Illinois Journal of Mathematics Volume 48, Number 1, Spring 2004, Pages 89–96 S 0019-2082

ON THE GEOMETRY OF POSITIVELY CURVED MANIFOLDS WITH LARGE RADIUS

QIAOLING WANG

ABSTRACT. Let M be an n-dimensional complete connected Riemannian manifold with sectional curvature $K_M \geq 1$ and radius $\operatorname{rad}(M) > \pi/2$. For any $x \in M$, denote by $\operatorname{rad}(x)$ and $\rho(x)$ the radius and conjugate radius of M at x, respectively. In this paper we show that if $\operatorname{rad}(x) \leq \rho(x)$ for all $x \in M$, then M is isometric to a Euclidean nsphere. We also show that the radius of any connected nontrivial (i.e., not reduced to a point) closed totally geodesic submanifold of M is greater than or equal to that of M.

1. Introduction

Let M be an n-dimensional complete connected Riemannian manifold with sectional curvature $K_M \geq 1$. Many interesting results about M have been proven during the past years. It was shown by Grove and Shiohama [GS] that M is homeomorphic to S^n , the n-dimensional sphere, if diam(M), the diameter of M, is greater than $\pi/2$. In the case diam $(M) = \pi/2$ (where the theorem is false, as shown by the example of the real projective space) a classification was given by Gromoll and Grove [GG]. It should be mentioned that in the proof of their result Grove and Shiohama established a critical point theory of distance functions on complete Riemannian manifolds, which serves as an important tool in Riemannian geometry (cf. [C]). In 1989, Shiohama and Yamaguchi [SY] proved that if the radius of M is close to π , then M is diffeomorphic to S^n . Recall that for a compact metric space (X, d), the radius of X at a point $x \in X$ is defined as $\operatorname{rad}(x) = \max_{y \in X} d(x, y)$, and the radius of X is given by $\operatorname{rad}(X) = \min_{x \in X} \operatorname{rad}(x)$ (cf. [SY]).

Colding [C1], [C2] extended the result of Shiohama and Yamaguchi as follows: An *n*-dimensional complete connected Riemannian manifold with Ricci curvature larger than or equal to n-1 and radius close to π is diffeomorphic to S^n (cf. [C1], [C2]). A classical result due to Toponogov [T] states that if n = 2and M contains a closed geodesic without self-intersections of length 2π , then

©2004 University of Illinois

Received March 2, 2003; received in final form May 12, 2003.

²⁰⁰⁰ Mathematics Subject Classification. 53C20.

QIAOLING WANG

M is isometric to a 2-dimensional unit sphere. Recently, Xia [X] partially extended Toponogov's theorem to higher dimensional Riemannian manifolds. In the case when the radius of M is greater than $\pi/2$, Grove and Petersen [GP] showed that the volume of M satisfies $C(n) \leq \operatorname{vol}(M) \leq {\operatorname{rad}(M)/\pi} \cdot \omega_n$, where ω_n is the volume of a unit Euclidean *n*-sphere and C(n) is a positive constant depending only on n.

In this article, we study complete manifolds with sectional curvature bounded below by 1 and radius greater than $\pi/2$. In order to state our first result we fix some notation.

Let x be a point in a complete Riemannian manifold M and let γ be a unit speed geodesic with $\gamma'(0) = v \in T_x M$. The conjugate value c_v of v is defined to be the first number r > 0 such that there is a Jacobi field J along γ satisfying J(0) = J(r) = 0. Set

$$\rho(x) := \inf_{v \in S_x M} c_v,$$

where $S_x M$ is the unit tangent sphere of M at x. We call $\rho(x)$ the conjugate radius of M at x. The conjugate radius of M is defined as $\rho(M) = \inf_{p \in M} \rho(p)$.

Our first theorem is motivated by the simple fact that the radius and the conjugate radius at any point on a Euclidean sphere are the same. Theorem 1 below shows that in the set of closed manifolds with sectional curvature larger than or equal to 1 and radius greater than $\pi/2$ this phenomenon can only happen for the spheres.

THEOREM 1. Let M be an n-dimensional complete connected Riemannian manifold with $K_M \geq 1$ and $\operatorname{rad}(M) > \pi/2$. If for any $x \in M$ we have $\rho(x) \geq \operatorname{rad}(x)$, then M is isometric to an n-sphere.

We next prove the following result.

THEOREM 2. Let M be an $n(\geq 3)$ -dimensional complete connected Riemannian manifold with $K_M \geq 1$ and $rad(M) > \pi/2$. Then the radius of any connected nontrivial (i.e., not reduced to a point) closed totally geodesic submanifold of M is greater than or equal to that of M.

As a direct consequence of Theorem 2 and the diameter sphere theorem of Grove and Shiohama, we have the following corollary, first obtained by Xia [X].

COROLLARY 3. Let M be an $n(\geq 3)$ -dimensional complete Riemannian manifold with sectional curvature $K_M \geq 1$ and radius rad $M > \pi/2$. Suppose that N is a $k(\geq 2)$ -dimensional complete connected totally geodesic submanifold. Then N is homeomorphic to a k-sphere.

Combining Theorem 2 and the above-mentioned theorem of Grove and Petersen, we obtain the following result. COROLLARY 4. Let M be an $n(\geq 3)$ -dimensional complete Riemannian manifold with sectional curvature $K_M \geq 1$ and radius rad $M > \pi/2$. Suppose that N is a $k(\geq 2)$ -dimensional closed connected totally geodesic submanifold. Then there exists a positive constant C(k) such that vol(N) > C(k).

2. Proof of the theorems

Before proving our results, we list some known facts that we will need. Let M be a complete connected Riemannian n-manifold satisfying $K_M \geq 1$ and $\operatorname{rad}(M) > \pi/2$. By using the Toponogov comparison theorem one can show that for any $x \in M$ there exists a unique point A(x) which is at maximal distance from x. The map $A : M \to M$ is easily seen to be continuous (cf. [GP], [X]). Since M is homeomorphic to S^n , the Brouwer fixed point theorem implies that A is surjective.

We shall assume throughout this paper that all geodesics are parametrized by arc-length.

A connected simply connected compact Riemannian *n*-manifold M without boundary such that for any $m \in M$ the cut locus of m in M is a single point is called a wiederschen manifold (cf. [Gn]). From the work of Green [Gn], Berger [B], Weinstein [W] and Yang [Y1], [Y2] we know that a wiederschen manifold is isometric to a Euclidean sphere.

Now we are ready to prove our main theorems.

Proof of Theorem 1. The Bonnet-Myers Theorem implies that M is compact. Since the diameter of M is greater than or equal to $\operatorname{rad}(M) > \pi/2$, Mis homeomorphic to S^n and, in particular, M is simply connected. For any $x \in M$, let D(x) be the cut locus of x. It is well known that the function $g: M \to R^+$ given by f(x) = d(x, D(x)) is continuous. We shall show that our M is a wiederschen manifold and therefore is isometric to an n-sphere. It then suffices to show that $D(x) = \{A(x)\}$ for all $x \in M$, where $A: M \to M$ is the map defined at the beginning of this section. To do this, we fix a point $p \in M$. Since D(p) is closed and hence is compact, there exists $q \in D(p)$ such that $d(p,q) = \inf_{x \in D(p)} d(p,x)$. We claim that q = A(p). In fact, set s = d(p,q); from well known results in Riemannian geometry (cf. [Ca, p. 274]) we conclude that either

- (a) there exists a minimizing geodesic σ from p to q along which q is conjugate to p, or
- (b) there exist exactly two minimizing geodesics σ_1 and σ_2 from p to q with $\sigma'_1(s) = -\sigma'_2(s)$.

If (a) holds, then we have $s \ge \rho(p) \ge \operatorname{rad}(p)$. Thus $s = \operatorname{rad}(p)$ and so q = A(p) since A(p) is the unique point which is at maximal distance from p.

Suppose that (b) holds and $q \neq A(p)$. Set t = d(q, A(p)), r = d(p, A(p))and consider first the case when $s > \pi/2$. Take a minimal geodesic σ_3 from q to A(p); then either

$$\angle \left(\sigma_3'(0), -\sigma_1'(s)\right) \le \frac{\pi}{2}$$

or

$$\angle \left(\sigma_3'(0), -\sigma_2'(s) \right) \leq \frac{\pi}{2}$$

We assume without loss of generality that $\angle(\sigma'_3(0), -\sigma'_1(s)) \leq \pi/2$. Applying the Toponogov inequality to the hinge (σ_1, σ_3) , we obtain

 $(2.1) \quad 0 > \cos r \ge \cos s \cos t + \sin s \sin t \cos \angle \left(\sigma'_3(0), -\sigma'_1(s) \right) \ge \cos s \cos t.$

On the other hand, since A(p) is at maximal distance from p, by the well known Berger Lemma (cf. [CE]) there exists a minimal geodesic γ from A(p)to p such that $\angle (-\sigma'_3(t), \gamma'(0)) \leq \pi/2$. Applying the Toponogov comparison theorem to the hinge (γ, σ_3) , we obtain

(2.2) $\cos s \ge \cos r \cos t + \sin r \sin t \cos \angle (-\sigma'_3(t), \gamma'(0)) \ge \cos r \cos t.$

Since $s > \pi/2$, (2.1) and (2.2) imply that

(2.3)
$$\cos r \sin^2 t \ge 0,$$

which is a contradiction.

Suppose now that $s \leq \pi/2$. We suppose that p = A(z) is the unique point which is at maximal distance from some point $z \in M$. Then $z \neq q$ since $d(p,z) > \pi/2 \geq d(p,q)$. Set $t_1 = d(p,z)$ and $t_2 = d(q,z)$; then $t_1 > t_2$. Take a minimal geodesic c from q to z. Since we have either

$$\angle \left(c'(0), -\sigma_1'(s)\right) \le \frac{\pi}{2},$$

or

$$\angle \left(c'(0), -\sigma_2'(s)\right) \le \frac{\pi}{2},$$

one can use the Toponogov comparison theorem to the hinge (c, σ_1) or (c, σ_2) to get

$$(2.4) 0 > \cos t_1 \ge \cos s \cos t_2.$$

2

This implies that $s \neq \pi/2$, and so we obtain from

$$\cos t_1 < \cos t_2$$

and (2.4) that

$$(2.5)\qquad\qquad\qquad\cos t_1 > \cos s \cos t_1$$

Thus,

$$\cos t_1(1-\cos s) > 0,$$

which clearly contradicts the fact that $t_1 > \pi/2$. Thus our claim is true. For any $x \in D(p)$, we then conclude from

(2.6)
$$d(p,q) = d(p,A(p)) \ge d(p,x) \ge d(p,D(p)) = d(p,q)$$

92

that x = A(p). Consequently, we have $D(p) = \{A(p)\}$. Hence, our M is a wiederschen manifold and so is isometric to an *n*-sphere. This completes the proof of Theorem 1.

Proof of Theorem 2. Let N be a closed totally geodesic submanifold of M. We consider two cases:

Case 1. dim $N \geq 2$. Denote by d and d^N the distance functions on Mand N, respectively. Let $\operatorname{rad}_N : N \to R$ be the radius function on N, i.e., $\operatorname{rad}_N(x) = \max_{y \in N} d^N(x, y)$ for all $x \in N$, and define rad_M similarly. It then suffices to prove that $\operatorname{rad}_N(x) \geq \operatorname{rad}_M(x)$ for all $x \in N$. In order to prove this, we fix a point $p \in N$ and take $q \in N$ satisfying

(2.7)
$$\operatorname{rad}_N(p) = d^N(p,q).$$

Let Γ_{qp} be the set of unit vectors in $T_q N$ corresponding to the set of normal minimal geodesics of N from q to p. Then, by Berger's Lemma, Γ_{qp} is $\pi/2$ -dense in $S_q N$, that is,

(2.8)
$$\Gamma_{qp}(\pi/2) := \{ u \in S_q N \mid \angle (u, \Gamma_{qp}) \le \pi/2 \} = S_q N_q$$

where $S_x N$ denotes the unit tangent sphere of N at x. Since a $\pi/2$ -dense subset of a great sphere S^l in a unit sphere S^m , l < m, is also $\pi/2$ -dense in S^m , Γ_{qp} is $\pi/2$ -dense in $S_q M$.

Let $A: M \to M$ be the map defined above. Set $s = d^N(p,q)$ and r = d(p, A(p)). We claim that $s > \pi/2$. Suppose on the contrary that $s \le \pi/2$. Take a point $z \in M$ so that p = A(z). It follows from

$$d(p,z) > \frac{\pi}{2} \ge d^N(p,q) \ge d(p,q)$$

that $q \neq z$. Set l = d(p, z) and t = d(q, z); then l > t. Take a minimal geodesic c of M from q to z. Since Γ_{qp} is $\pi/2$ -dense in $S_q M$, we can find $v \in \Gamma_{qp}$ such that $\angle (v, c'(0)) \leq \pi/2$. Thus, by the definition of Γ_{qp} , there exists a minimal geodesic c_1 of N from q to p such that $c'_1(0) = v$. Since N is totally geodesic, c_1 is also a geodesic of M. We apply the Toponogov comparison theorem to the hinge (c, c_1) to get

 $(2.9) \qquad 0 > \cos l \ge \cos s \cos t + \sin s \sin t \cos \angle (c'(0), c'_1(0)) \ge \cos s \cos t.$

Since $\cos l < \cos t$ and $s \le \pi/2$, we get from (2.9) that

(2.10)
$$\cos l(1 - \cos s) > 0$$

This is a contradiction. Hence $s > \pi/2$.

Now we are ready to show that $s \ge r$. Assume by contradiction that s < r. Since

$$d(p,q) \le d^N(p,q) < d(p,A(p)),$$

we have $A(p) \neq q$. Let w = d(q, A(p)) and take a minimal geodesic γ of M from q to A(p). We can find a minimal geodesic γ_1 of N from q to p such

that $\angle(\gamma'(0), \gamma'_1(0)) \leq \pi/2$. Since γ_1 is also a geodesic of M, applying the Toponogov inequality to the hinge (γ, γ_1) , we conclude that

$$(2.11) 0 > \cos r \ge \cos s \cos w,$$

which gives $\cos w > 0$ since $s > \pi/2$. Hence, since s < r, we have

$$(2.12) \qquad \qquad \cos w \cos s > \cos w \cos r.$$

Combining (2.11) and (2.12), we conclude

(2.13)
$$\cos r(1 - \cos w) > 0.$$

This is a contradiction.

Case 2. N is a closed geodesic. The proof in this case is similar to that in Case 1; for the sake of completeness, we give the argument. Denote by $c: [0, a] \to M$ the closed geodesic N. Set p = c(0) and q = c(a/2). Let us first show that $a > \pi$. Take $z \in M$ so that p = A(z) and assume that $a \leq \pi$. Then we have $q \neq z$ since

$$d(p,z) > \frac{\pi}{2} \ge \frac{a}{2} = L[c|_{[0,a/2]}] \ge d(p,q),$$

where d is as before the distance function on M. Set l = d(p, z) and t = d(q, z); then l > t. Let γ be a minimal geodesic of M from q to z; then we have either

 $\angle \left(\gamma'(0), c'\left(\frac{a}{2}\right)\right) \leq \frac{\pi}{2},$

or

$$\leq \left(\gamma'(0), -c'\left(\frac{a}{2}\right)\right) \leq \frac{\pi}{2}.$$

Thus, we can apply the Toponogov inequality to the hinges $(\gamma, c|_{[0,a/2]})$ or $(\gamma, c|_{[a/2,a]})$ to get

$$0 > \cos l \ge \cos \frac{a}{2} \cos t,$$

which contradicts the fact that $\cos l < \cos t$ and $a \le \pi$. Thus we have $a > \pi$.

Set r = d(p, A(p)). Then we need only show that $a \ge 2r$, since the (intrinsic) radius of c is equal to its intrinsic diameter, which in turn is equal to half of its length, i.e., a/2. Suppose on the contrary that a < 2r. Then $A(p) \ne q$ since

$$d(p,q) \le \frac{a}{2} < r.$$

Take a minimal geodesic σ of M from q to A(p) and let w = d(q, A(p)). Applying the Toponogov inequality to $(\sigma, c|_{[0,a/2]})$ or $(\sigma, c|_{[a/2,a]})$, we have

$$(2.14) 0 > \cos r \ge \cos \frac{a}{2} \cos w_{\rm s}$$

and so $\cos w > 0$ since $a/2 > \pi/2$. Since a/2 < r, we conclude that

(2.15)
$$\cos w \cos \frac{a}{2} > \cos w \cos r$$

94

From (2.14) and (2.15) it follows that $\cos r(1 - \cos w) > 0$, which is a contradiction. The proof of Theorem 2 is complete.

In view of Theorem 2, it is interesting to study the following problem.

PROBLEM. Let M be a complete Riemannian manifold with $K_M \ge 1$ and $rad(M) > \pi/2$. Does the "antipodal" map A of M restricted to a totally geodesic submanifold agree with the "antipodal" map of the submanifold?

Acknowledgment. The author would like to thank the referee for the encouragement and valuable remarks.

References

- [B] A. L. Besse, Manifolds all of whose geodesics are closed, Erg. Math. Grenzgeb., vol. 93, Springer-Verlag, Berlin, 1978. MR 80c:53044
- [Ca] M. P. do Carmo, Riemannian geometry, Bikhäuser, Boston, 1992. MR 92i:53001
- [C] J. Cheeger, Critical points of distance functions and applications to geometry, Geometric topology: recent developments (Montecatini Terme, 1990), Lecture Notes in Math., vol. 1504, Springer, Berlin, 1991, pp. 1–38. MR 94a:53075
- [CE] J. Cheeger and D. G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Publishing Co., Amsterdam, 1975. MR 56#16538
- [C1] T. H. Colding, Shape of manifolds with positive Ricci curvature, Invent. Math. 124 (1996), 175–191. MR 96k:53067
- [C2] _____, Large manifolds with positive Ricci curvature, Invent. Math. 124 (1996), 193-214. MR 96k:53068
- [Gn] L. W. Green, Auf Wiederschensflächen, Ann. of Math. (2) 78 (1963), 289–299. MR 27#5206
- [GG] D. Gromoll and K. Grove, A generalization of Berger's rigidity theorem for positively curved manifolds, Ann. Sci. École Norm. Sup. (4) 20 (1987), 227–239. MR 88k:53062
- [GP] K. Grove and P. Petersen, Volume comparison à la Aleksandrov, Acta Math. 169 (1992), 131–151. MR 93j:53057
- [GS] K. Grove and K. Shiohama, A generalized sphere theorem, Ann. Math. (2) 106 (1977), 201–211. MR 58#18268
- [SY] K. Shiohama and T. Yamaguchi, Positively curved manifolds with restricted diameters, Geometry of manifolds (Matsumoto, 1988), Perspect. Math., vol. 8, Academic Press, New York, 1989, pp. 345–350. MR 90m:53056
- [T] V. A. Toponogov, Computation of the length of a closed geodesic on a convex surface, Dokl. Akad. Nauk SSSR 124 (1959), 282–284. MR 21#850
- [W] A. Weinstein, On the volume of manifolds all of whose geodesics are closed, J. Differential Geom. 9 (1974), 513–517. MR 52#11791
- [Y1] C. T. Yang, Odd-dimensional wiederschen manifolds are spheres, J. Differential Geom. 15 (1980), 91–96. MR 82g:53049
- [Y2] _____, On the Blaschke conjecture, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, NJ, 1982, pp. 159–171. MR 83h:53059b
- [X] C. Xia, Some applications of critical point theory of distance functions on Riemannian manifolds, Compositio Math. 132 (2002), 49–55. MR 2003e:53051

QIAOLING WANG

Departamento de Matemática-IE, Fundação Universidade de Brasília, Campus UNIVERSITÁRIO, 70910-900-BRASÍLIA-DF, BRASIL

 $E\text{-}mail \ address: \texttt{wang@mat.unb.br}$