
Illinois Journal of Mathematics
Volume 48, Number 1, Spring 2004, Pages 131–150
S 0019-2082

CANONICAL BIG COHEN-MACAULAY ALGEBRAS AND
RATIONAL SINGULARITIES

HANS SCHOUTENS

Abstract. We give a canonical construction of a balanced big Cohen-
Macaulay algebra for a domain of finite type over C by taking ultra-

products of absolute integral closures in positive characteristic. This
yields a new tight closure characterization of rational singularities in
characteristic zero.

1. Introduction

In [7], Hochster proves the existence of big Cohen-Macaulay modules for
a large class of Noetherian rings containing a field. Recall that a module
M over a Noetherian local ring R is called a big Cohen-Macaulay module, if
there is a system of parameters of R which is M -regular (the adjective big
is used to emphasize that M need not be finitely generated). Hochster also
exhibits in that paper the utility of big Cohen-Macaulay modules in answering
various homological questions. Often, one can even obtain a big Cohen-Mac-
aulay module M such that every system of parameters is M -regular; these are
called balanced big Cohen-Macaulay modules. In [8], Hochster and Huneke
show that for equicharacteristic excellent local domains, one can even find a
balanced big Cohen-Macaulay algebra, that is to say, M admits the struc-
ture of a (commutative) R-algebra. In fact, for R a local domain of positive
characteristic, they show that the absolute integral closure of R, denoted by
R+, is a (balanced) big Cohen-Macaulay algebra (it is easy to see that this is
false in characteristic zero). In [9], using lifting techniques similar to the ones
developed in the original paper of Hochster, they obtain also the existence of
big Cohen-Macaulay algebras in characteristic zero. However, the construc-
tion is no longer canonical and one looses the additional information one had
in positive characteristic. Nonetheless, many useful applications follow, see
[11, §9] or [9].
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In this paper, I will show that for a local domain R of finite type over
C (henceforth, a local C-affine domain), a simple construction of a balanced
big Cohen-Macaulay algebra B(R) can be made, which restores canonicity, is
weakly functorial and preserves many of the good properties of the absolute
integral closure. Namely, to the domain R one associates certain characteristic
p domains Rp, called approximations of R, and of these one takes the absolute
integral closure R+

p and then forms the ultraproduct B(R) := ulimp→∞R+
p .

For generalities on ultraproducts, including  Los’ Theorem, see [5]; for a short
introduction, see [17, §2]. Recall that an ultraproduct of rings Cp is a certain
homomorphic image of the direct product of the Cp. This ultraproduct will
be denoted by ulimp→∞ Cp, or simply by C∞, and similarly, the image of a
sequence (ap | p) in C∞ will be denoted by ulimp→∞ ap, or simply by a∞.

The notion of approximation goes back to the paper [17], where it was
introduced to define a closure operation, called non-standard tight closure,
on C-affine algebras by means of a so-called non-standard Frobenius. Let me
briefly recall the construction of an approximation (details and proofs can be
found in [17, §3]). Suppose R is of the form C[X]/I, or possibly, a localization
of such an algebra with respect to a prime ideal p. There is a fundamental
(but non-canonical) isomorphism between the field of complex numbers on
the one hand, and the ultraproduct of all the fields Falg

p on the other hand,
where Falg

p denotes the algebraic closure of the p-element field. Therefore, for
every element c in C, we can choose a representative in the product, that
is to say, a sequence of elements cp ∈ Falg

p , called an approximation of c,
such that ulimp→∞ cp = c. Applying this to each coefficient of a polynomial
f ∈ C[X] separately, we get a sequence of polynomials fp ∈ Falg

p [X] (of the
same degree as f), called again an approximation of f . If we apply this to the
generators of I and p, we generate ideals Ip and pp in Falg

p [X], called once more
approximations of I and p, respectively. One shows that pp is prime for almost
all p. Finally, we set Rp := F

alg
p [X]/Ip (or its localization at the prime ideal

pp) and call the collection of these characteristic p rings an approximation ofR.
Although the choice of an approximation is not unique, almost all its members
are the same; this is true for every type of approximation just introduced (here
and elsewhere, almost all means with respect to a non-specified but fixed non-
principal ultrafilter). Moreover, if we depart from a different presentation of
R as a C-affine algebra, then the resulting approximation is isomorphic to
Rp, for almost all p. In particular, the ultraproduct R∞ := ulimp→∞Rp of
the Rp is uniquely determined up to R-algebra isomorphism and is called
the non-standard hull of R. There is a natural embedding R → R∞, the
main property of which was discovered by van den Dries in [27]: R → R∞
is faithfully flat (note that in general, R∞ is no longer Noetherian nor even
separated). In case R is a local domain, almost all Rp are local domains.
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Therefore, the ultraproduct B(R) of the R+
p is well defined and unique up to

R-algebra isomorphism and we get our first main result.

Theorem A. If R is a local C-affine domain, then B(R) is a balanced big
Cohen-Macaulay algebra.

In fact, due to canonicity, the operation of taking B(·) is weakly functorial
(see Theorem 2.4 for a precise statement). Moreover, B(R) has the additional
property that every monic polynomial over it splits completely in linear fac-
tors. In B(R), any sum of prime ideals is either the unit ideal or else again a
prime ideal. This is explained in §3. In §4, we use B(·) to define a new closure
operation given as I+ := IB(R) ∩ R, and relate it to generic tight closure
(this is one of the alternative closure operations in characteristic zero intro-
duced in [17]). One immediate corollary of the canonicity of our construction
is the following characteristic zero version of the generalized Briançon-Skoda
Theorem in [9, Theorem 7.1].

Theorem B. If R is a local C-affine domain and I an ideal of R generated
by n elements, then the integral closure of In+k is contained in (Ik+1)+, for
every k ∈ N.

In [17] the same result is proven if we replace I+ by the generic tight closure
of I. This suggests that the appropriate characteristic zero equivalent of the
conjecture that tight closure equals plus closure is the conjecture that I+

always equals the generic tight closure of I. We show that in any case the
former is contained in the latter. Moreover, we have equality for parameter
ideals, that is to say, the characteristic zero equivalent of Smith’s result in [25]
also holds. Using this, we give in §5 a characterization of rational singularities
in terms of these closure operations, extending the results of Hara [6] and
Smith [26], at least in the affine case.

Theorem C. A local C-affine domain has rational singularities if, and
only if, there exists an ideal I generated by a system of parameters for which
I = I+.

Note that we need Hara’s result for the proof (see Theorem 5.11 for more
details), which itself relies on some deep vanishing theorems. In [23], we will
give a similar characterization for log-terminal singularities. Using the above
results, we recover the Briançon-Skoda Theorem of Lipman-Teissier. Another
application is a new proof of Boutot’s main result in [3], at least for Gorenstein
rational singularities (this also generalizes the main result of [24]; for a further
generalization, see [23, Theorem B]).

Theorem (Boutot [3]). Let R→ S be a (cyclically) pure homomorphism
of local C-affine algebras. If S is Gorenstein and has rational singularities,
then R has rational singularities.
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In the final section, some results of [18] are extended to the present char-
acteristic zero situation. In particular, we obtain the following regularity
criterion (see Theorem 7.1).

Theorem D. Let R be a local C-affine domain with residue field k. If R
has an isolated singularity and TorR1 (B(R), k) = 0, then R is regular.

In contrast with the prime characteristic case, I do not know whether for an
arbitrary local C-affine domain R, the flatness of R→ B(R) is equivalent with
the regularity of R (that it is a necessary condition is proved in Corollary 2.5).

Remark on the base field. To make the exposition more transparent, I
have only dealt in the text with the case that the base field is C. However, the
results extend to arbitrary uncountable base fields of characteristic zero by
the following observations. First, any uncountable algebraically closed field of
characteristic zero is the ultraproduct of (algebraically closed) fields of positive
characteristic by the Lefschetz Principle (see, for instance, [17, Remark 2.5]),
and this is the only property we used of C. Second, if A is a local K-affine
domain with K an arbitrary uncountable field, then A+ is a Kalg-algebra,
where Kalg is the algebraic closure of K. Therefore, in order to define B(A)
in case K has moreover characteristic zero, we may replace A by A⊗K Kalg

and assume from the start that K is uncountable and algebraically closed, so
that our first observation applies.

In [2], we will show the existence of a big Cohen-Macaulay algebra for an
arbitrary equicharacteristic zero Noetherian local domain. In [16] and [20],
the same techniques as in this paper are used to obtain an asymptotic version
of big Cohen-Macaulay algebras in mixed characteristic.

2. Big Cohen-Macaulay algebras

2.1. Absolute integral closure. Let A be a domain. The absolute inte-
gral closure A+ of A is defined as follows. Let Q be the field of fractions of A
and let Qalg be its algebraic closure, We let A+ be the integral closure of A in
Qalg. Since algebraic closure is unique up to isomorphism, any two absolute
integral closures of A are isomorphic as A-algebras. To not have to deal with
exceptional cases separately, we put A+ = 0 if A is not a domain.

In this paper, we will use the term K-affine algebra for an algebra of finite
type over a field K or a localization of such an algebra with respect to a prime
ideal; the latter will also be referred to as a local K-affine algebra.

2.2. Approximations and non-standard hulls. Let A be a C-affine
algebra and choose an approximation Ap of A (see the introduction; for a
precise definition and proofs, see [17, §3]). The ultraproduct of the Ap is
called the non-standard hull of A and is often denoted by A∞. The assignment
sending A to A∞ is functorial. There is a natural homomorphism A → A∞,
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which is faithfully flat by [14, Theorem 1.7] (for an alternative proof, see [21,
A.2]). It follows that if I is an ideal in A and Ip an approximation of I, then
IA∞ is the ultraproduct of the Ip and I = IA∞ ∩ A. By [17, Theorem 4.4],
almost all Ap are domains (respectively, local) if, and only if, A is a domain
(respectively, local) if, and only if, A∞ is a domain (respectively, local).

2.3. The quasi-hull B(·). LetA be a C-affine domain with approximation
Ap. Define B(A) as the ultraproduct

B(A) := ulim
p→∞

A+
p .

In view of the uniqueness of the absolute integral closure, B(A) is independent
of the choice of the Ap and hence is uniquely determined by A up to A-algebra
isomorphism. Using  Los’ Theorem, one easily shows that the natural map
SpecB(A)→ SpecA is surjective. Given a homomorphism A→ B of C-affine
algebras, we obtain homomorphisms Ap → Bp, for almost all p, where Bp is
an approximation of B (see [17, 3.2.4]). These homomorphisms induce (non-
canonically) homomorphisms A+

p → B+
p , which, in the ultraproduct, yield a

homomorphism B(A)→ B(B).
Note that the natural homomorphism A→ B(A) factors through the non-

standard hull A∞, and, in particular, A→ B(A) is no longer integral. Using
 Los’ Theorem and results on the absolute integral closure in [8] (see also [11,
Chapter 9]), we get the following more precise version of Theorem A.

2.4. Theorem. For each local C-affine domain R, the R-algebra B(R)
is a balanced big Cohen-Macaulay algebra in the sense that any system of
parameters of R is a B(R)-regular sequence. Moreover, if R → S is a lo-
cal homomorphism of local C-affine domains, then there exists a C-algebra
homomorphism B(R)→ B(S) giving rise to a commutative diagram

(1)

R −−−−→ Sy y
B(R) −−−−→ B(S)

If R→ S is finite and injective, then B(R) = B(S).

Proof. Let Rp be an approximation of R and R∞ its non-standard hull. Let
x be a system of parameters in R with approximation xp. By [17, Theorem
4.5] almost all xp are a system of parameters of Rp. Therefore, by [8, Theorem
1.1], the sequence xp is R+

p -regular, for almost all p.  Los’ Theorem then yields
that x is a B(R)-regular sequence.

The existence of the homomorphism B(R)→ B(S) and the commutativity
of diagram (1) follow from the above discussion. Finally, if S is a finite overring
of R, then by [17, Theorem 4.7], so will almost all Sp be over Rp, where Rp
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and Sp are approximations of R and S, respectively. In particular, R+
p = S+

p ,
for almost all p, proving that B(R) = B(S). �

2.5. Corollary. For each local C-affine regular ring R, the natural ho-
momorphism R→ B(R) is faithfully flat.

Proof. It is well-known that a balanced big Cohen-Macaulay module over
a regular local ring is flat (see, for instance, [19, Theorem IV.1] or [9, Lemma
2.1(d)]). Since the maximal ideal of R extends to a proper ideal in B(R), the
homomorphism R→ B(R) is faithfully flat. �

As in positive characteristic, we can define B(A) for any reduced C-affine
ring A as the product of all B(A/p), where p runs over all minimal prime
ideals of A. It follows easily from Theorem 2.4 that B(R) is a big Cohen-Mac-
aulay algebra for every reduced local C-affine ring R. As for localization, we
have a slightly less pretty result as in positive characteristic: if A is a C-affine
domain with non-standard hull A∞ and if p is a prime ideal of A, then

(2) B(Ap) ∼= B(A)⊗A∞ (A∞)pA∞ .

Indeed, if Ap and pp are approximations of A and p, respectively, then by [8,
Lemma 6.5], we have an isomorphism

((Ap)pp)+ ∼= (A+
p )pp = A+

p ⊗Ap (Ap)pp .

Taking ultraproducts, we get isomorphism (2). It follows that Corollary 2.5
also holds if we drop the requirement that A is local (use that B(A)p → B(Ap)
is flat, for every prime ideal p of A, by (2)). We also obtain the following
characteristic zero analogue of [8, Theorem 6.6].

2.6. Theorem. If A is a C-affine domain and I an ideal in A of height
h, then Hj

I (B(A)) = 0, for all j < h.

Proof. As in the proof of [8, Theorem 6.6], it suffices to show that for every
maximal ideal m of A containing I, we have that Hj

I (B(A))m = 0, for j < h.
Since Am → (A∞)mA∞ is faithfully flat, as explained in §2.2, it suffices to
show that

Hj
I (B(A))⊗A∞ (A∞)mA∞ = 0.

By (2), the left hand side is simply Hj
I (B(Am)) and therefore the problem

reduces to the case that A is local. Let (x1, . . . , xh) be part of a system
of parameters of A contained in I. Since (x1, . . . , xh) is B(A)-regular by
Theorem 2.4, the vanishing of Hj

I (B(A)) for j < h is then clear, since local
cohomology can be viewed as a direct limit of Koszul cohomology. �
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3. Properties of B(A)

Let us call a domain S absolutely integrally closed if every monic polynomial
over S has a root in S.

3.1. Lemma. For a domain S with field of fractions Q, the following are
equivalent.

(3.1.1) S is absolutely integrally closed.
(3.1.2) Every monic polynomial completely splits in S.
(3.1.3) S is integrally closed in Q and Q is algebraically closed.

Proof. The implications (3.1.3) =⇒ (3.1.2) and (3.1.2) =⇒ (3.1.1) are
straightforward. Hence assume that S is absolutely integrally closed. It is
clear that S is then integrally closed in Q. So remains to show that Q is
algebraically closed. In other words, we have to show that every non-zero
one-variable polynomial F ∈ Q[T ] has a root in Q. Clearing denominators,
we may assume that F ∈ S[T ]. Let a ∈ S be the (non-zero) leading coefficient
of F and d its degree. We can find a monic polynomial G over S, such that
ad−1F (T ) = G(aT ). By assumption, G(b) = 0 for some b ∈ S. Hence
F (b/a) = 0, as required. �

It follows from [8, Lemma 6.5] that a domain S is the absolute integral
closure of a subring A if, and only if, S is absolutely integrally closed and
A ⊂ S is integral.

3.2. Proposition. If A is a C-affine domain, then B(A) is absolutely
integrally closed.

Proof. Let F (T ) := T d + a1T
d−1 + · · ·+ ad be a monic polynomial in the

single variable T with ai ∈ B(A). We need to show that F has a root in B(A).
Choose aip ∈ A+

p , such that ulimp→∞ aip = ai, for all i, where Ap is some
approximation of A. Hence we can find bp ∈ A+

p such that

(bp)d + a1p(bp)d−1 + · · ·+ adp = 0.

Therefore, by  Los’ Theorem, b := ulimp→∞ bp is a root of F . �

3.3. Corollary. Let A be a C-affine domain. The sum of any collection
of prime ideals in B(A) is either prime or the unit ideal. If gi are pi-primary
ideals, for i in some index set I, and if p :=

∑
i∈I pi is not the unit ideal, then∑

i∈I gi is p-primary.

Proof. By Proposition 3.2, the ring B(A) is quadratically closed and there-
fore has the stated properties by [8, Theorem 9.2]. �

The next result shows that B(R), viewed as an R∞-algebra, also behaves
very much like a Cohen-Macaulay algebra.
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3.4. Proposition. Let (R,m) be a local C-affine domain. Let (x1, . . . , xd)
be part of a system of parameters of R and let p1, . . . , ps be the minimal
prime ideals of (x1, . . . , xd)R. If t∞ ∈ mR∞ does not lie in any piR∞, then
(x1, . . . , xd, t∞) is a B(R)-regular sequence.

Proof. Suppose b∞ ∈ B(R) is such that

t∞b∞ ∈ (x1, . . . , xd)B(R).

Let Rp, xip and pip be approximations of R, xi and pi, respectively. It follows
from [17, Theorem 4.5] that (x1p, . . . , xdp) is part of a system of parameters
in Rp, and from [17, Theorem 4.4], that p1p, . . . , psp are the minimal prime
ideals of (x1p, . . . , xdp)Rp, for almost all p. Choose tp and bp in Rp and R+

p ,
respectively, such that their ultraproduct is t∞ and b∞. By  Los’ Theorem,
almost all tp lie outside any pip, and tpbp ∈ (x1p, . . . , xdp)R+

p . Therefore,
(x1p, . . . , xdp, tp) is part of a system of parameters in Rp and hence, by [8,
Theorem 1.1], is an R+

p -regular sequence, for almost all p. It follows that
bp ∈ (x1p, . . . , xdp)R+

p , for almost all p, whence, by  Los’ Theorem, b∞ ∈
(x1, . . . , xd)B(R). �

4. B-closure

In analogy with plus closure in positive characteristic, which is defined via
absolute integral closures, we use the quasi-hull B(·) to define a new closure
operation on a local C-affine domain R as follows.

4.1. Definition (B-closure). We define the B-closure of an ideal I in R
to be the ideal

I+ := IB(R) ∩R.

Clearly I ⊂ I+ and (I+)+ = I+, so that this yields indeed a closure
operation on ideals. Since SpecB(R)→ SpecR is surjective, p = p+ for every
prime ideal p of R. It follows that I+ ⊂ rad I, for every ideal I. We will
show that B-closure satisfies many of the properties of classical tight closure.
For instance, Theorem B is the analogue of the tight closure Briançon-Skoda
Theorem and will be proved in §6. Let us record some important properties,
all of which follow immediately from the results obtained in the previous
sections.

4.2. Theorem. Let R be a local C-affine domain.
(4.2.1) If R is regular, then I = I+ for every ideal I of R.
(4.2.2) If (x1, . . . , xd) is a system of parameters in R, then ((x1, . . . , xi)R :

xi+1) is contained in the B-closure of (x1, . . . , xi)R, for all i < d
(Colon Capturing).

(4.2.3) If R → S is a local C-algebra homomorphism of local C-affine
domains, then I+S ⊂ (IS)+ for every ideal I of R (Persistence).



CANONICAL BIG COHEN-MACAULAY ALGEBRAS 139

Proof. The first assertion is immediate from the faithful flatness of R →
B(R) proved in Corollary 2.5. For (4.2.2), let I := (x1, . . . , xi)R and suppose
axi+1 ∈ I. Since (x1, . . . , xd) is B(R)-regular by Theorem 2.4, we get a ∈
IB(R), and hence a ∈ I+. In fact, the argument yields that xi+1 is a non-zero
divisor modulo I+. The last assertion is immediate from the weak functoriality
of B(·) proved in Theorem 2.4. �

One of the advantages of plus closure over tight closure is the fact that it
commutes with localization. At present, I cannot yet show the analogue of
this for B-closure, but we have at least the following special case (which often
suffices).

4.3. Theorem. Let R be a local C-affine domain and let p be a prime
ideal of R. If I is an ideal in R such that IRp is pRp-primary, then

I+Rp = (IRp)+.

Proof. Put S := Rp. By (4.2.3), we have the inclusion I+S ⊂ (IS)+, so
it remains to show the opposite inclusion. Let a ∈ (IS)+ and let R∞ be
the non-standard hull of R. By definition, the non-standard hull S∞ of S is
isomorphic to (R∞)pR∞ , so that using (2), we get

(3) B(S) ∼= B(R)⊗R∞ S∞.

Since IS is pS-primary, S/IS ∼= S∞/IS∞ by [17, Theorem 4.5]. Tensoring
with B(R)p and using (3) yields

(4) B(R)p/IB(R)p
∼= B(S)/IB(S).

Hence we showed that IB(S) ∩ B(R)p = IB(R)p, so that a ∈ IB(R)p. There-
fore, there is an s ∈ R \ p such that sa ∈ IB(R). This shows that sa ∈ I+,
whence a ∈ I+S, as required. �

4.4. Remark. We would obtain that B-closure commutes with localiza-
tion if we could show that the B-closure of an ideal I in a local C-affine domain
(R,m) is equal to the intersection of all (I+mn)+. One obstruction in proving
this is the fact that the intersection of all mnB(R) is not zero (as it is neither
so in R∞).

There is a close connection between B-closure and generic tight closure,
the definition of which we now recall. Let A be a (local) C-affine algebra, I
an ideal of A and z an arbitrary element. We say that z lies in the generic
tight closure of I, if zp lies in the tight closure of Ip, for almost all p, where
zp and Ip are approximations of z and I, respectively. In [17] it is shown that
this yields a closure operation with similar properties as characteristic zero
tight closure, and that it is contained in non-standard tight closure (for the
definition of non-standard (tight) closure and for further properties of these
closure operations, see [17]; variants can be found in [22] and [24]).
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4.5. Corollary. Let R be a local C-affine domain. If I is an ideal in
R, then I+ is contained in the generic tight closure of I (whence also in the
non-standard tight closure and in the integral closure of I).

Moreover, if I is generated by a system of parameters of R, then I+ is equal
to the generic tight closure of I.

Proof. Let Rp and Ip be approximations of R and I, respectively. Let
f ∈ R with approximation fp. Assume first that f ∈ I+. It follows that
fp ∈ IpR+

p , for almost all p. Since in general, JB ∩A lies in the tight closure
of J , for any integral extension A→ B of prime characteristic rings and any
ideal J ⊂ A ([11, Theorem 1.7]), we get that fp lies in the tight closure of
Ip, for almost all p. However, this just means that f lies in the generic tight
closure of I.

Conversely, if f lies in the generic tight closure of xR, where x is a system
of parameters with approximation xp, then fp lies in the tight closure of
xpRp and xp is a system of parameters in Rp by [17, Theorem 4.5], for almost
all p. By the result of Smith in [25], tight closure equals plus closure for
any ideal generated by a system of parameters, so that fp ∈ xpR+

p . Taking
ultraproducts, we get that f ∈ xB(R). �

5. Rational singularities

Classical tight closure has also applications in singularity theory: certain
(rational) singularities of a ring seem to be (or at least are conjectured to
be) determined by the type of ideals in the ring that are tightly closed. A
similar, and even better behaved, phenomenon holds true for the non-standard
versions of tight closure (see, for instance, [23], [24]). It turns out that also
B-closure can be used to characterize rational singularities, and so we make
the following definitions for a local C-affine domain R.

5.1. Definition. We say that R is B-rational (respectively, generically
F-rational), if there is an ideal I generated by a system of parameters, such
that I = I+ (respectively, such that I is equal to its generic tight closure).

We say that R is B-regular (respectively, weakly generically F-regular), if
I = I+ (respectively, I is equal to its generic tight closure), for every ideal I
in R.

In other words, R is B-regular if, and only if, R → B(R) is cyclically pure
(recall that a homomorphism A→ B is called cyclically pure if I = IB∩A for
all ideals I in A). By (4.2.1), regular implies B-regular. Corollary 4.5 shows
that weakly generically F-regular implies B-regular and that generically F-
rational and B-rational are equivalent. The reader should also compare the
notion of B-regularity with the notion of CMn-regularity from [9].
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If every localization of R at a prime ideal is weakly generically F-regular,
then we call R generically F-regular. Conjecturally, weakly generically F-
regular and generically F-regular are equivalent, or more generally, one ex-
pects that generic tight closure commutes with localization. It is a direct
consequence of Theorem 4.3 that no such complication arises for the notion
of B-regularity (whence the absence of the modifier weak in the definition).

5.2. Theorem. Any localization of a B-regular local C-affine domain is
again B-regular.

Proof. Let R be a B-regular local C-affine domain with non-standard hull
R∞. Let p be a prime ideal in R and put S := Rp. We have to show that
J = J+ for every ideal J in S. Suppose we have shown this for all pS-primary
ideals and let J be arbitrary. It follows that J+ ⊂ (J + pnS)+ = J + pnS,
for all n, so that by Krull’s Intersection Theorem, J+ is contained in J , as we
needed to show.

So we may assume J is pS-primary. If we choose I in R such that J = IS,
then J+ = I+S by Theorem 4.3. However, I = I+ by assumption, showing
that J+ = IS = J . �

We now turn our attention to B-rational (or equivalently, generically F-
rational) rings. The following is just a rephrasing of [24, Theorem 6.2] in our
new terminology (its converse also holds and will be proved in Theorem 5.11
below).

5.3. Theorem. If a local C-affine domain is B-rational, then it has ra-
tional singularities.

Proof. Let R be a local C-affine domain and assume R is B-rational. This
means that there exists a system of parameters x in R such that xR = xB(R)∩
R. Since xR is then equal to its own generic tight closure by Corollary 4.5, we
get from [24, Remark 6.3] that R has rational singularities. For the reader’s
convenience, let me briefly repeat the argument. Let xp be an approximation
of x. By Corollary 4.5, almost all xpRp are tightly closed. Since almost all xp
are systems of parameters by [17, Theorem 4.5], almost all Rp are F-rational.
Therefore, by [26], almost all Rp are pseudo-rational. This in turn implies that
R is pseudo-rational by [24, Theorem 5.1]. Let me also sketch the argument
of this last result. Let W → X be a desingularization of X := SpecR. Hence
W = ProjB for some blow-up algebra B of R. Put W p := ProjBp, for some
choice of approximation Bp of B (note that almost all Bp are graded). One
shows, using the results from [17], that W p → Xp is a desingularization of Rp
for almost all p, where Xp := SpecRp. By the definition of pseudo-rationality,
we get isomorphisms H0(W p, ωWp

) ∼= H0(Xp, ωXp) for almost all p, where in
general, ωY denotes the canonical sheaf of a scheme Y . Using results from
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[15], we derive from this an isomorphism H0(W,ωW ) ∼= H0(X,ωX), proving
that R has rational singularities. �

5.4. Proposition. For R a local C-affine domain with approximation
Rp, almost all Rp are F-rational if, and only if, R is generically F-rational
(or, equivalently, B-rational).

Proof. Let x be a system of parameters of R and let xp be an approximation
of x. By [17, Theorem 4.5] almost all xp are a system of parameters of Rp.
Suppose first that almost all Rp are F-rational. Let y be in the generic tight
closure of xR and let yp be an approximation of y. Hence almost all yp lie
in the tight closure of xpRp, whence in xpRp by F-rationality. Therefore,
y ∈ xR∞ by  Los’ Theorem, whence y ∈ xR by faithful flatness.

Conversely, assume almost all Rp are not F-rational. This means that for
almost all p, the tight closure of xpRp is strictly bigger than xpRp. Let J∞ be
the ultraproduct of the tight closures of the xpRp . By  Los’ Theorem, xR∞  
J∞. Since xR is primary to the maximal ideal in R, we have an isomorphism
R/xR ∼= R∞/xR∞. Symbolically, this means that R∞ = R+ xR∞ (as sets),
and hence that J∞ = (J∞ ∩R) + xR∞. Therefore, putting J := J∞ ∩R, we
showed that J∞ = JR∞. Since xR∞  J∞, we get that xR  J . However,
one easily checks that J is just the generic tight closure of xR. Hence, for no
system of parameters x is xR equal to its generic tight closure, showing that
R is not generically F-rational. �

5.5. Remark. In the course of the proof we actually established the fol-
lowing more general result. Let (R,m) be a local C-affine domain and let I be
m-primary. The ultraproduct of the tight closures of an approximation of I is
equal to the extension of the generic tight closure of I to R∞. It follows that
if almost all Rp are weakly F-regular, then R is weakly generically F-regular.
Indeed, let Ĩ be the generic tight closure of an ideal I and let Ip be an ap-
proximation of I. Suppose first that I is m-primary. Since each Ip is tightly
closed, our previous remark yields that ĨR∞ is equal to the ultraproduct of
the Ip, that is to say, equal to IR∞. Hence by faithful flatness, I = Ĩ. For
I arbitrary, Ĩ is contained in the generic tight closure of I + mn, and by the
previous argument that is just I + mn. Since this holds for all n, Krull’s
Intersection Theorem yields I = Ĩ.

However, this argument does not prove the converse (since the ideals that
disprove the weak F-regularity of each Rp might be of unbounded degree).
Nonetheless, we suspect the converse to be true as well. Proposition 5.12
below gives the converse under the additional Gorenstein assumption.

5.6. Proposition. For a local C-affine domain R, the following are true.
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(5.6.1) If I is generated by a regular sequence (x1, . . . , xd) and if I = I+,
then

(xt1, . . . , x
t
d)R = ((xt1, . . . , x

t
d)R)+,

for all t ≥ 1.
(5.6.2) If I is an ideal of R for which I = I+ and if J is an arbitrary

ideal of R, then (I : J) = (I : J)+.
(5.6.3) If R is B-rational, then I = I+, for every ideal I generated by part

of a system of parameters.

Proof. We translate the usual tight closure proofs from [11] to the present
situation. For (5.6.1), induct on t, where t = 1 is just the hypothesis. Put
J := (xt1, . . . , x

t
d)R and let z be an element in J+. If xiz /∈ J , then we may

replace z by xiz. Therefore, we may assume without loss of generality that
zI ⊂ J . Since (x1, . . . , xd) is R-regular, (J : I) = J + xt−1R, where x is the
product of all xi. Hence we may assume that z = wxt−1, for some w ∈ R.
By assumption, z = wxt−1 ∈ JB(R). Since (x1, . . . , xd) is B(R)-regular by
Theorem 2.4, we get that w ∈ IB(R), whence w ∈ I+ = I. However, this
shows that z = wxt−1 ∈ J , as required.

Assertion (5.6.2) is clear, since z ∈ (I : J)B(R) ∩ R implies that zJ ⊂
IB(R) ∩ R = I. To prove the last assertion, assume that R is B-rational,
say, xB(R) ∩ R = xR for some system of parameters x := (x1, . . . , xd). Let
I be an ideal generated by an arbitrary system of parameters (y1, . . . , yd).
Since we can calculate the top local cohomology group Hd

m(R) as the direct
limit of the system R/(xt1, . . . , x

t
d)R or, alternatively, as the direct limit of the

system R/(yt1, . . . , y
t
d)R, we must have an embedding R/I → R/(xt1, . . . , x

t
d)R

for sufficiently large t. Put differently, for large enough t, we have that I =
((xt1, . . . , x

t
d)R : at), for some at ∈ R (see, for instance, [11, Exercise 4.4]). It

follows therefore from (5.6.1) and (5.6.2) that I = I+.
So remains to prove the result in case I is generated by part of a system

of parameters. Let y := (y1, . . . , yd) be an arbitrary system of parameters
and put Ii := (y1, . . . , yi)R. We need to show that Ii = I+

i , for all i, and
we will do this by a downward induction on i. The case i = d holds by the
previous argument. Suppose we already know that Ii+1 = I+

i+1. Let z ∈ I+
i .

In particular, z ∈ I+
i+1 = Ii+1, so that we can write z = a + ryi+1, for some

a ∈ Ii and some r ∈ R. Hence z − a = ryi+1 ∈ IiB(R). Since yi+1 is a non-
zero divisor modulo IiB(R) by Theorem 2.4, we get that r ∈ IiB(R), whence
r ∈ I+

i . In conclusion, we showed that I+
i = Ii+yi+1I

+
i . Nakayama’s Lemma

therefore yields Ii = I+
i , as required. �

5.7. Models. Let K be a field and R a K-affine algebra. With a model of
R (called descent data in [10]) we mean a pair (Z,RZ) consisting of a subring Z
of K which is finitely generated over Z and a Z-algebra RZ essentially of finite
type, such that R ∼= RZ ⊗Z K. Oftentimes, we will think of RZ as being the
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model. Clearly, the collection of models RZ of R forms a direct system whose
union is R. We say that R has F-rational type (respectively, has weakly F-
regular type), if there exists a model (Z,RZ), such that RZ/pRZ is F-rational
(respectively, weakly F-regular) for all maximal ideals p of Z (note that we
may always localize Z at a suitably chosen element so that the property holds
for all maximal ideals). See [10] or [11] for more details.

In order to compare the notions of F-rational type and generic F-rationality,
we need to better understand the relation between reduction modulo p and
approximations. We will see that approximations are base changes to the
algebraic closure of the residue field of reductions modulo p, where the choice
of the embedding of the residue field in its algebraic closure is determined by
the ultrafilter.

5.8. Lemma. Let Z be a finitely generated Z-subalgebra of C. For almost
all p, there exists a homomorphism γp : Z → F

alg
p , such that the sequence

γp(z) is an approximation of z, for each z ∈ Z.

Proof. Write Z ∼= Z[Y ]/(g1, . . . , gm)Z[Y ], with Y a finite tuple of variables.
Let y be the image of the tuple Y in C under the embedding Z ⊂ C and take
an approximation yp of y in Falg

p . By  Los’ Theorem, (g1, . . . , gm)Fp[Y ] is
contained in the kernel of the algebra homomorphism Fp[Y ]→ F

alg
p given by

Y 7→ yp, for almost all p. This induces a homomorphism γp : Z → F
alg
p as

asserted. It remains to verify the approximation property. To this end, let
z ∈ Z be represented by the image of G ∈ Z[Y ], that is to say, z = G(y). By
construction, γp(z) = G(yp). Since in the ultraproduct

ulim
p→∞

G(yp) = G(ulim
p→∞

yp) = G(y) = z,

we showed that γp(z) is an approximation of z. �

Note that almost all γp(Z) ⊂ Falg
p are in fact separable field extensions.

5.9. Corollary. Let R be a local C-affine domain with approximation
Rp. For each finite subset of R, we can find a model (Z,RZ) of R containing
this subset, and, for almost all p, a homomorphism γp : Z → F

alg
p inducing a

separable field extension γp(Z) ⊂ Falg
p , such that

(5) Rp := RZ ⊗Z Falg
p

is an approximation of R.
Moreover, for each r ∈ RZ , we get an approximation of r by taking its

image in Rp via the canonical homomorphism RZ → Rp.

Proof. Suppose R is the localization of C[X]/I at the prime ideal m. Take
any model (Z,RZ) of R containing the prescribed subset. After possibly
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enlarging this model, we may moreover assume that there exist ideals IZ and
mZ in Z[X] such that

RZ = (Z[X]/IZ)mZ

(whence I = IZC[X] and m = mZC[X]). Let γp : Z → F
alg
p be a homomor-

phism as in Lemma 5.8 such that γp(z) is an approximation of z, for each
z ∈ Z. Let Ip (respectively, mp) be the ideal in Falg

p [X] generated by all fγp

with f ∈ IZ (respectively, f ∈ mZ), where we write fγp for the polynomial
obtained from f by applying γp to each of its coefficients. It follows that Ip
and mp are approximations of I and m, respectively. Therefore

(Falg
p [X]/Ip)mp

∼= RZ ⊗Z Falg
p

is an approximation of R, proving the first assertion. The last assertion is
now also clear. �

5.10. Proposition. Let R be a local C-affine domain. If R has F-rational
type (weakly F-regular type), then R is generically F-rational (respectively,
weakly generically F-regular).

Proof. Suppose first that R has F-rational type. By definition, we can find
a model (Z,RZ) of R such that RZ/pRZ is F-rational for all maximal ideals
p of Z. Let γp and Rp be as in (5) of Corollary 5.9. Note that γp(Z) is the
residue field of Z at the maximal ideal given by the kernel of γp. Hence each
RZ⊗Z γp(Z) is F-rational. Since Rp is obtained from this by base change over
the field extension γp(Z) → F

alg
p , we get that almost all Rp are F-rational.

Hence R is generically F-rational by Proposition 5.4.
The argument for weak generic F-regularity is the same, using Remark 5.5.

�

5.11. Theorem. For a local C-affine domain R, the following four state-
ments are equivalent.

(5.11.1) R has F-rational type.
(5.11.2) R is generically F-rational.
(5.11.3) R is B-rational.
(5.11.4) R has rational singularities.

Proof. The implication (5.11.1) =⇒ (5.11.2) is given by Proposition 5.10
and the implication (5.11.2) =⇒ (5.11.3) by Corollary 4.5. Theorem 5.3 gives
(5.11.3) =⇒ (5.11.4) and the implication (5.11.4) =⇒ (5.11.1) is proven by
Hara in [6]. �

In particular, this proves Theorem C from the introduction. Note that
Smith has already proven (5.11.1) =⇒ (5.11.4) in [26]. Recall that we showed
in [24, Theorem 6.2] that non-standard difference rational implies rational
singularities. It is natural to ask whether the converse is also true. There is
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another related notion which is expected to be equivalent with rational sin-
gularities, to wit, F-rationality, that is to say, the property that some ideal
generated by a system of parameters is equal to its (classical) characteris-
tic zero tight closure. Since characteristic zero tight closure (more precisely,
equational tight closure) is the smallest of all closure operations (see [17,
Theorem 10.4]), F-rationality is implied by B-rationality. Of all implications,
(5.11.4) =⇒ (5.11.1) is the least elementary, since Hara’s proof rests on some
deep vanishing theorems.

5.12. Proposition. If a local C-affine domain R is Gorenstein and gener-
ically F-rational, then it is generically F-regular, whence B-regular.

Proof. Since generic F-rationality is preserved under localization, it suffices
to show that R is weakly generically F-regular. Let Rp be an approximation
of R. By [17, Theorem 4.6], almost all Rp are Gorenstein. By Proposition 5.4,
almost all Rp are F-rational. Therefore, almost all Rp are F-regular, by [11,
Theorem 1.5]. Hence R is weakly generically F-regular by Remark 5.5, whence
B-regular by Corollary 4.5. �

Recall that a homomorphism A→ B is called cyclically pure, if IB∩A = I,
for every ideal I of A.

5.13. Proposition. If R→ S is a cyclically pure homomorphism of local
C-affine domains and if S is weakly generically F-regular, then so is R. The
same is true upon replacing weakly generically F-regular by B-regular.

Proof. Let I be an ideal in R and z an element in its generic tight closure.
Let Rp → Sp be an approximation of R → S (that is to say, choose approxi-
mations Rp and Sp for R and S as well as approximations for the polynomials
that induce the homomorphism R→ S; these then induce the homomorphism
Rp → Sp, for almost all p; see [17, 3.2.4] for more details). Let zp and Ip be
approximations of z and I. For almost all p, we have that zp lies in the tight
closure of Ip. By persistence ([11, Theorem 2.3]), zp lies in the tight closure
of IpSp, for almost all p, showing that z lies in the generic tight closure of IS.
In fact, the preceding argument shows that generic tight closure is persistent
(we have not yet used the purity of R→ S nor even its injectivity). Now, by
assumption, S is weakly generically F-regular, so that z ∈ IS and hence, by
cyclic purity, z ∈ IS ∩R = I.

To prove the last statement, (4.2.3) yields I+S ⊂ (IS)+ and the latter
ideal is by assumption just IS. Cyclical purity therefore yields I+ ⊂ I. �

5.14. Proof of Boutot’s Theorem under the additional Gorenstein
hypothesis. Let R→ S be a cyclically pure homomorphism of local C-affine
domains and assume S is Gorenstein and has rational singularities. It follows
that S is B-rational, by Theorem 5.11, whence B-regular, by Proposition 5.12.
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Therefore, R is B-regular by Proposition 5.13 and hence has rational singu-
larities by Theorem 5.11 again. �

Note that Boutot proves the same result without the Gorenstein hypothesis.
It follows from his result that being generically F-rational (or, equivalently,
being of F-rational type) descends under pure maps. However, it is not clear
how to prove this from the definitions alone.

6. Briançon-Skoda Theorems

6.1. Proof of Theorem B. Let R and I be as in the statement and
let z be an element in the integral closure of In+k, for some k ∈ N. Take
approximations Rp, Ip and zp of R, I and z, respectively. Since z satisfies an
integral equation

zn + a1z
n−1 + · · ·+ an = 0

with ai ∈ I(n+k)i, we have for almost all p an equation

(zp)n + a1p(zp)n−1 + · · ·+ anp = 0

with aip ∈ (Ip)(n+k)i an approximation of ai. In other words, zp lies in the
integral closure of (Ip)n+k, for almost all p. By [9, Theorem 7.1], almost all
zp lie in (Ip)k+1R+

p . Taking ultraproducts, we get that z ∈ Ik+1B(R), as we
needed to show. �

In fact, the ideas in the proof of [9, Theorem 7.1] can be used to carry out
the argument directly in B(R). Using Theorem B, we also get a new proof
of a result of Lipman and Teissier in [12]. We need a result on powers of
parameter ideals.

6.2. Proposition. Let R be a local C-affine domain with rational singu-
larities. If I is an ideal generated by a regular sequence, then In = (In)+, for
each n.

Proof. Let x be a regular sequence generating I. We induct on n. If
n = 1, the assertion follows from (5.6.3) in Proposition 5.6 since R is B-
rational by Theorem 5.11. Hence assume n > 1 and let a ∈ (In)+. By
induction, a ∈ In−1, so that a = F (x) with F a homogeneous polynomial
over R of degree n− 1. Since x is a B(R)-regular sequence by Theorem 2.4, it
is B(R)-quasi-regular ([13, Theorem 16.2]). In particular, a = F (x) ∈ InB(R)
implies that all coefficients of F lie in IB(R), whence in I = I+. Therefore,
a = F (x) ∈ In. �

6.3. Remark. More generally, we have that J = J+ for any ideal J
generated by monomials in some regular sequence (x1, . . . , xd) such that J
contains a power of every xi. Indeed, by [4], any such ideal is the intersection
of ideals of the form (xt11 , . . . , x

td
d )R for some choice of ti ∈ N. Hence it suffices

to prove the claim for J of the latter form, and this is just (5.6.3).
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6.4. Theorem (Lipman-Teissier). If a d-dimensional local C-affine do-
main R has rational singularities, then for any ideal I of R and any k ≥ 0,
the integral closure of Id+k is contained in Ik+1.

Proof. Assume first that I is generated by a system of parameters. By
Theorem B, the integral closure of Id+k lies in (Ik+1)+ and the latter ideal
is just Ik+1 by Proposition 6.2. Next assume that I is m-primary, where m
denotes the maximal ideal of R. By [13, Theorem 14.14], we can find a system
of parameters x of R such that J := xR is a reduction of I. Since Id+k and
Jd+k have then the same integral closure, our previous argument shows that
this integral closure lies inside Jk+1, whence inside Ik+1. Finally, let I be
arbitrary and put Jn := I + mn. If a lies in the integral closure of Id+k, then
for each n, it lies also in the integral closure of Jd+k

n , whence in Jk+1
n by our

previous argument. Since

Jk+1
n ⊂ Ik+1 + mn,

we get that a lies in the right hand side ideal for each n, and hence, by Krull’s
Intersection Theorem, in Ik+1, as required. �

7. Regularity and Betti numbers

In this section, we extend the main results of [18] to C-affine domains. We
start with proving Theorem D from the introduction.

7.1. Theorem. Let (R,m) be a local C-affine domain with residue field
k. If R has at most an isolated singularity or has dimension at most two and
if TorR1 (B(R), k) = 0, then R is regular.

Proof. Let (Rp,mp) be an approximation of (R,m) and let kp be the corre-
sponding residue fields. It follows from [17, Theorems 4.5 and 4.6] that Rp has
at most an isolated singularity or has dimension at most two, for almost all p.
I claim that TorRp1 (R+

p , kp) = 0, for almost all p. Assuming the claim, we get
by [18, Theorem 1.1] that almost all Rp are regular. By another application
of [17, Theorem 4.6], we get that R is regular, as required.

To prove the claim, we argue as follows. Write each R+
p as Rp[X]/np,

where X is an infinite tuple of variables and np some ideal. Put Ap := Rp[X]
and let A∞ and n∞ be the ultraproduct of the Ap and the np, respectively.
Therefore, B(R) = A∞/n∞. The vanishing of TorR1 (B(R), k) means that
mA∞ ∩ n∞ = mn∞. The vanishing of TorRp1 (R+

p , kp) is then equivalent with
the equality mpAp ∩ np = mpnp. Therefore, assume that this equality does
not hold for almost all p, so that there exists fp which lies in mpAp ∩ np, but
for almost all p does not lie in mpnp. Let f∞ be the ultraproduct of the fp.
It follows from  Los’ Theorem that f∞ lies in mA∞ ∩ n∞, whence in mn∞.
Let m := (y1, . . . , ys)R and let yip be an approximation of yi, so that mp =
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(y1p, . . . , ysp)Rp, for almost all p. Since f∞ ∈ mn∞, there exist gi∞ ∈ n∞,
such that f∞ = g1∞y1 + · · ·+ gs∞ys. Hence, if we choose gip ∈ np such that
their ultraproduct is gi∞, then by  Los’ Theorem, fp = g1py1p + · · ·+ gspysp
for almost all p, contradicting our assumption on fp. �

In general, we can prove at least the following.

7.2. Corollary. Let R be a local C-affine domain with residue field k.
If TorR1 (B(R), k) vanishes, then R has rational singularities.

Proof. By [18, Theorem 2.2], the vanishing of TorR1 (B(R), k) implies that
R → B(R) is cyclically pure, that is to say, R is B-regular. Hence R has
rational singularities by Theorem 5.3. �

We actually showed that R as above is B-regular.

7.3. Remark. Let R be a local C-affine domain with residue field k and
approximation Rp. Let F(R) be the subring of B(R) defined as the ultra-
product of the R1/p

p . The following are equivalent:
(7.3.1) R is regular;
(7.3.2) R→ F(R) is flat;
(7.3.3) TorR1 (F(R), k) = 0.

Indeed, let kp be the residue field of Rp. By Kunz’s Theorem, the regularity
of Rp is equivalent to the flatness of Rp → R

1/p
p , and by the Local Flat-

ness Criterion, this in turn is equivalent to the vanishing of TorRp1 (R1/p
p , kp).

Moreover, R is regular if, and only if, almost all Rp are regular ([17, Theorem
4.6]), whereas the same argument as in the proof of Theorem D shows that
the vanishing of TorR1 (F(R), k) is equivalent with the vanishing of almost all
TorRp1 (R1/p

p , kp). This proves that all assertions are equivalent.

7.4. Remark. Recently, Aberbach has announced in [1] a proof of the
Main Theorem of [18] without the isolated singularity assumption. From this
it would follow immediately that we can also omit the isolated singularity
condition in Theorem 7.1.
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