and let D3 be the strict transform of D2 in A3. We continue this construction
until we arrive at a surface At obtained from A0 making t blowing-ups that
contains a smooth rational curve, Dt, which is the strict transform of D0 and
has the following properties.

Let I and J be the total transforms in At of the generators of type (1, 0)
and of type (0, 1), respectively, of Pic(A0). Let Fi be the strict stransform in
At of the exceptional divisor of the blowing-up Ai → Ai−1 with the convention
that Ft is the exceptional divisor of At → At−1. Hence Pic(At) ∼= Z⊗(t+2)

with generators I and J , and Fi, 1 ≤ i ≤ t, which are all smooth, irreducible,
and rational.

For 1 ≤ i ≤ t set Ei :=
∑
i≤j≤t Fj . Hence Ei is the total transform of the

exceptional divisor of the blowing-up Ai → Ai−1. Thus E2
i = −1 for every i,

Ei ·I = Ei ·J = 0 for every i, and Ei ·Fj = 0 if i < j ≤ t+1. Hence Ei ·Ej = 0
if i < j. The canonical line bundle KAt of At is −2I − 2J +

∑
1≤j≤tEj . By

assumption, for every curve X associated to U the strict transform, D, of u(X)
in At is an element of |kI + tJ −

∑
1≤j≤tEj | with geometric genus g. Hence

−D ·KAt = 2k+ 2t− t = 2k+ t. The family, M , of all such strict transforms
has dimension 2g+2k−5+4. Indeed, the subgroup of Aut(P1×P1) fixing B
has dimension 4; by a result proved in [AC2] and contained in [Co] (see [CKM,
bottom of p. 147]) we have dim(M) ≤ −D ·KAt + g − 1 = 2k + t + g − 1 <
2g + 2k − 1, which is a contradiction.

Now assume that Q is a ramification point of the pencil v. Since v has only
ordinary ramification points, u(X) has an ordinary cusp at u(Q), the line D0

is tangent to u(X) at u(Q) and contains no other point of u(X). We repeat
the previous construction. Let D be the strict transform of u(X) in At and Y
the strict transform of u(X) in A1. Since u(X) has an ordinary cusp at u(Q)
with the tangent to D0 as tangent cone of u(X) at Q, Y ∈ |kI + tJ − 2E1|.
Iterating we obtain D ∈ |kI + tJ − 2E1−

∑
1<j<tEj | and complete the proof

as in the previous case. �

Proof of Theorem 1.1. Set L := OX(tP ) and r := r(d, g, r). First assume
r = k − 2 and k < [(g + 3)/2]. Let R be the degree k pencil on a general
k-gonal curve C. By Remark 2.2 and the same assertion for C proved in [B] or
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[CKM, Prop. 1.1], for any integer t we have h1(X,L⊗t) = h1(C,R⊗t). Hence
we can apply verbatim the proof of [CM2, 2.3.1] and obtain the case r = k−2,
k < [(g + 3)/2] of Theorem 1.1.

Now assume r < k − 2 and k < [(g + 3)/2]. Let Y be a general element of
Mg(r + 2) and Q the associated total ramification point. Set R := OY (kQ).
We have h0(Y,R) = 2, and (k−r−2)Q is the base divisor of R. By the defor-
mation theory of coverings or the more general theory of admissible coverings
introduced in [HM, §4] (applying, for instance, part (a) of [HM, Th. 5] and
keeping track of the ramification of order r + 2 at Q, or using [AC1, Scolium
5.1], or the method of [L1]), the pair (X,R) is the flat limit of a flat family of
smooth k-gonal curves, i.e., we may regard (Y,Q) as the limit of a flat family
of general elements, say (Xλ, Qλ), of Mg[k] in which the pencil OXλ(kQλ)
has as flat limit the line bundle R. Hence we can use the proof of [CM2, 2.3.2]
to reduce this case to the case k = r + 2 previously proved.

Now assume k ≥ [(g + 3)/2] and set k′ := [(g + 1)/2]. By assumption we
have r ≤ k′−2. We apply the degeneration argument used in the second part
to reduce the case (r, k) to the case (r, k′) proved in the first two parts, and
hence obtain the result. �

Proof of Theorems 1.2 and 1.3. Assume the result is false and take d min-
imal among all counterexamples and fix a corresponding line bundle M . We
first assume h0(X,M) ≥ 3. Since h0(X,M(−A)) = h0(X,M)−1 for a general
A ∈ X, we could take M(−A) instead of M , contradicting the minimality of
d. Hence h0(X,M) = 2. If M has a base point A, then similarly M(−A)
contradicts the minimality of d. Hence M is spanned by its global sections.
Therefore the pair (L,M) induces a morphism u : X → P1 ×P1. Since X is
general in Mg(k), it has a unique non-ordinary Weierstrass point ([Co]), and
the proof in [Co] implies that X is not a multiple covering of a smooth curve
of genus at least one. The condition h0(X,M ⊗ L∗) = 0 and the fact that X
is not a multiple covering of a smooth curve of genus at least one imply that u
is birational. We then let D be the line of P1×P1 with type (0, 1), and apply
the proof of Proposition 2.3 with d instead of t and with the two families of
lines of P1 ×P1 interchanged. The same argument gives Theorem 1.3. �

Proof of Theorem 1.4. The inequality dim(W 1
d (X)) ≥ ρ(g, 1, d) is obvious

by the existence theorem for special divisors. Hence it suffices to prove the
inequality dim(W 1

d (X)) ≤ ρ(g, 1, d). By [ACGH, VII ex. C], it is sufficient to
consider the case d = [(g + 3)/2]. Applying semicontinuity as in the proof of
Proposition 2.3, we see that it is sufficient to prove the case k = [(g + 3)/2].

Fix any M ∈ W 1
[(g+3)/2](X). By Theorem 1.3 we have h0(X,M(−P )) ≤ 1

for every P ∈ X, i.e., M has no basepoint and h0(X,M) = 2. Applying the
proof of Theorem 1.1 (i.e., of Proposition 2.3) with respect to the invariants
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k = [(g+3)/2] and d = [(g+3)/2], we obtain dim(W 1
[(g+3)/2](X)) ≤ ρ(g, 1, [(g+

3)/2]) for general X. �
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