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EVERY LOCALLY BOUNDED SPACE WITH TRIVIAL
DUAL IS THE QUOTIENT OF A RIGID SPACE

JAMES W. ROBERTS

Abstract. Letting Tp denote the class of separable p-Banach spaces
(for 0 < p < 1) with trivial dual, we show that Tp does not have any

projective spaces, i.e., there is no space X in Tp such that every space
in Tp is a quotient of X. In lieu of a projective space we construct
the Lp(w) spaces, which are structurally similar to the space Lp. We
then define a particularly well behaved type of Lp(w) space, namely the
uniform Lp(w) spaces, and we show that every space in Tp is a quotient

of some uniform Lp(w) space. We then define a badly behaved type of
Lp(w) space, namely the unbalanced biuniform Lp(w) spaces. If Lp(w)
is unbalanced biuniform and C denotes the one dimensional subspace

of constant functions, then Lp(w)/C is a rigid space. We then show
that each space in Tp is a quotient of one of these rigid spaces. This

last result is used in an essential way to prove the nonexistence of a

projective space in Tp.

1. Introduction

Every separable Banach space is a quotient of l1. This can be generalized
to p-Banach spaces with 0 ≤ p < 1, i.e., every separable p-Banach space is
a quotient of lp. In other words, in the class of separable p-Banach spaces,
0 < p ≤ 1, lp is projective (see for instance [3]). With 0 < p < 1 fixed,
we shall let Tp denote the class of separable p-Banach spaces X such that
X has trivial dual (i.e., the dual of X consists of only the zero functional).
It is natural to ask whether there is a space X that is projective in Tp, i.e.,
so that every space in Tp is a quotient of X. If (P ) is a property such that
every quotient of a space with property (P ) also has property (P ), then either
every space in Tp has property (P ) or X is an example of a space failing to
have property (P ). Questions involving “quotient friendly” properties have
already been posed and resolved. Let (P1) be the property that X is not the
domain of a nonzero compact operator, and let (P2) be the property thatX is a
needlepoint space. Both of these are quotient friendly properties. N. J. Kalton
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and J. H. Shapiro [5] showed that there is a space in Tp failing property (P1),
and Kalton [1] showed that there is a space in Tp failing property (P2). Of
course, any projective space in Tp would fail to have both properties. It turns
out that there is no projective space in Tp and there is a natural reason for
suspecting this. It frequently happens that if X ∈ Tp there is a Y ∈ Tp
so that there is only the trivial continuous linear operator from X to Y ,
i.e., L(X,Y ) = {0}. In [4] Kalton and the author produced a cardinality c
collection {Xα : α ∈ [0, 1]} of subspaces of Lp such that if α 6= β, L(Xα, Xβ) =
{0}. In Theorem 4.4 below we show that, given X in Tp, there is a space Y
in Tp such that L(X,Y ) = {0}. Thus there is no projective space in Tp. In
lieu of a projective space we shall produce a projective class of spaces in Tp.
(We call a subclass S of Tp a projective class if, whenever Y is in Tp, there is
an X in S such that Y is a quotient of X.) To carry this out, we shall use a
class of spaces Lp(w) which are generalizations of the space Lp. The idea is to
give some intervals a weight (given by the weight function w) different from
their usual length. This involves an infimum norm construction. The details
of this, including the formal definition of the Lp(w) spaces, are carried out in
Section 2. In Section 3 we define the uniform Lp(w) spaces. We show that
this particularly nice class of spaces is projective in Tp. We also show that for
every X in Tp there is a compact operator from some uniform Lp(w) space
into X. In Section 4 we introduce the unbalanced biuniform Lp(w) spaces.
We show that the quotient of one of these spaces by the one dimensional space
of constant functions is rigid. We also show that this class of rigid spaces is
projective in Tp. In particular, every space in Tp is the quotient of a rigid
space. We then use this fact to show that Tp has no projective spaces. Our
notation will be fairly standard. Throughout the paper all scalars will be real,
although all the results hold for complex scalars. If X is a vector space and
0 < p ≤ 1, a function ‖ · ‖ : X → [0,∞) is called a p-seminorm if

(1) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X,
(2) ‖αx‖ = |α|p‖x‖ for all α ∈ R, x ∈ X.

A p-seminorm is a p-norm if, in addition,

(3) for x ∈ X, ‖x‖ = 0 implies x = 0.

If X has a p-norm ‖ · ‖ such that the metric d(x, y) = ‖x − y‖ is a complete
metric on X, then (X, ‖ · ‖) is called a p-Banach space. Henceforth, we shall
assume that p is in the range 0 < p < 1. For instance, the space of all
sequences x = 〈xn〉 with

‖x‖p =
∞∑
n=1

|xn|p
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is called lp and (lp, ‖ · ‖p) is a p-Banach space. The space of measurable
functions x = x(t) on [0, 1] such that

‖x‖p =
∫ 1

0

|x(t)|p <∞

is called Lp and (Lp, ‖ · ‖p) is a p-Banach space.
If X and Y are p-Banach spaces we let L(X,Y ) denote the space of con-

tinuous linear operators from X to Y . If X = Y we denote L(X,Y ) by L(X),
and if Y = R, we set L(X,R) = X∗. We say that X has trivial dual if
X∗ = {0}. Note that Lp has trivial dual but lp does not (see [3]). Finally if
I is an interval we let |I| denote the length of I. If E is a finite set we let
|E| denote the cardinality of E. This should not cause any confusion. Before
proceeding we note that the examples Eq constructed by Kalton in [2] are all
Lp(w) spaces in disguised form.

2. Lp(w) spaces

We begin with the notion of infimum norm. This is defined in far more
generality in [3].

Definition 2.1. A sequence 〈(Sn, ‖ · ‖n)〉 is said to be a stacked sequence
if it satisfies the following conditions:

(1) Each Sn is a finite dimensional space equipped with a p-norm ‖ · ‖n.
(2) For every n, Sn ⊂ Sn+1.
(3) If x ∈ Sn, then ‖x‖n ≤ ‖x‖n+1.

Definition 2.2. If 〈(Sn, ‖ · ‖n)〉 is a stacked sequence we define the infi-
mum norm ‖ · ‖ on S = ∪Sn by

‖x‖ = inf

{
n∑
k=0

‖xk‖k : x =
n∑
k=0

xk with xk ∈ Sk, 0 ≤ k ≤ n

}
,

and we say that ‖ · ‖ = inf ‖ · ‖n.

Proposition 2.1. Suppose 〈(Sn, ‖·‖n)〉 is a stacked sequence and suppose
that ‖ · ‖ = inf ‖ · ‖n. Then we have:

(1) ‖ · ‖ is a p-norm on S = ∪Sn.
(2) If | · | is a p-seminorm on S such that for all n and for every x ∈ Sn,
|x| ≤ ‖x‖n, then for every x ∈ S |x| ≤ ‖x‖.

(3) If for each x ∈ Sn we let

Nn(x) = inf

{
n∑
k=0

‖xk‖k :
n∑
k=0

xk = x with xk ∈ Sk, 0 ≤ k ≤ n

}
,

then Nn(x) = ‖x‖.
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(4) For every x ∈ Sn, there exist xk ∈ Sk, 0 ≤ k ≤ n, such that

‖x‖ =
n∑
k=0

‖xk‖k.

Furthermore, ‖xk‖k = ‖xk‖ for 0 ≤ k ≤ n.

Proof. (1) It is easily verified from the definition that ‖ · ‖ is a p-seminorm.
If x ∈ S and x 6= 0, ‖x‖ > 0 will follow once we have established (4).

(2) If x ∈ S and x =
∑n
k=0 xk with xk ∈ Sk, 0 ≤ k ≤ n, then

|x| ≤
n∑
k=0

|xk| ≤
n∑
k=0

‖xk‖.

By taking the infimum, we obtain |x| ≤ ‖x‖.
(3) It suffices to show that for x ∈ Sn, Nn(x) = Nn+1(x). Obviously

Nn+1(x) ≤ Nn(x). Let x ∈ Sn. If xk ∈ Sk, 0 ≤ k ≤ n+ 1, such that

x =
n+1∑
k=0

xk

then

xn+1 = x−
n∑
k=0

xk ∈ Sn.

Thus
n+1∑
k=0

‖xk‖ =
n−1∑
k=0

‖xk‖k + ‖xn‖n + ‖xn+1‖n+1

≥
n−1∑
k=0

‖xk‖k + ‖xn‖n + ‖xn+1‖n

≥
n−1∑
k=0

‖xk‖k + ‖xn + xn+1‖n ≥ Nn(x).

Hence

Nn(x) ≥ Nn+1(x).

(4) If x ∈ Sn, let K denote the set of all (x0, x1, . . . , xn) ∈
∏n
k=0 Sk such

that ‖xk‖k ≤ 2‖x‖+ 1, 0 ≤ k ≤ n, and
∑n
k=0 xk = x. Since each Sk is finite

dimensional, K is compact. Define Φ on K by

Φ((x0, x1, . . . , xn)) =
n∑
k=0

‖xk‖k.
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Since Φ is continuous, it assumes its minimum at some (x0, x1, . . . , xn), i.e.,
we have

‖x‖ = Nn(x) =
n∑
k=0

‖xk‖k.

Since

‖x‖ ≤
n∑
k=0

‖xk‖ ≤
n∑
k=0

‖xk‖k = ‖x‖,

we obtain
‖xk‖k = ‖xk‖, 0 ≤ k ≤ n. �

If 〈(Sn, ‖ · ‖n)〉 is a stacked sequence with ‖ · ‖ = inf ‖ · ‖n, we let ||| · |||n =
infk≥n ‖ · ‖k, i.e., for x ∈ S = ∪Sn,

|||x |||n = inf

{
N∑
k=n

‖xk‖k :
N∑
k=n

xk = x, xk ∈ Sk, n ≤ k ≤ N

}
.

Proposition 2.2. Let 〈(Sn, ‖·‖n)〉 be a stacked sequence and let S̄ denote
the completion of S = ∪Sn with respect to ‖ · ‖ = inf ‖ · ‖n. Then we have:

(1) ||| · |||n is equivalent to ‖ · ‖ on S and therefore on S̄.
(2) If xk ∈ Sk for k ≥ n such that

∞∑
k=n

‖xk‖k <∞,

then
∑∞
k=n xk is absolutely convergent in S̄ and∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=n

xk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n

≤
∞∑
k=n

‖xk‖k.

(3) If x ∈ S̄ and ε > 0, then there exists a sequence 〈xn〉, with xn ∈ Sn
for each n, such that

x =
∞∑
k=0

xk

and
∞∑
k=0

‖xk‖k < ‖x‖+ ε.

(4) If x ∈ S̄, then for each integer n ≥ 0 there exist y ∈ Sn and z ∈ S̄
such that x = y + z and |||x |||n = ‖y‖n + |||z |||n+1.

(5) If x ∈ S̄, then for each integer n ≥ 0 there exist y ∈ Sn and z ∈ S̄
such that x = y + z and ‖x‖ = ‖y‖+ |||z |||n+1.
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Proof. Since Sn is finite dimensional there is a constant C ≥ 1 so that
|||x |||n ≤ C‖x‖k for each x ∈ Sk, 0 ≤ k ≤ n. Thus ||| · |||n ≤ C‖ · ‖k on Sk,
for every k ≥ 0. By (2) of Proposition 2.1 we have ||| · |||n ≤ C‖ · ‖. Since
‖ · ‖ ≤ ||| · |||n on S, assertion (1) follows. (2) is obvious. To obtain (3) suppose
〈εn〉 is a positive sequence such that

2
∞∑
n=1

εn < ε.

Since ∪Sn is dense in S̄ we may select a sequence N1 ≤ N2 ≤ · · · with
yn ∈ SNn so that ∥∥∥∥∥x−

m∑
n=1

yn

∥∥∥∥∥ ≤ εm
for each m. Note that

‖ym‖ =

∥∥∥∥∥
(
y −

m−1∑
n=1

yn

)
−

(
y −

m∑
n=1

yn

)∥∥∥∥∥
≤

∥∥∥∥∥y −
m−1∑
n=1

yn

∥∥∥∥∥+

∥∥∥∥∥y −
m∑
n=1

yn

∥∥∥∥∥ < εm−1 + εm

if m ≥ 2. Since
‖y1‖ ≤ ‖x‖+ ‖x− y1‖ < ‖x‖+ ε1,

we obtain
∞∑
n=1

‖yn‖ < ‖x‖+ 2
∞∑
n=1

εn < ‖x‖+ ε.

If yn =
∑Nn
k=1 xkn with xkn ∈ Sk, 1 ≤ k ≤ Nn, then

‖yn‖ =
Nn∑
k=0

‖xkn‖k.

Thus ∑
k,n

‖xkn‖k =
∞∑
n=1

‖yn‖ < ‖x‖+ ε.

Let xk =
∑
xkn. Then xk ∈ Sk,

∞∑
k=0

‖xk‖k ≤ ‖x‖+ ε

and
∑∞
k=0 xk = x. (4) is a special case of (5) once we observe that ||| · |||n =

infk≥n ‖ · ‖k. To prove (5) we note that by (3) we have, for any ε > 0,
x =

∑∞
k=0 xk such that

∞∑
k=0

‖xk‖k < ‖x‖+ ε.
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If we let

y =
n∑
k=0

xk ∈ Sn and z =
∞∑

k=n+1

xk,

then x = y + z and

‖y‖+ |||z |||n ≤
n∑
k=0

‖xk‖k +
∞∑

k=n+1

‖xk‖k < ‖x‖+ ε.

Thus, for each n, we may select yk ∈ Sn and zk ∈ S̄ such that x = yk + zk
and

‖yk‖+ |||zk |||n ≤ ‖x‖+
1
k
.

By passing to a subsequence, if necessary, we may assume that lim yk = y
since Sn is finite dimensional. But then

lim zk = lim(x− yk) = x− y,
i.e., with z = x− y we have

‖x‖ = ‖y‖+ |||z |||n ,
by the continuity of the norms. �

Note that assertion (3) of Proposition 2.2 provides an infinite version of
our definition of infimum norm; i.e., if x ∈ S̄, then

‖x‖ = inf
∞∑
k=0

‖xk‖k,

where xk ∈ Sk and
∑∞
k=0 xk = x.

It is often convenient to have a sequence 〈xk〉, where ‖x‖ =
∑∞
k=0 ‖xk‖k.

Definition 2.3. Suppose 〈(Sn, ‖ · ‖n)〉 is a stacked sequence and x ∈ S̄.
(1) x is robust if there exists a sequence 〈xk〉 such that xk ∈ Sk for each

k,
∑∞
k=0 xk = x and ‖x‖ =

∑∞
k=0 ‖xk‖k.

(2) x is languid if ‖x‖ = |||x |||n for every n.
We say that S̄ is robust if every point in S̄ is robust.

Note that a point can be both robust and languid; e.g., the origin is both
robust and languid.

Proposition 2.3. If 〈(Sk, ‖ · ‖k)〉 is a stacked sequence and x ∈ S̄, then
x = y + z, where y is robust and z is languid.

Proof. We inductively select a sequence 〈xk〉 with xk ∈ Sk such that

x =
n∑
k=0

xk + zn+1
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and

‖x‖ =
n∑
k=0

‖xk‖k + |||zn+1 |||n+1 .

Suppose

x =
n−1∑
k=0

xk + zn

(or, when n = 0, x = z0) such that

‖x‖ =
n−1∑
k=0

‖xk‖k + |||zn |||n .

By assertion (4) of Proposition 2.2, zn = xn + zn+1 with xn ∈ Sn such that
|||zn |||n = ‖xn‖+ |||zn+1 |||n+1. Thus

‖x‖ =
n∑
k=0

‖xk‖k + |||zn+1 |||n+1 .

Note that since

‖x‖ ≤
n∑
k=0

‖xk‖k + ‖zn+1‖

≤
n∑
k=0

‖xk‖+ |||zn+1 |||n+1 = ‖x‖,

we have ‖zn+1‖ = |||zn+1 |||n+1. If k ≤ n + 1, then ‖ · ‖ ≤ ||| · |||k ≤ ||| · |||n+1,
so that ‖zn+1‖ = |||zn+1 |||k for all k, 0 ≤ k ≤ n + 1. Now let y =

∑∞
k=0 xk.

Clearly ‖y‖ =
∑∞
k=0 ‖xk‖k so that y is robust. We let z = lim zn. Since

|||zn |||k = ‖zn‖ once n ≥ k, we have |||z |||k = ‖z‖ for all k, so z is languid. �

Proposition 2.4. Suppose 〈(Sk, ‖ · ‖k)〉 is a stacked sequence.
(1) If there is a sequence 〈cn〉 such that for every x ∈ Sn, ‖x‖n+1 =

cn‖x‖n and
∏∞
n=0 cn =∞, then S̄ is robust.

(2) If there is a sequence 〈cn〉 such that for every x ∈ Sn, ‖x‖n+1 ≥
cn‖x‖n and lim cn = λ > 1, then S̄ is robust.

Proof. (1) Note that by assertion (3) of Proposition 2.1 applied to ||| · |||n =
infk≥n ‖ · ‖k, we have |||y |||n = ‖y‖n if y ∈ Sn. Now suppose x 6= 0, x ∈ S̄,
and x =

∑∞
k=0 xk, so that

∑∞
k=0 ‖xk‖k < ∞. Let ε > 0 so that 3ε < ‖x‖.

Choose N so that
∑∞
k=N+1 ‖xk‖k < ε. Note that if n ≥ N + 1, then∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞∑
k=n

xk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n

≤
∞∑
k=n

‖xk‖k < ε.
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For n ≥ N + 1,

|||x |||n ≥

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
N∑
k=0

xk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n

−

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n−1∑
k=N+1

xk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n

−

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞∑
k=n

xk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n

≥

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
N∑
k=0

xk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n

−

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n−1∑
k=N+1

xk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n

− ε

≥

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
N∑
k=0

xk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n

−
n−1∑

k=N+1

|||xk |||n − ε

=

∥∥∥∥∥
N∑
k=0

xk

∥∥∥∥∥
n

−
n−1∑

k=N+1

‖xk‖n − ε

= cN . . . cn−1

∥∥∥∥∥
N∑
k=0

xk

∥∥∥∥∥
n

−
n−1∑

k=N+1

ck . . . cn−1‖xk‖k − ε

≥ cN . . . cn−1

(∥∥∥∥∥
N∑
k=0

xk

∥∥∥∥∥
n

−
n−1∑

k=N+1

‖xk‖k

)
− ε

≥ cN . . . cn−1

(∥∥∥∥∥
N∑
k=0

xk

∥∥∥∥∥− ε
)
− ε

≥ cN . . . cn−1

(∥∥∥∥∥
N∑
k=0

xk

∥∥∥∥∥− 2ε

)
≥ cN . . . cn−1 (‖x‖ − 3ε) .

Since limn→∞ cN . . . cn−1 = ∞, we obtain limn→∞ |||x |||n = ∞. Thus x
is not languid. Since 0 is the only languid element in S̄, S̄ is robust by
Proposition 2.3.

To prove (2) we may assume ‖x‖ = 1. Chose ε > 0 so that 2ε < 1− 1/λ0,
i.e., so that λ0(1 − 2ε) > 1 where 1 < λ0 < λ. Now select a sequence 〈xk〉
with each xk ∈ Sk such that

∑∞
k=0 xk = x and

∑∞
k=0 ‖xk‖k < 1 + ε. For n

sufficiently large with cn ≥ λ0 we have
∑∞
k=n+1 ‖xk‖k < ε. Let y =

∑n
k=0 xk

and z =
∑∞
k=n+1 xk, so that |||z |||n+1 < ε. Then

|||x |||n+1 ≥ |||y |||n+1 − |||z |||n+1 ≥ |||y |||n+1 − ε
= ‖y‖n+1 − ε ≥ λ0‖y‖n − ε ≥ λ0‖y‖ − ε
≥ λ0(‖x‖ − ε)− ε > λ0(1− 2ε) > 1 = ‖x‖,

so x is not languid. By Proposition 2.3, S̄ is robust. �

We are now ready to define the spaces Lp(w).
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Definition 2.4. For each nonnegative integer n we let Πn denote a par-
tition of [0, 1] into a finite number of intervals such that

(1) Π0 = {[0, 1]};
(2) Πn+1 refines Πn;
(3) if I ∈ Πn, then the intervals in Πn+1 that subdivide I are of equal

length.

We let Π = ∪∞n=0Πn. A function w : Π→ (0,∞) is said to be a weight function
if

(4) w([0, 1]) = 1;
(5) if I ∈ Πn and I is subdivided into intervals I1, I2, . . . , Im from Πn+1

then w(I) ≤
∑m
k=1 w(Ik);

(6) limn→∞maxI∈Πn w(I)/|I|p = 0.

If w is a weight function on Π, we let Sn denote the Πn-step functions, i.e.,

Sn =

{
m∑
k=1

αk1Ik : α1, . . . , αn are scalars

}
,

where Πn = {I1, . . . , Im}. We define ‖ · ‖n on Sn by∥∥∥∥∥
m∑
k=1

αk1Ik

∥∥∥∥∥
n

=
m∑
k=1

|αk|pw(Ik).

Condition (2) in our definition of the weight function ensures that 〈(Sn,
‖·‖n)〉 is a stacked sequence. We call S = ∪∞n=0Sn the set of Π-step functions,
and define ‖ · ‖w = infn≥0 ‖ · ‖n and Lp(w) = S̄.

Note that each space (Sn, ‖ · ‖n) is isometrically isomorphic to lmp where
m = |Πn|. Also notice that if we take w(I) = |I| then Lp(w) is isometrically
isomorphic to Lp. Recall that a p-Banach space X is said to have trivial dual
if its dual consists of only the zero functional, i.e., if X∗ = {0}.

Proposition 2.5. The Lp(w) spaces have trivial dual.

Proof. Let λ ∈ Lp(w)∗ such that λ is nonexpansive, let I ∈ Π and let
ε > 0. By condition (6) there exists n suitably large so that if J ∈ Πn, then
w(J) < ε|J |p. Let I1, . . . , Im denote the intervals from Πn that are contained
in I. Then for each k, 1 ≤ k ≤ m, we have∥∥∥∥ 1

|Ik|
1Ik

∥∥∥∥
w

≤ w(Ik)
|Ik|p

< ε.
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Thus

λ

(
1
|I|

1I

)
= λ

(
m∑
k=1

|Ik|
|I|

(
1
|Ik|

1Ik

))

=
m∑
k=1

|Ik|
|I|

λ

(
1
|Ik|

1Ik

)
< ε

m∑
k=1

|Ik|
|I|

= ε.

Since ε > 0 is arbitrary, λ(1I) = 0. Thus λ(S) = {0}. Since S̄ = Lp(w),
λ = 0. �

The major virtue of the spaces Lp(w) is that it is easy to construct maps
from these spaces to other trivial dual spaces. The following simple but useful
proposition justifies this point.

Proposition 2.6. Suppose w is a weight function on Π, X is a p-Banach
space and 〈Tn〉 is a sequence of linear maps Tn : Sn → X satisfying:

(1) For I ∈ Πn, ‖Tn(1I)‖X ≤ w(I), or equivalently∥∥∥∥Tn( 1
|I|

1I

)∥∥∥∥
X

≤ w(I)
|I|p

.

(2) If I ∈ Πn and I1, . . . , Im are the intervals in Πn+1 which partition I,
then Tn(1I) =

∑m
k=1 Tn+1(1Ik), or equivalently

Tn

(
1
|I|

1I

)
=

m∑
k=1

|Ik|
|I|

Tn

(
1
|Ik|

1Ik

)
.

Then there is a unique nonexpansive T ∈ L(Lp(w), X) such that for every
x ∈ Sn, T (x) = Tn(x).

Proof. First note that each Tn ∈ L(Sn, X) is nonexpansive, i.e., if Πn =
{I1, . . . Im} and x =

∑m
k=1 αk1Ik , then

‖Tn(x)‖X =

∥∥∥∥∥
m∑
k=1

αkTn(1Ik)

∥∥∥∥∥
X

≤
m∑
k=1

|αk|p‖Tn(1Ik)‖X

≤
m∑
k=1

|αk|pw(Ik) = ‖x‖n.

Clearly, by condition (2), there is a linear map T : S → X such that X
agrees with each Tn on Sn. If x ∈ S, we define a p-seminorm on S by
|x| = ‖T (x)‖X . Then, as observed, if x ∈ Sn then |x| ≤ ‖x‖n. By assertion
(2) of Proposition 2.1, for all x ∈ S, we have ‖T (x)‖X = |x| ≤ ‖x‖w. Since S
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is dense in Lp(w), T extends to a unique nonexpansive linear map from Lp(w)
to X. �

If I ∈ Πn, we shall say that 1
|I|1I is a Πn-block, and if I ∈ Π, 1

|I|1I is called a
block. Notice that if b = 1

|I|1I is a Πn-block, then for some I1, . . . , Im ∈ Πn+1

we have I = ∪mk=1Ik, and since the intervals I1, . . . Im have equal length,
|Ik|/|I| = 1/m. Thus if we let bk = 1

|Ik|1Ik , then

b =
1
|I|

1I =
m∑
k=1

|Ik|
|I|

(
1
|Ik|

1Ik

)
=

1
m

m∑
k=1

bk.

In other words, every Πn-block is a unique average of Πn+1-blocks. In light
of these comments we can give (without proof) the following restatement of
Proposition 2.6:

Proposition 2.7. Let Bn denote the Πn-blocks of a space Lp(w) and let
B = ∪∞n=0Bn. Suppose X is a p-Banach space and Φ: B → X satisfies the
following conditions:

(1) For every b = 1
|I|1I ∈ B,

Φ(b) ≤ w(I)
|I|p

.

(2) Whenever b ∈ Bn and b = 1
m

∑m
k=1 bk with each bk ∈ Bn+1, then

Φ(b) =
1
m

m∑
k=1

Φ(bk).

Then there exists a unique nonexpansive T ∈ L(Lp(w), X) such that T (b) =
Φ(b) for each b ∈ B.

Notice that if T ∈ L(Lp(w), Y ) and X = T (Lp(w)), then X∗ = {0}
(since if λ ∈ X∗, then λ ◦ T ∈ Lp(w)∗ and so λ ◦ T = 0). For this rea-
son we concentrate on operators from Lp(w) to X with X∗ = {0}. To see
how one might map a space Lp(w) into X note that X∗ = {0} if and only if,
whenever x ∈ X and ε > 0, there exist x1, . . . xn ∈ X such that ‖xk‖X < ε
for each k and x = 1

m

∑m
k=1 xk. If we have x = 1

m

∑m
k=1 xk as above, we may

then write each xk as an average of small elements. Continuing with this we
can produce a tree-like (actually a bush-like) construction with points on the
lower branches tending to zero in norm. Mapping Lp(w) into X amounts to
mapping the blocks in Lp(w) to the points in our tree-like structure so that
averages are preserved and appropriately set for each block. This idea will be
a central theme throughout the rest of the paper.
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3. Uniform Lp(w) spaces

We now define a special class of Lp(w) spaces.

Definition 3.1. Lp(w) is said to be uniform if the intervals in each Πn

have the same length and the same weight.

Note that in a general Lp(w) space, if I ∈ Πn, then the subintervals of
I in Πn+1 have the same length, but if J is another interval in Πn, the size
and number of subintervals in J may be different from those in I. If Lp(w) is
uniform this irregularity does not occur. Indeed, if |Πn| = Nn, each interval
in Πn has length 1/Nn. Of course, Nn+1 must be an integer multiple of Nn.
Also if

εn =
∥∥∥∥ 1
|I|

1I

∥∥∥∥
n

=
w(I)
|I|p

for each I ∈ Πn (with the sequence 〈εn〉 is chosen so that lim εn = 0), then

w(I) = εn|I|p =
εn
Np
n
.

Furthermore, if

x =
Nn∑
k=1

αk1Ik ∈ Sn,

then

‖x‖n =
Nn∑
k=1

|αk|pw(Ik) =
Nn∑
k=1

|αk|p
εn
Np
n

= εnN
1−p
n

Nn∑
k=1

|αk|p
1
Nn

= εnN
1−p
n

Nn∑
k=1

|αk|p|Ik| = εnN
1−p
n ‖x‖p.

Thus, with Cn = εnN
1−p
n , we have

‖ · ‖n = Cn‖ · ‖p.
Since 〈Sn, ‖ · ‖n〉 is a stacked sequence, 〈Cn〉 is a nondescending sequence.

It is easy to see that if the sequence 〈Cn〉 is bounded, the space is isomorphic
to Lp. Szarvas [8] has shown that if 〈Cn〉 is unbounded then the uniform
Lp(w) space is not isomorphic to Lp. The inclusion map from the uniform
Lp spaces into Lp is clearly nonexpansive. Szarvas showed that if 〈Cn〉 is
unbounded, the inclusion map is a compact operator. Since Lp does not admit
compact operators, these spaces cannot be isomorphic to Lp. Rowe [6] studied
a special class of uniform Lp(w) spaces in which the sequence 〈Cn〉 increases
very rapidly. He showed that in this class of spaces, all compact convex sets
are locally convex (i.e., can be affinely embedded into locally convex spaces)
and that these spaces are robust. Note that by Proposition 2.4 the uniform
Lp(w) spaces are robust if the sequence 〈Cn〉 is unbounded.
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It is natural to ask for a representation of elements in a uniform Lp(w)
space as functions on [0, 1]. Szarvas [8] showed that the inclusion map from a
uniform Lp(w) space to Lp is one-to-one. Thus the elements of Lp(w) can be
represented by equivalence classes of functions in Lp. It turns out, however,
that if the sequence 〈Cn〉 is increasing suitably rapidly, the only continuous
functions in Lp(w) are the constant functions, though we shall not prove this
here. Indeed, it is not true that if x, y ∈ S and |x| ≤ |y| then ‖x‖w ≤ ‖y‖w.
For this reason, these spaces are a bit more pathological than they appear to
be at first sight. We now prove a lemma that will be useful in this section as
well as in the next section.

Lemma 3.1. Suppose X is a p-Banach space with trivial dual. Also sup-
pose x1, . . . , xn ∈ X and ε > 0. Then there is an integer M so that if N is
an integer multiple of M , then for any k, 1 ≤ k ≤ N , we have

xk =
1
N

N∑
i=1

xki

with ‖xki‖X < ε, 1 ≤ i ≤ N . Furthermore, if y ∈ X is such that ‖y‖ < ε,
then we may choose the elements 〈xki〉 so that x11 = y.

Proof. Since X has trivial dual, for each k, 1 ≤ k ≤ n, we have

xk =
1
Mk

Mk∑
j=1

ykj

with ‖ykj‖X < ε. We let M = Πn
k=1Mk. If N is a multiple of M , say

N = mM , then for each k, we let xk1, . . . xkN be a finite sequence such that
each ykj is listed exactly N/Mk-many times. Thus

1
N

N∑
i=1

xki =
1
N

Mk∑
j=1

(
N

Mk
ykj

)
=

1
Mk

Mk∑
j=1

yjk = xk.

To obtain the second part of the lemma we need only show that

x1 =
1
M1

M1∑
j=1

x1j

with ‖x1j‖X < ε for each j, 1 ≤ j ≤ M1, and x11 = y. We then apply
the above argument. Since X has trivial dual there exist y1, . . . , yM1 with
‖yj‖X < δ/2 such that

x1 =
1
M1

M1∑
j=1

yj ,
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where δ = ε− ‖y‖X . Now let x11 = y and

x1j = yj +
y1 − y
M1 − 1

if 2 ≤ j ≤M1. Then, for 2 ≤ j ≤M1,

‖x1j‖X ≤ ‖yj‖X +
∥∥∥∥ y1 − y
M1 − 1

∥∥∥∥
X

≤ ‖yj‖X + ‖y1‖X + ‖y‖X <
δ

2
+
δ

2
+ ‖y‖X = ε.

Now

1
M1

M1∑
j=1

x1j =
1
M1

y +
M1∑
j=2

(
yj +

y1 − y
M1 − 1

)
=

1
M1

y + (y1 − y) +
M1∑
j=2

yj

 =
1
M1

M1∑
j=1

yj = x1. �

The following lemma is a standard (and easily proved) metric space result
(see [3, p. 203]).

Lemma 3.2. Suppose (X, d) is a metric space and 〈Kn〉 is a sequence
of compact sets such that Kn ⊂ Kn+1 for each n. Also suppose there is a
sequence of positive numbers 〈εn〉 such that

∑∞
n=0 εn < ∞ and so that if

x ∈ Kn+1, then d(x,Kn) < εn. Then ∪∞n=0Kn is totally bounded.

Theorem 3.1. If X is a p-Banach space with trivial dual, then there exists
a uniform Lp(w) space and a nonzero compact operator T : Lp(w)→ X.

Proof. Let 〈εn〉 and 〈δn〉 be positive sequences with δn ≤ εn, limn→∞ εn
= limn→∞ δn = 0, and

∑∞
n=1 δn/εn < ∞. We shall define inductively a

sequence 〈Nn〉 of positive integers such that, for each n, Nn+1 is an integer
multiple of Nn (with N0 = 1). Corresponding to each Nn is the partition Πn of
[0, 1] intoNn intervals of length 1/Nn. Also, if I ∈ Πn, then w(I) = εn/N

p
n and

‖ · ‖n = Cn‖ · ‖p with Cn = εnN
1−p
n . We shall define Tn : Sn → X inductively

so that each Tn+1 extends Tn, each Tn is nonexpansive on (Sn, ‖ · ‖n), and if
x ∈ Sn with ‖x‖n ≤ 1, then ‖Tn(x)‖X < δn/εn.

Let a ∈ X such that 0 < ‖a‖X ≤ 1, and let T0(1) = a. Suppose that
N0, N1, . . . , Nn and T0, T1, . . . , Tn have been defined satisfying the above con-
ditions. Let Πn = {I1, I2, . . . , INn} and let

Tn

(
1
|Ik|

1Ik

)
= xk, 1 ≤ k ≤ Nn.
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By Lemma 3.1, there exists an integer M such that if Nn is an integer multiple
of M then, for each k,

xk =
1
Nn

Nn∑
i=1

xki with ‖xki‖X < δn+1.

Choose Nn large enough so that Nn ≥ (εn/εn+1)1/(1−p). We divide each
interval Ik into intervals Ik1, . . . , IkN each of length 1/(NnN), and we let
Nn+1 = NnN . We define

Tn+1

(
1
|Iki|

1Iki

)
= xki.

Thus Tn+1 extends Tn. Also, since∥∥∥∥ 1
|Iki|

1Iki

∥∥∥∥
n+1

= εn+1

and ‖xki‖X < δn+1, if x ∈ Sn+1 and ‖x‖n+1 ≤ 1, then

‖Tn+1(x)‖X ≤
δn+1

εn+1
.

Thus, since δn+1/εn+1 ≤ 1, Tn+1 is nonexpansive on (Sn+1, ‖ · ‖n+1). Also,

Cn+1 = εn+1N
1−p
n+1 = εn+1N

1−pN1−p
n

≥ εnN1−p
n = Cn,

by our choice of N . We let T denote the common extension of 〈Tn〉 to Lp(w).
Let B = {x ∈ Lp(w) : ‖x‖w ≤ 1}, and let Bn = Sn ∩ B. Note that, since
each Sn is finite dimensional, Bn is compact in Lp(w) and T (Bn) is compact
in X. Also, ∪∞n=0Bn is dense in B. To demonstrate the compactness of T
it suffices to show that T (∪∞n=0Bn) = ∪∞n=0T (Bn) is totally bounded. We
apply Lemma 3.2 along with our assumption that

∑∞
n=1 δn/εn <∞. Suppose

y ∈ T (Bn+1), i.e., y = T (x) with x ∈ Bn+1. Then x =
∑n+1
k=0 xk such that

each xk ∈ Sk and ‖x‖w =
∑n+1
k=0 ‖xk‖k ≤ 1. In particular, ‖xn+1‖n+1 ≤ 1 and∑n

k=0 xk ∈ Bn. Thus

d(y, T (Bn)) ≤

∥∥∥∥∥T (x)− T

(
n∑
k=0

xk

)∥∥∥∥∥
x

= ‖T (xn+1)‖X ≤
δn+1

εn+1
.

The compactness of T now follows. �

Lemma 3.3. Suppose X and Y are p-Banach spaces and T ∈ L(X,Y ).
Further suppose that there exists D ⊂ Y and λ > 0 satisfying the following
conditions:

(1) The set
{
y/‖y‖1/pY : y ∈ D

}
is dense in the unit sphere of Y .
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(2) For every y ∈ D, there exists x ∈ X such that T (x) = y and ‖y‖Y
> λ‖x‖X .

Then T is a surjection.

Proof. Let

D0 =

{
y

‖y‖1/pY

: y ∈ D

}
.

Since D0 = {y ∈ Y : ‖y‖Y = 1} and, by assumption (2), D0 ⊂ T (B1/λ), the
closed unit ball in Y , we have BY ⊂ T (B1/λ). The lemma now follows from
Theorem 1.4 in [3]. �

Theorem 3.2. The class of uniform Lp(w) spaces is projective in Tp;
i.e., if X is a separable p-Banach space with trivial dual, then there exists a
uniform Lp(w) space such that X is a quotient of Lp(w).

Proof. Let 〈εn〉 be a positive sequence such that limn→∞ εn = 0. Further
let 〈yn〉 be a sequence in X such that εn/2 < ‖yn‖X < εn for each n and
such that

{
yn/‖yn‖1/pX : n = 1, 2, . . .

}
is dense in the unit sphere of X. As

in the proof of Theorem 3.1 we define 〈Nn〉 and 〈Tn〉 inductively so that
each Tn : Sn → X is nonexpansive and each Tn+1 extends Tn. We further
insist that for each n there exists I ∈ Πn such that Tn

(
1
|I|1I

)
= yn, where∥∥∥ 1

|I|1I
∥∥∥
n

= εn. Suppose N0, . . . , Nn and T0, T1, . . . Tn have been defined.

Further suppose Πn = {I1, I2, . . . , INn}. We let xk = Tn

(
1
|Ik|1Ik

)
, 1 ≤ k ≤

Nn. By Lemma 3.1 there exists an integer M such that if N is an integer
multiple ofM , then there exists xk1, . . . xkN ∈ X such that ‖xki‖X < εn+1 and
xk = 1

N

∑N
k=1 xki. We may further insist that x11 = yn+1. We choose N large

enough so that N ≥ (εn/εn+1)1/(1−p), and let Nn+1 = NNn. Each Ik ∈ Πn is
divided into intervals Ik1, . . . , IkN , and we define Tn+1

(
1
|Iki|1Iki

)
= xki. Since∥∥∥ 1

|Iki|1Iki
∥∥∥
n

= εn+1 and ‖xki‖X < εn+1, Tn+1 : Sn+1 → X is nonexpansive.

We let T denote the common extension of 〈Tn〉 to a nonexpansive linear
map on Lp(w). By our construction, for each n = 1, 2, . . . there exists I ∈ Πn

such that ∥∥∥∥ 1
|I|

1I

∥∥∥∥
w

≤
∥∥∥∥ 1
|I|

1I

∥∥∥∥
n

= εn

and T
(

1
|I|1I

)
= yn with ‖yn‖X ≥ ε/2. By Lemma 3.3, it follows that T is a

surjection. �
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4. Biuniform unbalanced Lp(w) spaces

We now introduce the biuniform unbalanced Lp(w) spaces. This will turn
out to be another projective class in Tp. These spaces have the property
that their quotient by the constant functions (a one dimensional subspace) is
rigid. As a consequence of this fact, we shall show that every space in Tp is a
quotient of a rigid space in Tp.

We now define the biuniform unbalanced Lp(w) spaces.

Definition 4.1. Suppose that 〈R2, R3, . . . 〉 is a sequence of intervals in
Π such that Rn ∈ ∪n−1

k=0Πk and suppose that 〈An〉 and 〈Bn〉 are sequences of
positive numbers such that A2 ≤ B2 ≤ A3 ≤ B3 ≤ · · · . Further suppose that
Lp(w) satisfies the following conditions:

(1) Π1 = {[0, 1/2] , [1/2, 1]} with w ([0, 1/2]) = w ([1/2, 1]).
(2) For n ≥ 2, there exist integers pn and qn such that for I ∈ Πn, if

I ⊂ Rn then |I| = 1/pn and if I ⊂ Rcn then |I| = 1/qn.
(3) If x ∈ Sn with n ≥ 2, then

‖x‖n = An‖1Rnx‖p +Bn‖1Rcnx‖p.

Then the space Lp(w) is said to be biuniform.

Condition (1) is not really essential, but is included for the sake of neatness.
Notice that if pn = qn and An = Bn for all n ≥ 2, then Lp(w) is a uniform
space.

Definition 4.2. Suppose that Lp(w) is biuniform. We say that Lp(w) is
unbalanced biuniform if it satisfies

(4) for each I ∈ Π, Rn = I for infinitely many n,

and there exists a positive decreasing sequence 〈εn〉 with limn→∞ εn = 0 such
that

(5) for n ≥ 2, co(B4εn ∩ Sn−1) ⊂ Bεn−1 ∩ Sn−1,
(6) An = εnp

1−p
n ≥ 2Bn−1 for n ≥ 2,

(7) Bn = εnq
1−p
n ≥

(
An+1
εn−1

)
Bn−1 for n ≥ 2.

Notice that if I ∈ Πn and I ⊂ Rn, then |I| = 1/pn and∥∥∥∥ 1
|I|

1I

∥∥∥∥
n

= An

∥∥∥∥ 1
|I|

1I

∥∥∥∥
p

=
An

p1−p
n

= εn,

by condition (6). Similarly, from condition (7), if I ⊂ Rcn, then∥∥∥∥ 1
|I|

1I

∥∥∥∥
n

= εn.
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The imbalance comes from condition (7), where Bn is necessarily much larger
than An (and consequently qn is much larger than pn). Henceforth, we let C
denote the constant functions in Lp(w), i.e., C = {c1 : c ∈ R}.

Theorem 4.1. If X is a separable p-Banach space with trivial dual, then
there exists an unbalanced biuniform space Lp(w) such that X is a quotient
of Lp(w)/C.

Proof. Recall that Π0 = {[0, 1]} and Π1 = {[0, 1/2], [1/2, 1]}. Select a ∈
X such that ‖a‖X ≤ 1/2. Define T0(1) = 0 (so that T0(C) = {0}) and
T1

(
1[0,1/2]

)
= a = −T1

(
1[1/2,1]

)
. Also ‖ · ‖0 = ‖ · ‖1 = ‖ · ‖p. The selection

of the sequence 〈Rn〉 will be accomplished as follows: Let 〈Ln〉 be a sequence
of intervals with rational endpoints such that every interval with rational
endpoints appears in the sequence infinitely many times. For n ≥ 2, we let
Rn = Lkn , where kn is the least integer such that Lkn ∈ ∪n−1

j=0 Πj and kn /∈
{kj : j < n}. Thus, as the sequence 〈Πn〉 is constructed, we automatically
obtain 〈Rn〉 with condition (4) satisfied. Now let {zn : n = 2, 3, . . . } denote
a dense sequence in {x ∈ X : ‖x‖X = 1}. Suppose that εk, pk, qk and
nonexpansive Tk have been selected for all k < n (so that Πk, Sk, Rk, Ak, Bk,
and ‖ · ‖k have been determined for k < n). In the following we take p1 = 2.
(Note that there are no intervals in Π1 of length 1/q1.) We then let

{I11, I21, . . . Ir1} = {I ∈ Πn−1 : I ⊂ Rn and |I| = 1/pn−1}

and

{I12, I22, . . . , Is2} = {I ∈ Πn−1 : I ⊂ Rn and |I| = 1/qn−1}.

We further select εn with 0 < εn < min{1/n, εn−1} such that co(B4εn ∩
Sn−1) ⊂ Bεn−1 ∩ Sn−1. This is possible since Sn−1 is finite dimensional.

We let

xki = Tn−1

(
1
|Iki|

1Iki

)
with 1 ≤ k ≤ r if i = 1, and 1 ≤ k ≤ s if i = 2. By Lemma 3.1 there exists an
integer M such that

xki =
1
M

M∑
j=1

ykij

with ‖ykij‖X ≤ εn. Furthermore, we may insist that y111 = (εn/2)1/p
zn (so

that ‖y111‖X = εn/2). Now let pn be an integer multiple of pn−1qn−1M chosen
large enough so that εnp1−p

n ≥ 2Bn−1. Notice that if [0, 1] is partitioned into
intervals of length 1/pn then the resulting partition refines Πn−1. Each Ik1

(with 1 ≤ k ≤ r) is divided into pn/pn−1-many intervals Ik11, . . . Ik1l with
l = pn/pn−1. We list each of the elements, yk11, . . . , yk1M , pn/Mpn−1-many
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times in a finite sequence, xk11, . . . , xk1l, and define

Tn

(
1
|Ik1j |

1Ik1j

)
= xk1j .

Thus

Tn−1

(
1
|Ik1|

1Ik1

)
= xk1 =

1
M

M∑
j=1

yk1j =
1
l

l∑
j=1

xk1j

=
1
l

l∑
j=1

Tn

(
1
|Ik1j |

1k1j

)
=
pn
l

l∑
j=1

Tn(1Ik1j )

=
pn
l
Tn(1Ik1) = pn−1Tn(1Ik1) = Tn

(
1
|Ik1|

1Ik1

)
.

Thus Tn (as defined so far) extends Tn−1. We define Tn similarly for the
characteristic functions of the remaining intervals in Rn of length 1/pn. Note
that for a subinterval Ikij ,

An

∥∥∥∥ 1
|Ikij |

1Ikij

∥∥∥∥
p

= εnp
1−p
n

|Ikij |
|Ikij |p

= εnp
1−p
n

ppn
pn

= εn.

Also ∥∥∥∥Tn( 1
|Ikij |

1Ikij

)∥∥∥∥
X

= ‖xkij‖X ≤ εn.

Note also that for some xk1j we have xk1j = y111 = (εn/2)1/p
zn with

‖y111‖X = εn/2. Thus, when the induction is completed, the conditions
of Lemma 3.3 will be met so that the resulting T is a quotient map.

The same procedure is carried out for the characteristic functions of inter-
vals in Πn−1 that are in Rcn. The intervals are subdivided into intervals of
length 1/qn, with qn chosen large enough so that εnq1−p

n ≥ (An+1/εn−1)Bn−1.
Also, Tn is extended so that Tn is nonexpansive with respect to ‖ · ‖n. �

Notice that in any unbalanced biuniform space, if I, J ∈ Π and I ⊂ J , then
I ∈ Πm and J ∈ Πn with m ≥ n. Thus∥∥∥∥ 1

|I|
1I

∥∥∥∥
m

=
w(I)
|I|p

= εm,

so that w(I) = εm|I|p ≤ εn|J |p = w(J). In other words, if I ⊂ J , then
w(I) ≤ w(J). Notice that for any I, J ∈ Π we have either I ⊂ J , J ⊂ I,
or I ∩ J = ∅. Consequently w(I ∩ J) ≤ w(J) (we define w(∅) = 0). Thus if
x =

∑n
k=1 αk1Ik ∈ S, then

‖1Ix‖w ≤
n∑
k=1

αkw(I ∩ Ik) ≤
n∑
k=1

αkw(Ik).



QUOTIENTS OF RIGID SPACES 1139

Therefore ‖1Ix‖w ≤ ‖x‖w for all x ∈ S. Hence multiplication by 1I is a
nonexpansive operator on S and extends to a nonexpansive operator on Lp(w).
We denote this operator acting on x ∈ Lp(w) by 1Ix. If E is a finite union
of intervals in Π we define 1Ex for x ∈ Lp(w) similarly. The operator 1E
may not be nonexpansive, however. Note that if I ∈ Π, then ‖1Icx‖w =
‖x − 1Ix‖w ≤ ‖x‖w + ‖1Ix‖w ≤ 2‖x‖w. Also if E is a union of intervals in
Πn, then ‖1Ex‖k ≤ ‖x‖k if x ∈ Sk with k ≥ n, i.e., 1E is nonexpansive with
respect to the norms ‖ · ‖k when k ≥ n. (Note that ‖ · ‖k is just a weighted
lmkp norm with mk = |Πk|.) Thus 1E is nonexpansive on Lp(w) with respect
to ||| · |||n, by the same argument as in Proposition 2.6. We record this in the
following proposition:

Proposition 4.1. Suppose Lp(w) is an unbalanced biuniform space. Then
we have:

(1) If I ∈ Π, then for every x ∈ Lp(w), ‖1Ix‖w ≤ ‖x‖w and ‖1Icx‖w ≤
2‖x‖w.

(2) If E is a finite union of intervals in Πn, then for every x ∈ Lp(w),
|||1Ex |||n ≤ |||x |||n.

Theorem 4.2. Suppose that Lp(w) is biuniform unbalanced. Also suppose
that T ∈ L(Lp(w), Lp(w)/C) and that I ∈ Π. Then there exists x0 ∈ Lp(w)
such that 1Ix0 = x0 and T (1I) = q(x0) where q(x) = x + C is the quotient
map from Lp(w) to Lp(w)/C.

Proof. We let H = Ic and we shall show that there exists x0 ∈ Lp(w) such
that T (1I) = q(x0) with 1Hx0 = 0 so that 1Ix0 = x0. To simplify matters
we may suppose that ‖1I‖w < 1. Without loss of generality we may assume
that T is nonexpansive. Since ‖1I‖w < 1, we have ‖T (1I)‖ < 1. Hence
we may select x ∈ Lp(w) with ‖x‖w < 1 so that T (1I) = q(x). Now let
E = {n : Rn = I}. Since Lp(w) is robust, by conditions (6) and (7) and
Proposition 2.4, there exists a sequence 〈ak〉 with each ak ∈ Sk so that

x =
∞∑
k=0

ak and ‖x‖w =
∞∑
k=0

‖ak‖k < 1.

For each n ∈ E, we let

yn =
n−1∑
k=0

ak and zn =
∞∑
k=n

ak.

Thus x = yn + zn with yn ∈ Sn−1 such that

(1) ‖yn‖+ |||zn |||n = ‖x‖w < 1,
(2) limn∈E |||zn |||n = 0.
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For fixed n ∈ E, we have

1I = 1Rn =
1
Nn

Nn∑
k=1

Nn1Ik ,

where Ik ∈ Πn, |Ik| = 1/pn, and Nn = |Rn|pn. Now

‖Nn1Ik‖w ≤ ‖Nn1Ik‖n = ‖ |Rn|pn1Ik‖n ≤ ‖pn1Ik‖n =
∥∥∥∥ 1
|Ik|

1Ik

∥∥∥∥
n

= εn.

Since T is nonexpansive, we have T (Nn1Ik) = q(uk) with ‖uk‖w < 2εn. Now
uk = vk +wk, where vk ∈ Sn−1 and ‖vk‖w + |||wk |||n = ‖uk‖w < 2εn. Noting
that I = Rn ∈ ∪n−1

j=0 Πj and H = Ic, vk ∈ Sn−1, we have, by Proposition 4.1,
‖1Hvk‖w ≤ 2‖vk‖w < 4εn. Now let

v =
1
Nn

Nn∑
k=1

vk and w =
1
Nn

Nn∑
k=1

wk.

Since 1Hv ∈ co(B4εn ∩ Sn−1), we have ‖1Hv‖w < εn−1. Also

|||w |||n =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1
Nn

Nn∑
k=1

wk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n

≤ 1
Np
n

Nn∑
k=1

|||wk |||n ≤
Nn
Np
n

(2εn)

= 2N1−p
n εn ≤ 2p1−p

n εn,

since Nn = |Rn|pn ≤ pn. Since q(x) = 1
Nn

∑Nn
k=1 q(uk), we have q(x) = q(v +

w); i.e., for some constant cn, v+w = cn1+x = cn1+yn+zn with v, yn ∈ Sn−1.
Thus cn1+yn−v = w−zn ∈ Sn−1. So 1H(cn1+yn−v) = 1H(w−zn) ∈ Sn−1.
Now, recalling that H = Rcn, we have

Bn‖1H(cn1 + yn − v)‖p = ‖1H(cn1 + yn − v)‖n ≤ |||1H(cn1 + yn − v) |||n
= |||1H(w − zn) |||n ≤ |||1Hw |||n + |||1Hzn |||n
≤ |||w |||n + |||zn |||n ≤ 2p1−p

n εn + 1,

where the next to last inequality follows from Proposition 4.1. Hence

‖1H(cn1 + yn − v)‖p ≤
2p1−p
n εn + 1
Bn

.
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Thus, since 1H(cn1 + yn − v) ∈ Sn−1,

‖1H(cn1 + yn − v)‖w ≤ ‖1H(cn1 + yn − v)‖n−1 = Bn−1‖1H(cn1 + yn − v)‖p

≤ Bn−1

Bn
(2p1−p

n εn + 1) ≤ εn−1

An + 1
(2p1−p

n εn + 1)

= εn−1
(2p1−p

n εn + 1)
(p1−p
n εn + 1)

≤ 2εn−1.

Hence

‖1H(cn1 + yn)‖w ≤ ‖1H(cn1 + yn − v)‖w + ‖1Hv‖w
< 2εn−1 + εn−1 = 3εn−1.

Applying this to all n ∈ E, we obtain

lim
n∈E
‖1H(cn1 + yn)‖w = 0.

Since limn∈E |||zn |||n = 0, we have

lim
n∈E
‖1H(cn1 + x)‖w = 0.

Clearly the sequence 〈cn〉 is bounded. So by passing to an infinite subset of
E, if necessary, we may assume that, for some constant c, limn∈E cn = c.
Consequently,

1H(c1 + x) = 0.
Setting

x0 = c1 + x ∈ q(x) = T (1I).
completes the proof. �

Definition 4.3. A p-Banach space X is rigid if, whenever T ∈ L(X)
there is a constant c such that for every x ∈ X, T (x) = cx, i.e., T = cI.

Theorem 4.3. If Lp(w) is an unbalanced biuniform space and C denotes
the constant functions, then Lp(w)/C is rigid.

Proof. Suppose T ∈ L(Lp(w)/C). Let q : Lp(w) → Lp(w)/C be the quo-
tient map and let T0 = T ◦ q so that T0 : Lp(w)→ Lp(w)/C. For any positive
integer m let Πm = {I1, I2, . . . , Im}. By Theorem 4.2 we have, for each k,
1 ≤ k ≤ m, T0(1Ik) = q(xk), where 1Ikxk = xk Now

0 = T0(1) =
m∑
k=1

T (1Ik) = q0

(
m∑
k=1

xk

)
.

Hence
∑m
k=1 xk = c1 for some constant c. Also it is easily verified that

1Ikxj = 0 if j 6= k. Thus,

c1Ik = 1Ik(c1) = 1Ik

 m∑
j=1

xj

 = 1Ikxk = xk,



1142 JAMES W. ROBERTS

i.e., T0(1Ik) = cq(1Ik). Thus for x ∈ Sn, T (q(x)) = T0(x) = cq(x). Since
the partitions 〈Πn〉 are increasing (in the refinement sense), the constant c
is the same for all Πn. Hence, for x ∈ S we have T (q(x)) = cq(x) and thus
T = cI. �

Theorem 4.4. If X is a separable p-Banach space with trivial dual, then
there is an unbalanced biuniform space Lp(w) such that if Y = Lp(w) or
Y = Lp(w)/C then L(X,Y ) = {0} and X is a quotient of Y . In particular,
we have:

(1) Every X ∈ Tp is a quotient of a rigid space in Tp.
(2) Tp contains no projective spaces.

Proof. First we observe that there is an unbalanced biuniform space Lp(w)
such that if Y = Lp(w)/C, there is a quotient map Q from Y onto X such
that KerQ 6= {0}, i.e., Q is not an isomorphism. To see this, let Lp(w0) be
an unbalanced biuniform space with a quotient map q1 from Lp(w0) to X
such that q1(1) = {0}. Let Lp(w) be an unbalanced biuniform space with a
quotient map q2 from Y = Lp(w)/C onto Lp(w0), and set Q = q1q2. Since
Ker q1 6= {0}, we have KerQ 6= {0}.

Now let T ∈ L(X,Y ). Then TQ ∈ L(Y ), so that TQ = cI for some
constant c. Since KerQ 6= {0}, we have c = 0, i.e., TQ = 0. Since Q is onto,
T = 0.

Now suppose T ∈ L(X,Lp(w)). Let q denote the quotient map from Lp(w)
to Lp(w)/C so that qT ∈ L(X,Lp(w)/C). Then qT = 0, so T maps X to the
one dimensional space C. Since X∗ = {0}, it follows that T = 0.

(1) follows directly from Theorem 4.1 and Theorem 4.3. (2) follows since
if X ∈ Tp there exists Y = Lp(w) an unbalanced biuniform space such that
not only is Y not a quotient of X but L(X,Y ) = {0}. �

The author at one point had conjectured (but was unable to prove) that,
given any X ∈ Tp, there is a uniform space Lp(w) such that L(X,Lp(w)) =
{0}. This has now been proved by Szarvas [8].

In [7] Sisson showed that there exists a rigid space which admits compact
operators. This result motivated most of the results of this paper. Specifically,
the author was led to suspect that every space in Tp is a quotient of a rigid
space in Tp. This now turns out to be the case. Note that Sisson’s Theorem
is a consequence of this fact. Let X ∈ Tp be any space admitting a compact
operator T to a space Z ∈ Tp. There is a quotient map Q from a rigid space
Y ∈ Tp to X. Thus TQ is a compact operator from the rigid space Y to Z.

The final theorem of this paper is motivated by the result in [4] mentioned
in the introduction. Namely, there exists a collection of subspaces {Xα : α ∈
[0, 1]} of Lp so that if α 6= β, then

L(Xα, Xβ) = L(Xβ , Xα) = {0}.
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This suggests that, in a rather strange sense, Tp is a very wide class of spaces.
Theorem 4.5 will show that Tp is also a rather tall class of spaces. First we
shall prove a simple lemma.

Lemma 4.1. If 〈Xn〉 is a sequence of spaces in Tp, there exists a space Y
of the form Y = Lp(w) or Y = Lp(w)/C with Lp(w) an unbalanced biuniform
space such that

(1) each Xn is a quotient of Y ,
(2) L(Xn, Y ) = {0}.

Proof. Let X =
∑∞
n=1Xn denote the l1-sum of the spaces 〈Xn〉, i.e.,

X =

{
〈xn〉 : for each n, xn ∈ Xn, ‖〈xn〉‖X =

∞∑
n=1

‖xn‖Xn <∞

}
.

It is easily seen that X ∈ Tp. Thus there exists Y as above with a quotient
map Q from Y onto X such that L(X,Y ) = {0}. Let Pn : X → Xn denote
the projection defined by Pn(〈xk〉) = xn. Then PnQ is a projection from Y
onto Xn. Also, if T ∈ L(Xn, Y ), then TPn ∈ L(X,Y ). But then TPn = 0 so
that T = 0. �

Theorem 4.5. Let Λ denote the first uncountable ordinal. There exists a
family {Yα : α ∈ Λ} such that Yα = Lp(wα) or Yα = Lp(wα)/C, where each
Lp(wα) is an unbalanced biuniform space such that

(1) if α < β, then L(Yα, Yβ) = {0},
(2) if α < β, then Yα is a quotient of Yβ.

Proof. The spaces {Yα : α ∈ Λ} are constructed by transfinite induction.
Let β ∈ Λ. If β is the first ordinal, let Yβ be any space as above. Otherwise,
if β ∈ Λ, {Yα : α < β} is at most countable. By Lemma 4.1 there exists Yβ
as above such that for each α < β, L(Yα, Yβ) = {0} and each Yα is a quotient
of Yβ . �
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