ON THE GEOMETRY OF POSITIVELY CURVED MANIFOLDS WITH LARGE RADIUS

QIAOLING WANG

Abstract

Let M be an n-dimensional complete connected Riemannian manifold with sectional curvature $K_{M} \geq 1$ and $\operatorname{radius} \operatorname{rad}(M)>$ $\pi / 2$. For any $x \in M$, denote by $\operatorname{rad}(x)$ and $\rho(x)$ the radius and conjugate radius of M at x, respectively. In this paper we show that if $\operatorname{rad}(x) \leq \rho(x)$ for all $x \in M$, then M is isometric to a Euclidean n sphere. We also show that the radius of any connected nontrivial (i.e., not reduced to a point) closed totally geodesic submanifold of M is greater than or equal to that of M.

1. Introduction

Let M be an n-dimensional complete connected Riemannian manifold with sectional curvature $K_{M} \geq 1$. Many interesting results about M have been proven during the past years. It was shown by Grove and Shiohama [GS] that M is homeomorphic to S^{n}, the n-dimensional sphere, if $\operatorname{diam}(M)$, the diameter of M, is greater than $\pi / 2$. In the case $\operatorname{diam}(M)=\pi / 2$ (where the theorem is false, as shown by the example of the real projective space) a classification was given by Gromoll and Grove [GG]. It should be mentioned that in the proof of their result Grove and Shiohama established a critical point theory of distance functions on complete Riemannian manifolds, which serves as an important tool in Riemannian geometry (cf. [C]). In 1989, Shiohama and Yamaguchi [SY] proved that if the radius of M is close to π, then M is diffeomorphic to S^{n}. Recall that for a compact metric space (X, d), the radius of X at a point $x \in X$ is defined as $\operatorname{rad}(x)=\max _{y \in X} d(x, y)$, and the radius of X is given by $\operatorname{rad}(X)=\min _{x \in X} \operatorname{rad}(x)$ (cf. [SY]).

Colding [C1], [C2] extended the result of Shiohama and Yamaguchi as follows: An n-dimensional complete connected Riemannian manifold with Ricci curvature larger than or equal to $n-1$ and radius close to π is diffeomorphic to S^{n} (cf. [C1], [C2]). A classical result due to Toponogov [T] states that if $n=2$ and M contains a closed geodesic without self-intersections of length 2π, then

[^0]M is isometric to a 2-dimensional unit sphere. Recently, Xia [X] partially extended Toponogov's theorem to higher dimensional Riemannian manifolds. In the case when the radius of M is greater than $\pi / 2$, Grove and Petersen [GP] showed that the volume of M satisfies $C(n) \leq \operatorname{vol}(M) \leq\{\operatorname{rad}(M) / \pi\} \cdot \omega_{n}$, where ω_{n} is the volume of a unit Euclidean n-sphere and $C(n)$ is a positive constant depending only on n.

In this article, we study complete manifolds with sectional curvature bounded below by 1 and radius greater than $\pi / 2$. In order to state our first result we fix some notation.

Let x be a point in a complete Riemannian manifold M and let γ be a unit speed geodesic with $\gamma^{\prime}(0)=v \in T_{x} M$. The conjugate value c_{v} of v is defined to be the first number $r>0$ such that there is a Jacobi field J along γ satisfying $J(0)=J(r)=0$. Set

$$
\rho(x):=\inf _{v \in S_{x} M} c_{v}
$$

where $S_{x} M$ is the unit tangent sphere of M at x. We call $\rho(x)$ the conjugate radius of M at x. The conjugate radius of M is defined as $\rho(M)=\inf _{p \in M} \rho(p)$.

Our first theorem is motivated by the simple fact that the radius and the conjugate radius at any point on a Euclidean sphere are the same. Theorem 1 below shows that in the set of closed manifolds with sectional curvature larger than or equal to 1 and radius greater than $\pi / 2$ this phenomenon can only happen for the spheres.

Theorem 1. Let M be an n-dimensional complete connected Riemannian manifold with $K_{M} \geq 1$ and $\operatorname{rad}(M)>\pi / 2$. If for any $x \in M$ we have $\rho(x) \geq \operatorname{rad}(x)$, then M is isometric to an n-sphere.

We next prove the following result.
Theorem 2. Let M be an $n(\geq 3)$-dimensional complete connected Riemannian manifold with $K_{M} \geq 1$ and $\operatorname{rad}(M)>\pi / 2$. Then the radius of any connected nontrivial (i.e., not reduced to a point) closed totally geodesic submanifold of M is greater than or equal to that of M.

As a direct consequence of Theorem 2 and the diameter sphere theorem of Grove and Shiohama, we have the following corollary, first obtained by Xia [X].

Corollary 3. Let M be an $n(\geq 3)$-dimensional complete Riemannian manifold with sectional curvature $K_{M} \geq 1$ and radius $\mathrm{rad} M>\pi / 2$. Suppose that N is a $k(\geq 2)$-dimensional complete connected totally geodesic submanifold. Then N is homeomorphic to a k-sphere.

Combining Theorem 2 and the above-mentioned theorem of Grove and Petersen, we obtain the following result.

Corollary 4. Let M be an $n(\geq 3)$-dimensional complete Riemannian manifold with sectional curvature $K_{M} \geq 1$ and radius $\operatorname{rad} M>\pi / 2$. Suppose that N is a $k(\geq 2)$-dimensional closed connected totally geodesic submanifold. Then there exists a positive constant $C(k)$ such that $\operatorname{vol}(N) \geq C(k)$.

2. Proof of the theorems

Before proving our results, we list some known facts that we will need. Let M be a complete connected Riemannian n-manifold satisfying $K_{M} \geq 1$ and $\operatorname{rad}(M)>\pi / 2$. By using the Toponogov comparison theorem one can show that for any $x \in M$ there exists a unique point $A(x)$ which is at maximal distance from x. The map $A: M \rightarrow M$ is easily seen to be continuous (cf. [GP], [X]). Since M is homeomorphic to S^{n}, the Brouwer fixed point theorem implies that A is surjective.

We shall assume throughout this paper that all geodesics are parametrized by arc-length.

A connected simply connected compact Riemannian n-manifold M without boundary such that for any $m \in M$ the cut locus of m in M is a single point is called a wiedersehen manifold (cf. [Gn]). From the work of Green [Gn], Berger [B], Weinstein [W] and Yang [Y1], [Y2] we know that a wiedersehen manifold is isometric to a Euclidean sphere.

Now we are ready to prove our main theorems.

Proof of Theorem 1. The Bonnet-Myers Theorem implies that M is compact. Since the diameter of M is greater than or equal to $\operatorname{rad}(M)>\pi / 2, M$ is homeomorphic to S^{n} and, in particular, M is simply connected. For any $x \in M$, let $D(x)$ be the cut locus of x. It is well known that the function $g: M \rightarrow R^{+}$given by $f(x)=d(x, D(x))$ is continuous. We shall show that our M is a wiedersehen manifold and therefore is isometric to an n-sphere. It then suffices to show that $D(x)=\{A(x)\}$ for all $x \in M$, where $A: M \rightarrow M$ is the map defined at the beginning of this section. To do this, we fix a point $p \in M$. Since $D(p)$ is closed and hence is compact, there exists $q \in D(p)$ such that $d(p, q)=\inf _{x \in D(p)} d(p, x)$. We claim that $q=A(p)$. In fact, set $s=d(p, q)$; from well known results in Riemannian geometry (cf. [Ca, p. 274]) we conclude that either
(a) there exists a minimizing geodesic σ from p to q along which q is conjugate to p, or
(b) there exist exactly two minimizing geodesics σ_{1} and σ_{2} from p to q with $\sigma_{1}^{\prime}(s)=-\sigma_{2}^{\prime}(s)$.
If (a) holds, then we have $s \geq \rho(p) \geq \operatorname{rad}(p)$. Thus $s=\operatorname{rad}(p)$ and so $q=A(p)$ since $A(p)$ is the unique point which is at maximal distance from p.

Suppose that (b) holds and $q \neq A(p)$. Set $t=d(q, A(p)), r=d(p, A(p))$ and consider first the case when $s>\pi / 2$. Take a minimal geodesic σ_{3} from q
to $A(p)$; then either

$$
\angle\left(\sigma_{3}^{\prime}(0),-\sigma_{1}^{\prime}(s)\right) \leq \frac{\pi}{2}
$$

or

$$
\angle\left(\sigma_{3}^{\prime}(0),-\sigma_{2}^{\prime}(s)\right) \leq \frac{\pi}{2}
$$

We assume without loss of generality that $\angle\left(\sigma_{3}^{\prime}(0),-\sigma_{1}^{\prime}(s)\right) \leq \pi / 2$.
Applying the Toponogov inequality to the hinge $\left(\sigma_{1}, \sigma_{3}\right)$, we obtain

$$
\begin{equation*}
0>\cos r \geq \cos s \cos t+\sin s \sin t \cos \angle\left(\sigma_{3}^{\prime}(0),-\sigma_{1}^{\prime}(s)\right) \geq \cos s \cos t \tag{2.1}
\end{equation*}
$$

On the other hand, since $A(p)$ is at maximal distance from p, by the well known Berger Lemma (cf. [CE]) there exists a minimal geodesic γ from $A(p)$ to p such that $\angle\left(-\sigma_{3}^{\prime}(t), \gamma^{\prime}(0)\right) \leq \pi / 2$. Applying the Toponogov comparison theorem to the hinge $\left(\gamma, \sigma_{3}\right)$, we obtain

$$
\begin{equation*}
\cos s \geq \cos r \cos t+\sin r \sin t \cos \angle\left(-\sigma_{3}^{\prime}(t), \gamma^{\prime}(0)\right) \geq \cos r \cos t \tag{2.2}
\end{equation*}
$$

Since $s>\pi / 2,(2.1)$ and (2.2) imply that

$$
\begin{equation*}
\cos r \sin ^{2} t \geq 0 \tag{2.3}
\end{equation*}
$$

which is a contradiction.
Suppose now that $s \leq \pi / 2$. We suppose that $p=A(z)$ is the unique point which is at maximal distance from some point $z \in M$. Then $z \neq q$ since $d(p, z)>\pi / 2 \geq d(p, q)$. Set $t_{1}=d(p, z)$ and $t_{2}=d(q, z)$; then $t_{1}>t_{2}$. Take a minimal geodesic c from q to z. Since we have either

$$
\angle\left(c^{\prime}(0),-\sigma_{1}^{\prime}(s)\right) \leq \frac{\pi}{2}
$$

or

$$
\angle\left(c^{\prime}(0),-\sigma_{2}^{\prime}(s)\right) \leq \frac{\pi}{2}
$$

one can use the Toponogov comparison theorem to the hinge $\left(c, \sigma_{1}\right)$ or $\left(c, \sigma_{2}\right)$ to get

$$
\begin{equation*}
0>\cos t_{1} \geq \cos s \cos t_{2} \tag{2.4}
\end{equation*}
$$

This implies that $s \neq \pi / 2$, and so we obtain from

$$
\cos t_{1}<\cos t_{2}
$$

and (2.4) that

$$
\begin{equation*}
\cos t_{1}>\cos s \cos t_{1} \tag{2.5}
\end{equation*}
$$

Thus,

$$
\cos t_{1}(1-\cos s)>0
$$

which clearly contradicts the fact that $t_{1}>\pi / 2$. Thus our claim is true. For any $x \in D(p)$, we then conclude from

$$
\begin{equation*}
d(p, q)=d(p, A(p)) \geq d(p, x) \geq d(p, D(p))=d(p, q) \tag{2.6}
\end{equation*}
$$

that $x=A(p)$. Consequently, we have $D(p)=\{A(p)\}$. Hence, our M is a wiedersehen manifold and so is isometric to an n-sphere. This completes the proof of Theorem 1.

Proof of Theorem 2. Let N be a closed totally geodesic submanifold of M. We consider two cases:

Case 1. $\operatorname{dim} N \geq 2$. Denote by d and d^{N} the distance functions on M and N, respectively. Let $\operatorname{rad}_{N}: N \rightarrow R$ be the radius function on N, i.e., $\operatorname{rad}_{N}(x)=\max _{y \in N} d^{N}(x, y)$ for all $x \in N$, and define rad_{M} similarly. It then suffices to prove that $\operatorname{rad}_{N}(x) \geq \operatorname{rad}_{M}(x)$ for all $x \in N$. In order to prove this, we fix a point $p \in N$ and take $q \in N$ satisfying

$$
\begin{equation*}
\operatorname{rad}_{N}(p)=d^{N}(p, q) \tag{2.7}
\end{equation*}
$$

Let $\Gamma_{q p}$ be the set of unit vectors in $T_{q} N$ corresponding to the set of normal minimal geodesics of N from q to p. Then, by Berger's Lemma, $\Gamma_{q p}$ is $\pi / 2-$ dense in $S_{q} N$, that is,

$$
\begin{equation*}
\Gamma_{q p}(\pi / 2):=\left\{u \in S_{q} N \mid \angle\left(u, \Gamma_{q p}\right) \leq \pi / 2\right\}=S_{q} N \tag{2.8}
\end{equation*}
$$

where $S_{x} N$ denotes the unit tangent sphere of N at x. Since a $\pi / 2$-dense subset of a great sphere S^{l} in a unit sphere $S^{m}, l<m$, is also $\pi / 2$-dense in $S^{m}, \Gamma_{q p}$ is $\pi / 2$-dense in $S_{q} M$.

Let $A: M \rightarrow M$ be the map defined above. Set $s=d^{N}(p, q)$ and $r=$ $d(p, A(p))$. We claim that $s>\pi / 2$. Suppose on the contrary that $s \leq \pi / 2$. Take a point $z \in M$ so that $p=A(z)$. It follows from

$$
d(p, z)>\frac{\pi}{2} \geq d^{N}(p, q) \geq d(p, q)
$$

that $q \neq z$. Set $l=d(p, z)$ and $t=d(q, z)$; then $l>t$. Take a minimal geodesic c of M from q to z. Since $\Gamma_{q p}$ is $\pi / 2$-dense in $S_{q} M$, we can find $v \in \Gamma_{q p}$ such that $\angle\left(v, c^{\prime}(0)\right) \leq \pi / 2$. Thus, by the definition of $\Gamma_{q p}$, there exists a minimal geodesic c_{1} of N from q to p such that $c_{1}^{\prime}(0)=v$. Since N is totally geodesic, c_{1} is also a geodesic of M. We apply the Toponogov comparison theorem to the hinge $\left(c, c_{1}\right)$ to get

$$
\begin{equation*}
0>\cos l \geq \cos s \cos t+\sin s \sin t \cos \angle\left(c^{\prime}(0), c_{1}^{\prime}(0)\right) \geq \cos s \cos t \tag{2.9}
\end{equation*}
$$

Since $\cos l<\cos t$ and $s \leq \pi / 2$, we get from (2.9) that

$$
\begin{equation*}
\cos l(1-\cos s)>0 \tag{2.10}
\end{equation*}
$$

This is a contradiction. Hence $s>\pi / 2$.
Now we are ready to show that $s \geq r$. Assume by contradiction that $s<r$. Since

$$
d(p, q) \leq d^{N}(p, q)<d(p, A(p))
$$

we have $A(p) \neq q$. Let $w=d(q, A(p))$ and take a minimal geodesic γ of M from q to $A(p)$. We can find a minimal geodesic γ_{1} of N from q to p such
that $\angle\left(\gamma^{\prime}(0), \gamma_{1}^{\prime}(0)\right) \leq \pi / 2$. Since γ_{1} is also a geodesic of M, applying the Toponogov inequality to the hinge (γ, γ_{1}), we conclude that

$$
\begin{equation*}
0>\cos r \geq \cos s \cos w \tag{2.11}
\end{equation*}
$$

which gives $\cos w>0$ since $s>\pi / 2$. Hence, since $s<r$, we have

$$
\begin{equation*}
\cos w \cos s>\cos w \cos r \tag{2.12}
\end{equation*}
$$

Combining (2.11) and (2.12), we conclude

$$
\begin{equation*}
\cos r(1-\cos w)>0 \tag{2.13}
\end{equation*}
$$

This is a contradiction.
Case 2. N is a closed geodesic. The proof in this case is similar to that in Case 1; for the sake of completeness, we give the argument. Denote by $c:[0, a] \rightarrow M$ the closed geodesic N. Set $p=c(0)$ and $q=c(a / 2)$. Let us first show that $a>\pi$. Take $z \in M$ so that $p=A(z)$ and assume that $a \leq \pi$. Then we have $q \neq z$ since

$$
d(p, z)>\frac{\pi}{2} \geq \frac{a}{2}=L\left[\left.c\right|_{[0, a / 2]}\right] \geq d(p, q)
$$

where d is as before the distance function on M. Set $l=d(p, z)$ and $t=d(q, z)$; then $l>t$. Let γ be a minimal geodesic of M from q to z; then we have either

$$
\angle\left(\gamma^{\prime}(0), c^{\prime}\left(\frac{a}{2}\right)\right) \leq \frac{\pi}{2}
$$

or

$$
\angle\left(\gamma^{\prime}(0),-c^{\prime}\left(\frac{a}{2}\right)\right) \leq \frac{\pi}{2}
$$

Thus, we can apply the Toponogov inequality to the hinges $\left(\gamma,\left.c\right|_{[0, a / 2]}\right)$ or $\left(\gamma,\left.c\right|_{[a / 2, a]}\right)$ to get

$$
0>\cos l \geq \cos \frac{a}{2} \cos t
$$

which contradicts the fact that $\cos l<\cos t$ and $a \leq \pi$. Thus we have $a>\pi$.
Set $r=d(p, A(p))$. Then we need only show that $a \geq 2 r$, since the (intrinsic) radius of c is equal to its intrinsic diameter, which in turn is equal to half of its length, i.e., $a / 2$. Suppose on the contrary that $a<2 r$. Then $A(p) \neq q$ since

$$
d(p, q) \leq \frac{a}{2}<r
$$

Take a minimal geodesic σ of M from q to $A(p)$ and let $w=d(q, A(p))$. Applying the Toponogov inequality to $\left(\sigma,\left.\right|_{[0, a / 2]}\right)$ or $\left(\sigma,\left.\right|_{[a / 2, a]}\right)$, we have

$$
\begin{equation*}
0>\cos r \geq \cos \frac{a}{2} \cos w \tag{2.14}
\end{equation*}
$$

and so $\cos w>0$ since $a / 2>\pi / 2$. Since $a / 2<r$, we conclude that

$$
\begin{equation*}
\cos w \cos \frac{a}{2}>\cos w \cos r \tag{2.15}
\end{equation*}
$$

From (2.14) and (2.15) it follows that $\cos r(1-\cos w)>0$, which is a contradiction. The proof of Theorem 2 is complete.

In view of Theorem 2, it is interesting to study the following problem.

Problem. Let M be a complete Riemannian manifold with $K_{M} \geq 1$ and $\operatorname{rad}(M)>\pi / 2$. Does the "antipodal" map A of M restricted to a totally geodesic submanifold agree with the "antipodal" map of the submanifold?

Acknowledgment. The author would like to thank the referee for the encouragement and valuable remarks.

References

[B] A. L. Besse, Manifolds all of whose geodesics are closed, Erg. Math. Grenzgeb., vol. 93, Springer-Verlag, Berlin, 1978. MR 80c:53044
[Ca] M. P. do Carmo, Riemannian geometry, Bikhäuser, Boston, 1992. MR 92i:53001
[C] J. Cheeger, Critical points of distance functions and applications to geometry, Geometric topology: recent developments (Montecatini Terme, 1990), Lecture Notes in Math., vol. 1504, Springer, Berlin, 1991, pp. 1-38. MR 94a:53075
[CE] J. Cheeger and D. G. Ebin, Comparison theorems in Riemannian geometry, NorthHolland Publishing Co., Amsterdam, 1975. MR 56\#16538
[C1] T. H. Colding, Shape of manifolds with positive Ricci curvature, Invent. Math. 124 (1996), 175-191. MR 96k:53067
[C2] , Large manifolds with positive Ricci curvature, Invent. Math. 124 (1996), 193-214. MR 96k:53068
[Gn] L. W. Green, Auf Wiedersehensflächen, Ann. of Math. (2) 78 (1963), 289-299. MR 27\#5206
[GG] D. Gromoll and K. Grove, A generalization of Berger's rigidity theorem for positively curved manifolds, Ann. Sci. École Norm. Sup. (4) 20 (1987), 227-239. MR 88k:53062
[GP] K. Grove and P. Petersen, Volume comparison à la Aleksandrov, Acta Math. 169 (1992), 131-151. MR 93j:53057
[GS] K. Grove and K. Shiohama, A generalized sphere theorem, Ann. Math. (2) 106 (1977), 201-211. MR 58\#18268
[SY] K. Shiohama and T. Yamaguchi, Positively curved manifolds with restricted diameters, Geometry of manifolds (Matsumoto, 1988), Perspect. Math., vol. 8, Academic Press, New York, 1989, pp. 345-350. MR 90m:53056
[T] V. A. Toponogov, Computation of the length of a closed geodesic on a convex surface, Dokl. Akad. Nauk SSSR 124 (1959), 282-284. MR 21\#850
[W] A. Weinstein, On the volume of manifolds all of whose geodesics are closed, J. Differential Geom. 9 (1974), 513-517. MR 52\#11791
[Y1] C. T. Yang, Odd-dimensional wiedersehen manifolds are spheres, J. Differential Geom. 15 (1980), 91-96. MR 82g:53049
[Y2] , On the Blaschke conjecture, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, NJ, 1982, pp. 159-171. MR 83h:53059b
[X] C. Xia, Some applications of critical point theory of distance functions on Riemannian manifolds, Compositio Math. 132 (2002), 49-55. MR 2003e:53051

Departamento de Matemática-IE, Fundação Universidade de Brasília, Campus Universitário, 70910-900-Brasília-DF, Brasil

E-mail address: wang@mat.unb.br

[^0]: Received March 2, 2003; received in final form May 12, 2003.
 2000 Mathematics Subject Classification. 53C20.

