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INTERPOLATION OF WEIGHTED L1 SPACES—A NEW
PROOF OF THE SEDAEV-SEMENOV THEOREM

MICHAEL CWIKEL AND INNA KOZLOV

Abstract. A new simpler proof is given of the theorem of Sedaev-
Semenov that the couple (L1

w0
, L1
w1

) of weighted L1 spaces on an arbi-

trary measure space is a Calderón couple, i.e., all interpolation spaces
with respect to this couple can be described in terms of theK-functional.
This theorem has other important consequences. It is a component in an
alternative proof of the Brudnyi-Krugljak K-divisibility theorem. Also,
as shown by Dmitriev, it leads readily to a proof of Sparr’s more general

result that (Lpw0 , L
q
w1 ) is a Calderón couple.

1. Introduction

Let (Ω,Σ, µ) be an arbitrary measure space. We shall refer to all mea-
surable functions w : Ω → (0,∞) as weight functions. For each p ∈ [1,∞)
and each weight function w, the space Lpw = Lpw(Ω) is defined to consist of
all (equivalence classes) of measurable functions f : Ω → C for which the
norm ‖f‖Lpw := (

∫
Ω

(|f |w)pdµ)1/p is finite. If for j = 0, 1 the functions
wj : Ω → (0,∞) are weight functions, then the couple Lp = (Lpw0

, Lpw1
)

forms a Banach couple in the sense of interpolation theory (see, e.g., [7], [5],
[3], or [26]). The couples Lp have been studied extensively; see, e.g., [15],
[18], [19], [20], [22], [23], [24]. It is easy to find an equivalent expression for
the K-functional for the couple Lp, and in the case p = 1 this becomes the
following (well known) exact formula:

K(t, f ; L1) =
∫

Ω

min(w0, tw1)|f |dµ

for each f ∈ L1
w0

+ L1
w1

and each t > 0.
The following theorem was proved by Sedaev and Semenov [23].
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Theorem 1.1. Suppose that f and g are functions in L1
w0

+ L1
w1

which
satisfy

K(t, g; L1) ≤ K(t, f ; L1)

for all t > 0. Then for each ε >0 there exists a bounded linear operator
T : L1

w0
+ L1

w1
→ L1

w0
+ L1

w1
whose restriction to L1

wj maps into L1
wj with

norm not exceeding 1 + ε for j = 0, 1, and such that Tf = g.

Theorem 1.1 plays a rather more central rôle in interpolation theory than
was realized at first. This has prompted us to seek an alternative simpler
proof, which is the main contribution of this paper.

Initially Theorem 1.1 was proved in order to enable all interpolation spaces
of the couple L1 to be described in a relatively simple way. An analogous
theorem enabling an analogous description of the interpolation spaces of the
couple (L1, L∞) had been obtained a few years earlier by Calderón [8]. A
related result was obtained by Mityagin [17]. For details we refer to [23];
general discussions of couples which satisfy theorems similar to Theorem 1.1
can be found in, e.g., [7] or [13]. These couples are often called Calderón
couples. (Many authors use alternative names, such as Calderón-Mityagin
couples, K-adequate couples, K-monotone couples, or C-couples.)

However, Theorem 1.1 has turned out to have consequences beyond the
study of the particular couple L1. It is one of the components in an alterna-
tive proof given in [11] of the important K-divisibility theorem of Brudnyi-
Krugljak [6], [7]. We mention that Bennett and Sharpley have presented
another variant of this approach to proving K-divisibility (see [3, p. 326-328]
or [4]) in which the rôle of the Sedaev-Semenov theorem is played instead by
a theorem of Lorentz and Shimogaki (which is, in fact, closely related to the
analogue of the Sedaev-Semenov theorem for the couple (L1, L∞) obtained by
Calderón [8]).

Theorem 1.1 has been generalized to many other Banach couples A =
(A0, A1). However, in many of these generalizations, while the norms
‖T |‖Aj→Aj for j = 0, 1 can be bounded by absolute constants depending
only on the couple, it has not been shown that these constants can be taken
arbitrarily close to 1.

Among these generalizations let us mention the cases of the couples Lp

for 1 ≤ p ≤ ∞ which were treated by Sedaev [22]. In turn, Sedaev’s results
were generalized by Gunnar Sparr [24] who treated the couples (Lp0

w0
, Lp1

w1
)

for all p0, p1 ∈ [1,∞]. Sparr’s theorem is, in a certain sense, the strongest
possible result of this kind for couples of Banach lattices. More specifically,
as shown in [13], if X and Y are Banach lattices of measurable functions on
some measure space and if, for all choices of weight functions w0 and w1, the
couple of weighted lattices (Xw0 , Yw1) is a Calderón couple, then X and Y
must both be (weighted) Lp spaces.
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Here again Theorem 1.1 turns out to be unexpectedly important. As shown
by V. I. Dmitriev [14], there is a relatively simple argument which enables the
result of Sparr to be deduced from Theorem 1.1 for all p0 and p1 in [1,∞).

In fact, the above-mentioned results from [8], [22] and [24], and some gener-
alizations of these results, can also be obtained via different K-divisibility type
arguments, as shown in [11]. However, this approach gives weaker estimates
for the norms of operators T appearing in the analogues of Theorem 1.1.

Another alternative proof of Sparr’s theorem for the couple (Lp0
w0
, Lp1

w1
) can

be found in [2, pp. 255–264]; see the remark on p. 256 of [2]. However, this
proof does not apply to the cases where p0 = p1. Thus yet another reason
for presenting a new proof is to provide the analogue of the alternative and
perhaps simpler approach used in [2] for the missing cases p0 = p1 = p. Here
we only deal explicitly with the case where p = 1, but this case indicates
how to handle the remaining cases. As remarked by Sedaev [22], the case
where p = ∞ is a simple exercise. The result for p ∈ (1,∞), also originally
due to Sedaev, can be obtained by straightforward variants of our approach
here. It can also be deduced from the case p = 1, either by the method
of [14] mentioned above, or by a different method to be presented in [12].
Other approaches to proving Theorem 1.1 and its generalization in [22] can
be found in [9] and in [16]. But they also apparently give weaker estimates for
the norms of the operator. When 1 < p <∞, none of these approaches shows
that the norms of the operator T can be bounded by constants arbitrarily
close to 1. However, recently, Yacin Ameur [1] has shown, using very different
methods, that this is true when p = 2. Thus we now know that such “exact”
results hold for the couple (Lp0

w0
, Lp1

w1
) when p0 = p1 equals 1 or 2 or ∞, and

also in the case when p0 = 1 and p1 = ∞. In view of Sparr’s examples [24,
pp. 254–256], analogues of these “exact” results do not hold when p0 = 1 and
p1 ∈ (1,∞).

One advantage of Sparr’s proofs over the alternative ones given here and in
[14] and [2] is that they also apply to the quasi-Banach case; i.e., in [24] p0 and
p1 can take values in the extended range (0,∞], provided certain assumptions
are made on the underlying measure space. (For an analogous result for the
couple of sequence spaces (`p, `∞) for p < 1 see also [10, pp. 129–132].)

Remark 1.1. In [2] the weight functions w0 and w1 are both taken to be
identically 1, but this is not really a restriction: When p0 6= p1, a very simple
“change of variables”, which was originally introduced for other purposes by
Stein and Weiss [25], immediately extends the result to the case of general
weights; cf. [9, Corollary 2, p. 234].

Sections 2 and 3 of this paper contain our new proof of Theorem 1.1. In
the original proof in [23] the first step was to obtain an operator in the special
case where the measure space consists of finitely many atoms. This was done
by solving various systems of linear equations and identifying the extreme
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points of certain convex sets. The second step used a compactness argument
based on results of Sedaev [21] to generalize to the case where the measure
space consists of countably many atoms. As Boris Begun informed us in
a private communication, it is possible to give an alternative proof of this
second step using Banach limits (somewhat analogously to the proofs in [8]).
The straightforward third step of the proof was to extend from the case of
countably many atoms to an arbitrary measure space.

In our proof here we give a “graphical” argument in Section 2, which si-
multaneously supplies the above-mentioned first and second steps without
requiring the compactness techniques of [21] and without using Banach lim-
its. It also gives better (and, in fact, optimal) estimates for the norms of the
operator. In Section 3, for completeness and for the reader’s convenience, we
also present a proof for the third step.

We observe (this was apparently also clear from the original proof) that
if the functions f and g are non-negative, then the operator T appearing in
Theorem 1.1 can be chosen to be a positive operator, i.e., Th is a non-negative
function whenever h ∈ L1

w0
+L1

w1
is non-negative. This positivity property is

needed if one wishes to use Dmitriev’s method [14] to extend Theorem 1.1 to
other couples.

Finally, in Section 4, we present a refinement of Theorem 1.1 showing that
we can, in fact, take ε = 0, i.e., we can assume that the operator T has norm
not exceeding 1 on L1

wj for j = 0, 1. Here we do need to use Banach limits,
and we also need the positivity property of T mentioned above.

The first author to use a graphical approach in such problems was appar-
ently Sparr [24]. His matrix lemmata, which are important tools for obtaining
his wide generalizations of the Sedaev-Semenov theorem, are proved using an
examination of the graphs of certain piecewise linear (i.e., piecewise affine)
functions to guide the construction of the required matrices or operators (see
pp. 260–270 of [24]). Something rather like this is also done in certain steps of
the proofs given here and in [2]. These similarities suggest that it is perhaps
possible to further simplify or shorten the proofs here or in [2] by directly
incorporating some parts of Sparr’s arguments. However, we have not been
able to do this.

2. The main step of the proof: the case of an atomic measure
space

We shall use a special measure space (Ω∗,Σ∗, µ∗) defined by setting Ω∗ =
(0,∞), letting Σ∗ consist of all subsets of Ω∗ and taking µ∗ to be counting
measure µ∗(E) = card(E). We shall also use the special weight functions
w∗0(x) = x and w∗1(x) = 1. Let L1

∗ denote the couple (L1
w∗0

(Ω∗), L1
w∗1

(Ω∗)).
We present the main step of our proof of Theorem 1.1 separately as the

following theorem.
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Theorem 2.1. For each fixed number r > 1, Theorem 1.1 holds for the
case of the measure space (Ω∗,Σ∗, µ∗) and the weights w∗0 and w∗1, and for
all real-valued non-negative functions f and g which are zero except possibly
at the points rn, n ∈ Z. Furthermore, the operator T mapping f to g can be
constructed so that for j = 0, 1 its norm as a map from L1

w∗j
(Ω∗) into itself

does not exceed 1.

Proof. We first need to establish a few elementary properties of the cou-
ple L1

∗ and its associated K-functional. Let u be an arbitrary function in
L1
w∗0

(Ω∗) + L1
w∗1

(Ω∗) = L1
min(w∗0 ,w

∗
1 )(Ω

∗). Then the set {t > 0 : u(t) 6= 0} is
finite or countable. We denote this set by {τn}n∈E for some subset E of Z.
The K-functional of u is given by

(1) K(t, u; L1
∗) =

∑
τn<t

τn|u(τn)|+t
∑
τn≥t

|u(τn)| =
∑
τn≤t

τn|u(τn)|+t
∑
τn>t

|u(τn)|

for each t > 0. Like all K-functionals it is a continuous concave function of t.
We claim that for each open interval I = (α, β) ⊂ (0,∞) and each u ∈

L1
w∗0

(Ω∗) +L1
w∗1

(Ω∗) the function U(t) := K(t, u; L1
∗) is affine on I if and only

if u(t) = 0 for all t ∈ I.
If u vanishes on I, then the fact that U is affine on I is obvious from (1).

Intuitively, the converse seems almost as obvious. To prove it rigorously we
use the inequality

(2)
∑
τn≥t

|u(τn)| ≤ U(t)− U(s)
t− s

≤
∑
τn≥s

|u(τn)|,

which holds whenever 0 < s < t. (To establish (2) simply observe that

U(t)− U(s) =
∑

s≤τn<t

τn|u(τn)|+ t
∑
τn≥t

|u(τn)| − s
∑
τn≥s

|u(τn)|,

and estimate this expression from above (respectively below) by replacing all
coefficients τn in the first sum by t (respectively s).) Let a, b, c and d be
arbitrary numbers in I such that α < a < b < c < d < β. Then from (2) we
obtain that

(3)
U(d)− U(c)

d− c
≤
∑
τn≥c

|u(τn)| ≤
∑
τn≥b

|u(τn)| ≤ U(b)− U(a)
b− a

.

If U is affine on I then the four expressions compared in (3) are all equal.
This implies that u vanishes on [b, c), and consequently on all of I, proving
our claim.

It will be convenient to state the following property of the K-functional for
the couple L1

∗ as a separate lemma.
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Lemma 2.2. Let u ∈ L1
w∗0

(Ω∗) + L1
w∗1

(Ω∗) and let U : (0,∞) → (0,∞).
Let I ⊂ (0,∞) be an open interval such that U(t) = K(t, u; L1

∗) for all t ∈ I.
Suppose further that I is the union of finitely many non-overlapping intervals,
on each of which U is an affine function. Then

(4) |u(t)| = U ′(t−)− U ′(t+) for all t ∈ I.

The proof of this lemma is immediate since, by the above claim, u(t) must
vanish in I except at those points t where the graph of U changes its slope.
It is clear from (1) that (4) holds at these points and indeed at all points of I.

We next describe some rather simple operators SαBγ , which will play an
important rôle in our proof.

Let 0 ≤ α < γ ≤ ∞. Let B = {βm}m∈M be a finite or countable set of
points in (α, γ). For each m ∈ M , let δm = (γ − βm)/(γ − α) if γ < ∞, and
δm = 1 if γ =∞. For each function h in L1

w∗0
(Ω∗) +L1

w∗1
(Ω∗) we define SαBγh

by

SαBγh(βm) = 0 for all m ∈M,

SαBγh(α) = h(α) +
∑
m∈M

δmh(βm) if α > 0,

SαBγh(γ) = h(γ) +
∑
m∈M

(1− δm)h(βm) if γ <∞,

SαBγh(t) = h(t) for all t ∈ (0,∞)\{α}\{γ}\B.

It is straightforward to check that the linear operator SαBγ has the following
properties:

(i) For j = 0, 1, if h ∈ L1
w∗j

(Ω∗) then SαBγh ∈ L1
w∗j

(Ω∗) and

‖SαBγh‖L1
w∗
j

(Ω∗) ≤ ‖h‖L1
w∗
j

(Ω∗).

(ii) If h is non-negative then SαBγh is also non-negative and

(5) K(t, SαBγh,L1
∗) = K(t, h,L1

∗) for all t ∈ (0,∞)\[α, γ].

Let us now fix two arbitrary non-negative functions f and g in L1
w∗0

(Ω∗) +
L1
w∗1

(Ω∗), which are zero except possibly at the points rn, n ∈ Z, and which
satisfy K(t, g; L1

∗) ≤ K(t, f ; L1
∗) for all t > 0. It will be convenient to use the

notation F (t) := K(t, f ; L1
∗) and G(t) := K(t, g; L1

∗).
We can now make our remarks in the introduction about using a “graphi-

cal” approach more explicit: We shall, much like in [2], and similarly to some
steps in [24], use a sequence of operators of the form SαBγ to, in some sense,
successively “slice off” segments of the graph of F until it coincides with the
graph of G . It will turn out that the composition of this sequence of operators
also defines the required operator T which satisfies Tf = g.
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We consider the collection G of all intervals [c, d] such that

c, d ∈ [0,∞],(6a)

g(t) = 0 for all t ∈ (c, d),(6b)

either g(c) > 0 or c = 0,(6c)

either g(d) > 0 or d =∞.(6d)

Of course each such c and each such d is either of the form rn for some
n ∈ Z or is 0 or ∞. Clearly we can list all the elements of G as a finite
or infinite sequence {[ck, dk]}1≤k<ν , for some ν ∈ [2,∞]. They are of course
non-overlapping and their union contains or equals (0,∞). More precisely, for
each n ∈ N there exists an integer κ(n) ∈ [1, ν) such that

(7) [r−n, rn] ⊂
κ(n)⋃
k=1

[ck, dk].

It will be convenient to use the notation Jn = [r−n, rn] for these intervals.
For each integer k ∈ [1, ν) it follows from (6b) that G(t) coincides with an

affine function on [ck, dk] ∩ (0,∞). Let us denote this function by Lk(t) =
akt+ bk. By (6c) and (6d) and the concavity of G, we have Lk(t) > G(t) for
all t ∈ (0,∞)\[ck, dk], from which it follows that

(8) G(t) ≤ Lk(t) for all t > 0 and each k ∈ [1, ν).

Let us define a sequence {Fk}0≤k<ν of non-negative concave functions on
(0,∞) by F0 := F and Fk := min(Fk−1, Lk). (They will, in fact, all be strictly
positive except in the trivial case where g is identically zero.) From (8) and
the fact that G ≤ F it is evident that

G(t) ≤ Fk(t) for all t > 0 and each k ∈ [1, ν).

We observe further that

(9) Fk′(t) = G(t) for all t ∈ [ck, dk] ∩ (0,∞) and all k′, k ≤ k′ < ν,

since clearly for all such t and k′ we have G(t) = Lk(t) ≥ Fk(t) ≥ Fk′(t) ≥
G(t). Thus we deduce from (9) and (7) that, for each n ∈ N,

(10) Fk(t) = G(t) for each t ∈ Jn and each k such that κ(n) ≤ k < ν.

We now construct a sequence of linear operators {Uk}1≤k<ν and an asso-
ciated sequence of functions {fk}0≤k<ν with the following properties:

Uk : L1
w∗j

(Ω∗)→ L1
w∗j

(Ω∗) with norm not exceeding 1 for j = 0, 1.(11a)

The functions fk are non-negative and are defined iteratively by(11b)
f0 := f and fk := Ukfk−1 for k ≥ 1.

K(t, fk; L1
∗) = Fk(t) for each k and for all t > 0.(11c)
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We remark that, by construction, each function Fk is piecewise affine. More
precisely, each compact subinterval of (0,∞) is the union of finitely many
intervals, on each of which Fk is affine. Thus, by applying Lemma 2.2 on each
interval Jn we will be able to deduce from (11c) that fk(t) = F ′k(t−)−F ′k(t+)
for all t > 0. Lemma 2.2 and the properties of g also imply that g(t) =
G′(t−)−G′(t+) for all t > 0, so it will follow from our construction and (10)
that

(12) fk(t) = g(t) for each t ∈ Jn−1 and each k such that κ(n) ≤ k < ν.

We construct the Uk’s andfk’s iteratively: We of course have (11a) and
(11b) for k = 0, so let κ be an integer in [1, ν) and suppose we have already
obtained functions fk for each integer k ∈ [0, κ) and operators Uk for each
integer k ∈ [1, κ) which satisfy (11a), (11b) and (11c).

If Lκ(t) ≥ Fκ−1(t) for all t > 0 then of course Fκ = Fκ−1, so we may
take Uκ simply as the identity operator, and fκ = fκ−1. Otherwise the set
{t ∈ (0,∞) : Lκ(t) < Fκ−1(t)} is nonempty and it must necessarily be an
open interval (ακ, γκ) for some suitable ακ and γκ in [0,∞]. Let us remark
here, for later use, that since G(t) ≤ Lκ(t) ≤ Fκ−1(t) for all t ∈ (ακ, γκ), it
follows from (10) that

(13) Jn ∩ (ακ, γκ) = ∅ whenever κ ≥ κ(n) + 1.

We choose Uκ = SακBκγκ , where Bκ = {βm}m∈M is the sequence of points
s ∈ (ακ, γκ) such that fκ−1(s) = F

′

κ−1(s−) − F
′

κ−1(s+) > 0. Clearly (cf.
(5)) we have K(t, Uκfκ−1; L1

∗) = min(Fκ−1(t), Lκ(t)) := Fκ(t) for all t > 0.
Moreover, since fκ−1 is non-negative, fκ := Uκfκ−1 must also be non-negative,
so we have established that properties (11a), (11b) and (11c) also hold for
k = κ. The construction can thus be completed for all integers k ∈ [1, ν).

Now we define another sequence of operators Tk by T1 = U1 and Tk =
UkTk−1 for 2 ≤ k < ν. We claim that for each n ∈ N and each h ∈ L1

w∗0
(Ω∗) +

L1
w∗1

(Ω∗), whenever k > κ(n) and t ∈ Jn−1, we have

(14) Tkh(t) = Tκ(n)h(t)

and

(15) Tkf(t) = g(t).

We obtain (14) from (13), which implies that, for each k as above, Jn−1 ∩
[αk, γk] = ∅. This ensures that the operator Uk does not change the values of
functions at any t ∈ Jn−1, and so

Tkh(t) = UkUk−1 . . . .Uκ(n)+1Tκ(n)h(t) = Tκ(n)h(t).

To obtain (15) we simply observe that Tkf = fk and use (12).
Finally, we define the operator T required for the proof of the theorem.

For each h ∈ L1
w∗0

(Ω∗) + L1
w∗1

(Ω∗) let Th be the function defined by Th(t) =
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Tν−1h(t) if ν < ∞, and Th(t) = limk→∞ Tkh(t) if ν = ∞. It follows im-
mediately from (15) that Tf = g. The fact that T : L1

w∗j
(Ω∗) → L1

w∗j
(Ω∗)

with norm not exceeding 1 for j = 0, 1 follows immediately from (14) to-
gether with the fact that the operators Tk have the same property, since
‖Th‖L1

w∗0
(Ω∗) = supn∈N ‖Th · χJn‖L1

w∗0
(Ω∗). �

Remark 2.1. Since each Uk = SαkBkγk is a positive operator, it follows
immediately that the same is true for each Tk, and so also for T .

3. The proof that Theorem 1.1 follows from Theorem 2.1

Let (Ω,Σ, µ) be an arbitrary measure space and w0 and w1 arbitrary weight
functions on Ω. As before, let L1 = (L1

w0
(Ω), L1

w1
(Ω)).

This part of the proof is similar to arguments presented in [23] and also
rather similar to the proof of the well known fact that the couple L1

∗ is a
retract of the couple L1 (cf., e.g., [7, p. 160, Example 2.3.22(c)]).

Choose ε > 0 and let f and g be arbitrary functions in L1
w0

+L1
w1

satisfying

(16) K(t, g; L1) ≤ K(t, f ; L1) for all t > 0.

Let Mf and Ng be operators of pointwise multiplication, defined by Mfh =
sgn(f)h and Ngh = sgn(g)h for each h ∈ L1

w0
(Ω) + L1

w1
(Ω). These operators

both obviously map L1
wj (Ω) into itself with norm 1 for j = 0, 1. Since Mff =

|f | and Ng|g| = g our main task will be to find an operator V such that
V : L1

wj (Ω) → L1
wj (Ω) with norm not exceeding 1 + ε and V |f | = |g|. Then

we will simply choose T = NgVMf to obtain Tf = g.
We fix a number r > 1 such that r2 < 1 + ε. For each n ∈ Z let

Ωn = {x ∈ Ω : rn−1 ≤ w0(x)
w1(x)

< rn}.

We now define an operator P : L1
w0

(Ω) + L1
w1

(Ω)→ L1
w∗0

(Ω∗) + L1
w∗1

(Ω∗). For
each h ∈ L1

w0
(Ω) + L1

w1
(Ω) we set

Ph(rn) =
∫

Ωn

hw1dµ for each n ∈ Z

and Ph(t) = 0 for all other values of t ∈ (0,∞). We observe that for
j = 0, 1 we have |Ph(rn)|w∗j (rn) ≤ r1−j ∫

Ωn
|h|wjdµ for each n ∈ Z and

so P : L1
wj (Ω)→ L1

w∗j
(Ω∗) with norm not exceeding r1−j . Furthermore,

K(t, P |f |; L1
∗) =

∑
n∈Z

∫
Ωn

|f |w1dµ ·min(rn, t)(17)

≥
∑
n∈Z

∫
Ωn

|f |min(w0, tw1)dµ = K(t, f ; L1)
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for all t > 0.
Next, we define an operator Q : L1

w∗0
(Ω∗) + L1

w∗1
(Ω∗) → L1

w0
(Ω) + L1

w1
(Ω).

For each u ∈ L1
w∗0

(Ω∗) + L1
w∗1

(Ω∗) we set

Qu = |g| ·
∑
n∈Z∗

u(rn)∫
Ωn
|g|w1dµ

χΩn ,

where Z∗ is the set of all integers n such that g does not vanish a.e. on Ωn.
Then for each n ∈ Z∗ we have that∫

Ωn

|Qu|wjdµ =

∫
Ωn
|g|wjdµ∫

Ωn
|g|w1dµ

|u(rn)| ≤ w∗j (rn)|u(rn)|,

and soQ : L1
w∗j

(Ω∗)→ L1
wj (Ω) with norm not exceeding 1 for j = 0, 1. Further-

more, if we define the function g∗ : (0,∞)→ (0,∞) by g∗(rn) =
∫

Ωn
|g|w1dµ

for each n ∈ Z and g∗(t) = 0 for all other values of t ∈ (0,∞), then Qg∗ = |g|.
We also have that

K(t, g∗; L1
∗) =

∑
n∈Z

∫
Ωn

|g|w1dµ ·min(rn, t)

≤ r
∑
n∈Z

∫
Ωn

|g|min(w0, tw1)dµ = rK(t, g; L1)

for all t > 0. From this estimate and (16) and (17) we get that

K(t,
1
r
g∗; L1

∗) ≤ K(t, P |f |; L1
∗) for all t > 0.

This enables us to apply Theorem 2.1 to obtain an operator A : L1
w∗0

(Ω∗) +
L1
w∗1

(Ω∗)→ L1
w∗0

(Ω∗)+L1
w∗1

(Ω∗) such that A : L1
w∗j

(Ω∗)→ L1
w∗j

(Ω∗) with norm
not exceeding 1 for j = 0, 1 and A(P |f |) = (1/r)g∗. Then it is clear that
the operator V := rQAP satisfies V |f | = |g| and V : L1

wj (Ω) → L1
wj (Ω)

for j = 0, 1 with norm not exceeding r2−j . Since we have chosen r so that
r2 < 1 + ε, the proof is complete.

Remark 3.1. By Remark 2.1, A can be chosen to be a positive operator.
Since P and Q are clearly positive operators, we deduce that V is also positive.

4. A refinement of Theorem 1.1: operators with norm 1

In this section we shall prove that Theorem 1.1 also holds for ε = 0.
Let the measure spaces and weight functions and the functions f and g

satisfying (16) be as in Section 3. For each n ∈ N let Vn be a positive operator,
constructed as in Section 3, such that Vn|f | = |g| and Vn : L1

wj (Ω)→ L1
wj (Ω)

for j = 0, 1, with norm not exceeding 1 + 1/n. We use an approach suggested
by the proofs of analogous results in [8]. Let λ be a Banach limit, i.e., a
linear functional on `∞(N) whose existence follows from the Hahn-Banach
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theorem, such that |λ(α)| ≤ lim supn→∞ |αn| for all sequences α = {αn}n∈N
in `∞(N) and λ(α) = limn→∞ αn if {αn}n∈N is convergent. For each h ∈
L1
w0

(Ω) + L1
w1

(Ω) and for each measurable set E ⊂ Ω let

Ψ(E, h) := λ

({∫
E

min(w0, w1)Vnh dµ
}
n∈N

)
.

Ψ(E, h) is well defined since for each n,∣∣∣∣∫
E

min(w0, w1)Vnh dµ
∣∣∣∣ ≤ ∫

Ω

min(w0, w1)|Vnh| dµ

= K(1, Vnh; L1) ≤
(

1 +
1
n

)
K(1, h; L1)

(cf., e.g., [5, p. 41]). Observe that for each fixed E the functional Ψ(E, h)
depends linearly on h. On the other hand, for each fixed h, Ψ(E, h) is a
finitely additive set function on the σ-algebra Σ.

For each k ∈ N define

Ξk =
{
x ∈ Ω : |f(x)| ≥ 1

k
,

1
k
≤ w0(x) ≤ k, 1

k
≤ w1(x) ≤ k

}
.

Note that µ(Ξk) ≤
∫

Ξn
k2|f |min(w0, w1)dµ <∞ and also that χΞk ∈ L1

w0
(Ω)∩

L1
w1

(Ω). Let us fix k and a measurable set B ⊂ Ξk. Then for each measurable
set E ∈ Σ we have (since each Vn is positive and k|f | − χB ≥ 0)

Ψ(E,χB) ≤ lim sup
n→∞

∫
E

min(w0, w1)VnχB dµ

≤ lim sup
n→∞

k

∫
E

min(w0, w1)Vn|f | dµ

= k

∫
E

min(w0, w1)|g| dµ.

From these estimates and the finite additivity of Ψ(·, χB) we deduce that
Ψ(·, χB) is, in fact, countably additive, i.e., it is a measure on Σ. (Its total
variation does not exceed k

∫
Ω
|g|min(w0, w1)dµ.) It is of course absolutely

continuous with respect to the measure µ.
If µ is σ-finite we can apply the Radon-Nikodým theorem to show that

there exists a µ-integrable function ρ : Ω → C such that Ψ(E,χB) =
∫
E
ρdµ

for all E ∈ Σ. But, in fact, we can obtain the existence of a function ρ with
these properties even when µ is not σ-finite by considering the set Γ := {x ∈
Ω : g(x) 6= 0}. Because of the factor |g| that appears in the formula for
each operator which plays the rôle of the operator Q in the proof of Section
3, it follows that Vnh = χΓVnh for each n and all h ∈ L1

w0
(Ω) + L1

w1
(Ω).

Thus Ψ(E, h) = Ψ(E ∩ Γ, h) for all E ∈ Σ. The measure µΓ defined by



416 MICHAEL CWIKEL AND INNA KOZLOV

µΓ(E) = µ(E ∩ Γ) is of course σ-finite. Hence we obtain ρ as required; ρ will
of course be supported on Γ.

Since ρ depends on B and, in fact, is determined uniquely µ-a.e. by the
choice of B, we shall use the more explicit notation ρB for ρ. Obviously, for
disjoint measurable B1 and B2 contained in some Ξk we have

(18) ρB1∪B2 = ρB1 + ρB2 .

We now define an operator V which acts on the space S of all (complex-
valued) simple functions h of the form h =

∑M
m=1 βmχBm , where the mea-

surable sets Bm are pairwise disjoint and are each contained in Ξk for some
k ∈ N. For each such h we set

V h =
∑M
m=1 βmρBm

min(w0, w1)
.

It follows from (18) that this definition is independent of the representation
of h and that V is linear. It also follows from the µ-integrability of each ρBm
that

(19)
∫

Ω

|V h|min(w0, w1)dµ <∞.

We see that∫
E

V h ·min(w0, w1)dµ =
M∑
m=1

βm

∫
E

ρBmdµ =
M∑
m=1

βmΨ(E,χBm) = Ψ(E, h)

for each measurable E. Thus, for each (complex-valued) simple function z =∑N
i=1 ζiχEi we obtain∫

Ω

zV h ·min(w0, w1)dµ =
N∑
i=1

ζiΨ(Ei, h)

= λ

({∫
Ω

zVnh ·min(w0, w1)dµ
}
n∈N

)
.

Consequently, for j = 0, 1,∣∣∣∣∫
Ω

zV h ·min(w0, w1)dµ
∣∣∣∣ ≤ lim sup

n→∞

∫
Ω

|zVnh| ·min(w0, w1)dµ

≤ lim sup
n→∞

∫
Ω

|Vnh|wjdµ · ess sup
|z|min(w0, w1)

wj

≤ lim sup
n→∞

(
1 +

1
n

)∫
Ω

|h|wjdµ · ess sup
|z|min(w0, w1)

wj

=
∫

Ω

|h|wjdµ · ess sup
|z|min(w0, w1)

wj
.
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It follows that if φ is a second simple function satisfying |φ| ≤ 1 a.e., then∣∣∣∣∫
Ω

zφV h ·min(w0, w1)dµ
∣∣∣∣ ≤ ∫

Ω

|h|wjdµ · ess sup
Ω

|z|min(w0, w1)
wj

.

Hence, using a sequence of simple functions φn with |φn| ≤ 1 such that φn con-
verges pointwise to sgn(V h), we obtain by dominated convergence (recalling
(19)) that∣∣∣∣∫

Ω

z|V h|min(w0, w1)dµ
∣∣∣∣ ≤ ∫

Ω

|h|wjdµ · ess sup
Ω

|z|min(w0, w1)
wj

.

Now consider a monotone increasing sequence of non-negative simple functions
zn whose pointwise limit is wj/min(w0, w1). Substituting these functions zn
into the preceding estimate and applying monotone convergence, we deduce
that

(20)
∫

Ω

|V h|wjdµ ≤
∫

Ω

|h|wjdµ for j = 0, 1 and all h ∈ S.

Let Ξ =
⋃∞
n=1 Ξn. Of course Ξ = {x ∈ Ω : f(x) 6= 0}. Let L1

wj (Ξ) be the
subspace of L1

wj (Ω) consisting of those functions which vanish a.e. on Ω\Ξ.
Clearly S is a dense subspace of L1

wj (Ξ) for j = 0, 1 and also of L1
w0

(Ξ) ∩
L1
w1

(Ξ). So by (20) the operator V has a unique extension, which we will still
denote by V , to an operator which maps L1

w0
(Ξ)∩L1

w1
(Ξ) into L1

w0
(Ω)∩L1

w1
(Ω)

with norm not exceeding 1. (We define the norms on these intersection spaces
in the usual way; cf., e.g., [5].) Using (20) again, we can, for j = 0, 1, further
extend V uniquely to an operator mapping L1

wj (Ξ) into L1
wj (Ω) with norm not

exceeding 1. Since the extension for j = 0 and the extension for j = 1 coincide
on functions in L1

w0
(Ξ)∩L1

w1
(Ξ) it follows that they define a unique operator

from L1
w0

(Ξ) + L1
w1

(Ξ) into L1
w0

(Ω) + L1
w1

(Ω). We again permit ourselves to
denote this extension of V to L1

w0
(Ξ) + L1

w1
(Ξ) by V .

The formula

(21)
∫
E

min(w0, w1)V h dµ=Ψ(E, h) := λ

({∫
E

min(w0, w1)Vnh dµ
}
n∈N

)
was obtained above for all h ∈ S. We now show that it holds in fact for all
h ∈ L1

w0
(Ξ) + L1

w1
(Ξ). For each h ∈ L1

w0
(Ξ) + L1

w1
(Ξ) there exists a sequence

{hk}k∈N of functions in S such that

(22) lim
k→∞

∫
Ξ

|h− hk|min(w0, w1)dµ = lim
k→∞

K(1, h− hk; L1) = 0.

By standard K-functional estimates we also have that∫
Ξ

|V h− V hk|min(w0, w1)dµ = K(1, V (h− hk); L1)(23)

≤ K(1, h− hk; L1)
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and ∫
Ξ

|Vnh− Vnhk|min(w0, w1)dµ = K(1, Vn(h− hk); L1)(24)

≤
(

1 +
1
n

)
K(1, h− hk; L1).

The estimates (22), (23) and (24) can now be used in an obvious way to extend
(21) as required.

Finally let us substitute h = |f | in (21). Since Vn|f | = |g| for each n we
obtain ∫

E

V |f |min(w0, w1)dµ =
∫
E

|g|min(w0, w1)dµ.

Since this formula holds for every E ∈ Σ, it follows that V |f | = |g| almost
everywhere. Thus, to get an operator T which maps L1

w0
(Ω) + L1

w1
(Ω) into

L1
w0

(Ω) + L1
w1

(Ω), and L1
wj (Ω) into L1

wj (Ω) with norm not exceeding 1, and
for which Tf = g, we can take Th = NgV (χΞ ·Mfh).

This completes the proof that Theorem 1.1 holds for ε = 0.

Remark 4.1. We observe that the functional λ introduced above must
be positive, i.e., λ(α) ≥ 0 whenever the elements of the sequence α are all
non-negative. This is perhaps most easily seen by using the fact that λ is
representable as a finitely additive measure λ∗ on the σ-algebra of all subsets
of N. Since λ∗(N) = λ(χN) = 1 and since the total variation of λ∗ equals
‖λ‖ = 1, it follows that λ∗(Y ) ≥ 0 for all Y ⊂ N. This immediately implies
the positivity of λ. We can now use (21) for each E ∈ Σ and the positivity
of each Vn to deduce that V is a positive operator. Then obviously, if f and
g are non-negative, T will also be a positive operator, justifying our claim in
the introduction.
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