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LOCAL COMPACTNESS FOR FAMILIES OF A-HARMONIC
FUNCTIONS

K. ROGOVIN

ABSTRACT. We show that if a family of A-harmonic functions that ad-
mits a common growth condition is closed in Lfoc, then this family is
locally compact on a dense open set under a family of topologies, all
generated by norms. This implies that when this family of functions is
a vector space, then such a vector space of A-harmonic functions is finite
dimensional if and only if it is closed in Lfoc. We then apply our theorem
to the family of all p-harmonic functions on the plane with polynomial
growth at most d to show that this family is essentially small.

1. Introduction

A classical theorem states that the vector space of harmonic functions in
R™ that have polynomial growth of order at most d is finite dimensional with
dimension depending on d and n. Recently, Colding and Minicozzi showed in
[CMI98] that the same theorem holds on a Riemannian manifold that admits
a (1,2)-Poincaré inequality (with a bound on the dimension depending only
on d and the quantitative data of the manifold).

Often one views A-harmonic functions (in the sense of [HKM93]) as a
natural generalization of harmonic functions. However, A-harmonicity is not
in general a linear condition. We will call a family of .4-harmonic functions
small if there exists a topology generated by a norm for which this family is
locally compact. Note that for a vector space local compactness is equivalent
to having finite dimension. We pursue a slightly weaker condition than local
compactness, though in the context of a vector space it, too, is equivalent to
having finite dimension.

DEFINITION 1.1.  We will say that a family S of functions on R™ has a com-
mon growth condition if there exists a non-decreasing function g : [0, 00) —
(0, 00) so that for each f € S there exists Cy > 0 such that |f(x)| < Crg(|x|)
for all x € R™. In particular, we will say S is of polynomial growth of order d

Received January 28, 2003; received in final form March 13, 2003.
2000 Mathematics Subject Classification. 30C62, 30C65.

(©2004 University of Illinois

71



72 K. ROGOVIN

if g(t) = 1 +t?. We will say a function f has polynomial growth of order d if
the set {f} is of polynomial growth of order d.

The main theorems of this paper are the following. Throughout u is a
p-admissible measure on R™ and A is p-acceptable under y (see Section 2 for
the definitions). We write f € L (u) for a function f : R™ — R if for each

loc

r > 0, fB(o ” |f|9dp < co. We say a net {f,,} in Li () converges to f in

loc

L (p) if and only if f,, converges to f in L(B(0,r), ) for each r > 0. We
will write L{ (R™) for L{ (X), where X is the Lebesgue n-measure on R™.

THEOREM 1.2. Let S be a family of A-harmonic functions on R™ with
a common growth condition that is closed in L{ (n) for some 1 < q < oo.

Then there exists a family of Banach spaces, each a subset of L{ (p), for
which S is a closed subset, such that under each of these Banach spaces there
exists a relatively dense open set of S which is locally compact. Moreover,
the topology generated by each of these Banach spaces is stronger than the

topology generated by Li (1).

loc

COROLLARY 1.3. Let S be a vector space of A-harmonic functions that
admits a growth condition. Then S is finite dimensional if and only if S is
closed in L (u) for some 1 < ¢ < 0.

loc

THEOREM 14. Letd > 0, let 1 < p < oo and let S be the closure in
LY (R?) of all p-harmonic functions defined on the plane with polynomial
growth of order at most d. Then there exists a family of Banach spaces, each
a subset of L. (R?), for which S is a closed subset, such that under each
of these Banach spaces there exists a relatively dense open set of S which is
locally compact. Moreover, the topology generated by each of these Banach

spaces is stronger than the topology generated by LY (R?).

loc

2. Definitions
Throughout let 1 < p < co and let ;1 be a measure on R™ that satisfies the
following conditions.

(1) du(z) = w(x)dz, where w is a locally integrable a.e. positive function
on R”.

(2) pis a doubling measure, i.e., there exists a constant C,, such that for
every € R” and 0 < r < oo we have p(B(z,2r)) < C,u(B(z,1)).

(3) There exists a constant Cr such that

1/p
][ W - wB(Jc,r) ‘dﬂ <Crr (][ |v'l/}pdﬂ>
B(z,r) B(z,r)

for every ball B(z,r) and each ¢ € C°°(B(z,7)) N L'(B(z,r), p).
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Here and throughout, we set { , fdu := ﬁ J 4 fdp. Condition (3) is often
called a (1, p)-Poincaré inequality. The above hypotheses imply the following
three conditions.

(A) IfQis an open set in R™ and {¢;} € C*() is such that [, [¢;[Pdp —
0and [, |[V;—v|Pdp — 0 as j — oo with v a Borel measurable vector
field in LP(£2, u), then v = 0 almost everywhere.

(B) There exist constants x = x(Cr,C,,) > 1 and Cr; = Cri(Ch, C,,) such
that

1/xp
(f |¢|X”du> < Cur (f |lede>
B(z,r) B(z,r)

for every ball B(x,r) and every ¢ € C°(B(x,r)).
(C) There exists a constant Crip = Crir(Ch, C) such that

1/p

/ [V — VB(e,m|Pdp < Crrr? / |Vip[Pdp
B(z,r) B(z,r)

for every ball B(z,r) and every 1 € C*°(B(z,r)) N L' (B(x, 1), ).

Hajtasz, Koskela and Franchi showed (A) in Theorem 10 of [FHK99] under
much more general conditions. Heinonen and Koskela showed (C) in Lemma
5.15 of [HK98] (see also Theorem 4.18 of [Hei01]) in the context of geodesic
metric spaces. Hajlasz and Koskela showed (B) in Theorem 5.1 of [HK00],
also in a much more general setting than a manifold. We follow [HKM93] and
call a measure p satisfying (1)—(3) above p-admissible. Holder’s inequality
shows that if p is p-admissible, then for all ¢ > p, u is g-admissible.

If p is a p-admissible measure, for each open set (2 of R” we can form
the Sobolev space HP(Q, 11); see Chapter 1 of [HKM93] for its properties.
We also define Hllo’f (1) as the set of measurable functions f defined on all of
R™ such that for each bounded open set ) the function f is an element of
HYP(Q, ).

We say a function f € Hllo’f (1) is A-harmonic if it weakly satisfies the
equation

div(A(z, V) = 0,
i.e., if for each ¢ € C°(R™) we have

[ @ n.voyds=o.

where A : R” x R™ — R" satisfies the following conditions.

(1) A is Borel.
(2) For a.e. z € R™, the mapping v — A(z,v) is continuous.
(3) There exists C; > 0 such that [A(z,v)| < C;|v]P~Lw(x).
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(4) If XA # 0, then for a.e. z € R™ and v € R™ we have
Az, \v) = MAP 2 A(z,v) .
(5) There exists Cj; > 0 such that for a.e. z and for all v in R™ we have
<A($,V),V> > Cii‘v|pw(x) :
(6) For a.e. z in R™ and every v and w in R™ with v # w we have
(A(z,v) — Az, w),v—w) >0.

We will write C' 4 to represent the constants C; and Cj;. We will call A p-
acceptable with constants C;j and Cy under p whenever it satisfies conditions
(1)-(6) above. For each 1 < p < o0, Ap(x,v) := |v|P~2v is p-acceptable
under the Lebesgue measure. Functions which are Ap,-harmonic are called

p-harmonic functions.
The following can be found in Chapters 3 and 6 of [HKM93].

ProrosITION 2.1. Let f : R® — R be A-harmonic. Then the following
hold.
(1) The function f has a continuous representative.
(2) There exist constants a = a(C),,Cr,C4) >0 and C = C(Cy,C1,C)
> 0 such that for each v € R™ and 0 < r < R < 0o we have
s, 1 < O/ oz, 1
(3) There exists a constant C = C(C,,,Cr,C4) such that

" / VfPdu < C / fiPdy
B(z,r) B(z,2r)

for each r > 0 and z in R™.

(4) For each 0 < g < oo and each T > 1 there exists a constant C =
C(C,,Cr,Ca,1,q) such that

1/q
sup || < C (f Iflqdu>
B(z,r) B(xz,7r)

for each r > 0 and z in R™.

When we refer to an A-harmonic function we will always refer to the point-
wise defined continuous representative of f.

REMARK 2.2. Using the Arzela-Ascoli theorem, properties (2) and (4)
immediately imply that if {f,} is a sequence of A-harmonic functions that
converges to a function f in Llloc(u), then this sequence also converges to f
in L (u) for every 1 < ¢ < oco. Moreover, Theorem 6.13 of [HKM93] shows

& () implies that f is also A-harmonic. Hence a

that the convergence in LfS,
set S of A-harmonic functions is closed in L{ (x) for some 1 < ¢ < oo if and
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only if it is closed in L  (u) for each 1 < s < co. Property (4) implies that if
S is a set of A-harmonic functions, then S is bounded in L (u) if and only
if S is bounded in L{ (p) for every 1 < ¢ < oco. Additionally, property (3)

implies that S is bounded in H.”(u) if and only if S is bounded in LP (y).
Moreover, the Arzela-Ascoli theorem also gives the following result.

PROPOSITION 2.3.  Let {f,} be a sequence of A-harmonic functions that
is bounded in LL _(u) for some 1 < q < co. Then there exists a subsequence

loc
that converges in Lj, (p) for every 1 <r < oo to an A-harmonic function f.

3. Norms

DEFINITION 3.1.  'We call a non-decreasing continuous function h : [1,00) —
(0,00) with [ %dt < 00 a growth condition.

DEFINITION 3.2. Let h,k : [1,00) — (0, 00) be growth conditions. We say
k dominates h if
h
lim ﬂ =0.
DEFINITION 3.3. Let h : [1,00) — (0,00) be a growth condition, 1 <
q,r <oo,and f € LL (u). Set

loc

r/q
o0 1
R = — 9d dt
11l (qrm) /1 0 (%B(O’t) |f] u)

oo 1 r
) = — dt
= ([ s (esssupmia 111) ot

The following proposition can easily be proved by mimicking a common
proof of Minokowski’s inequality.

1/r

and
1/r

PRrOPOSITION 3.4. Let h be a growth condition, let 1 < r < oo and let
1 <q < oo. Then on the set

L@ () = {f € L (1) | [ fllgqmny < 00},

[l - ||(q,7-7h) 1S G norm.

PRrOPOSITION 3.5. Let h be a growth condition, 1 < g < oo and 1l <r <
00. We then have the following for each sequence {f;} C L@rh) (1),

(1) If f € L™ (n) with imj_.oo || f — fill(grny = 0, then f; — f in

Biocw)- -
(2) 17 £ = f in Lipo(0), then ||fllg,rm < Hminfyce |15 gurn)-
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(3) If k is another growth condition with k > Ch for some constant C,
then L@ () © L@ (1) and || - ligrpy < C'll - gy with €' =

c'(C,r).

(4) If S c L@mM(u) is bounded in LM (1), then S is bounded in
Lo (18)-

(5) If f; — [ in L () and sup; || fjll(grn < oo and if k is another

growth condition that dominates h, then lim; oo | f — fjll(g,rk) = 0.

Proof. Ttems (1), (3) and (4) are immediate consequences of the definition.
Item (2) follows from Fatou’s lemma. To prove item (5), note that by items
(2) and (3) we have f € L™ (n) C L@ (1) with || f]|(grn) < M, where
M = sup; || fjll(g,r,n)- Now, for each m > 1 we have

r/q
<1
; —_ £ — 1 = AT
jli)ngo”f f]H(q,r,k) J1i>nolo/1 k(t) <][B(0,t) |f f]l d,“) dt
m o r/q
— i [ (e plde)a
J—7ee J1 k(t) ( B(0,t) !

r/q
1
+ lim — ][ = fi|%du dt
i=00 Sy K(t) ( B(O,t)| i

nt) ,
<0+ sup 7o lim 1 = Fillg,rmy

< (2M)’”t8;1£ %

which goes to zero as m — oo. O

PRroPOSITION 3.6. For each growth condition h, each 1 < q < 0o and each
1 < r < o0, the normed space L(47") (1) is a Banach space.

Proof. Since L4"") (1) is a normed space, we only need to show that if
{fa} C LM (1) is a sequence such that >0 | || full(g.rn) < N < 00, then
there exists an f € L(@") (p) such that lim, oo | f — Snll(g,rn) = 0, where
Sp = Y1 fr Let T, = 320 |fil- Then for each n, ||Tull(qrn) < N.
Hence {T},} is bounded in L™ (). Applying Proposition 3.5(4) yields that
for every R > 0, {T},} is bounded in L4(B(0, R), s1). Since T}, = > 1 _ | fxls
and for each ball B(0, R), L(B(0, R), 1) is a Banach space, there exists f()
such that S, — fU) in LY(B(0,R),u). Since limits are unique, we have
fE) = £ almost everywhere on B(0,7) whenever 7 < R. Hence we can
define f to be equal to f# on B(0,R). We have that S, — f in L ().

loc
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Thus, by Proposition 3.5(2),
Hf”(q,r,h) < linIIiigf ”SnH(q,r,h)

< lminf | g,r,n) < N .

Hence, f € L@ (). Also, for almost every y, we have f(y) = 300, fu(y).
Using that

Z ||fk||(q,r,h) <N<ox,
k=1

we have

nll—{[;o ”f - S"”(q’r’h) - nh—>ngo

S =Y I
k=1

k=1 (q,m,h)
< Jim 37 filigrm =0 .
k=n+1

We are now ready to prove our first main theorem.

THEOREM 3.7. Let S C LM (1), with h a growth condition, 1 < ¢ < oo
and 1 < r < oo, be a family of A-harmonic functions that is closed in
LL (p). Then for every growth function k that dominates h there exists a
set G(q.n),(q,k) C S which is locally compact in L(@r:k) (1), open and dense
in S under the topology of L(q*’“’k)(u). Also, if ko is another growth func-
tion that dominates k, then G (qn),(q.ks) C G(q.h),(q,k) and the topologies of
L8 (1) and LO*2) (1) agree on G (q,h),(q,ks)- Moreover, the set G(q.p),(q.k)
is canonically defined by q, v, h and k.

Proof. Let
G(q,h),(q,k) = {f es | dR > 0,36 > 0 s.t.
Cltgur iy (B (0, ) 2 B (1,0) |

and

Gg,h).(gk) = {f €S |3R>0,30 >0 s.t.

Bﬁ],r,h) (0’ R) 2 B‘(Sqm,k) (f, 5)},
where, for a growth function [,

Bﬁ],'f,l)(f? 6) = {g S ‘ Hf _g”(q,nl) < 5}



78 K. ROGOVIN

and for every T' C S,
Cl(g,r,k)(T') = Closure of T under ||« [|(q,rx) -

We define <
B(q,nk)(-ﬂ 8) = {g S ‘ Hf - g”(q,r,k) < S}

q
loc

and define Efth)( f,s) similarly. Because S is closed in L
gence in ||+ [|(q,rk) implies convergence in L (u) for sequences, we have that
for every subset T of S, Clig 1) (T) € S. We first claim that G(g.n),(q.r) =

G(q,h),(q,k)- Clearly,
Clg,r,k) (Bfo’q,r,h) (0,R)) 2 B?;],T,h)(()’R)’

(1) and conver-

which implies that G n),(q.k) S G(q’h),(q’k). For the other set inclusion,
note that by Proposition 3.5(2), ||gl|(g,r,n) < liminf, .. [|gnll(q,rn) Whenever
{gn}p2 is a sequence in Ll () that converges to g in Ll _(x). Hence

=95
Cl(%?‘yk) (Ba,7'7h) (07 R)) c B(q,’r’,h) (07 R) C BA(S‘q,T,h) (O’ R+ 1)’

which implies that G(q,h),(q,k) ) G(q,h),(q,k)- We will now show that G(q,h),(q,k)
is a relatively open subset of S in the topology generated by L(4"*)(1). For
each f € G pn),(q,k), there exists an R > 0 and a § > 0 such that

B{, .10, R) 2B, (f,0) .

Let g € Biz,r,k)(f’ §/2). We then have

Bi},ﬂh) (07 R) 2 qu;,k) (f7 6) 2 Ba,r7k) (gv 5/2) .
We conclude that B, | (f,3/2) € G (g,n),(q.5)-

We will now show that G 4 4),(4,k) is locally compact in L@%) (1), Indeed,
fix an f € G(gn),(qk and let R > 0 and § > 0 be as in the definition of

G (q.h),(q.k)- 1t suffices to show that Efqu)(f, §/2) is compact in L&) (1),

Let {fa}22) C By (f:6/2). Then for all n, | full(grp) < R. Hence by
Proposition 3.5(4) the sequence is bounded in L{ (p). Applying Proposition
2.3 creates a subsequence {f,,,} that converges in L{ () to a function g.
Moreover, g will be in S because S is closed in L{ (n). We have that for

all m, || fumll(grny < R, and k dominates h. Applying Proposition 3.5(5)
we conclude that f,,, — g in ||+ |(grk) and |[f — gllgrr < 0/2. Hence

9 €B(,,0(£.0/2).

In the proof that G g 4),(q,k) is dense in S under the topology of LL@mF) (1)
we will slightly mirror the proof of the Open Mapping Theorem by using
the Baire Category Theorem. Suppose G(q pn),(q,k) 18 D0t dense in S under

L(@7F) (1), Then there exists an f € S and § > 0 such that B‘(gq i (f50) N
q

G g.h),(q,k) = 0. Now, S is closed in L{ () and hence in the Banach space
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L@k (). Because S is closed in L(@™F) () we have that E(Sq’r,k)(f, 4/2) is
closed in the Banach space L(%"*) (1) and hence complete under || . l(qurk)-
Since S C L@ (11), we have

o0

1) Bln(6/2) = U (Blrn(£:6/2) B 0.R)) -

R=1
Let Ap = Cl(qu)(Bamh)(O,R)). Then by Baire Category Theorem there
exists an R € N such that the set Ar has non-empty relative interior as
a subset of §Z7T7k)(f, 6/2) under || . [/(q,rkr). Hence there exists a function

g€ E(Squ)(f, 0/2) and an € > 0 such that

=5
(2) Cl(q,r,k) (Ba r,h) (07 R)) ) Bﬁ],r,k)(gv 6) N B(q,r,k) (fv 5/2) :
Thus there exist n > 0 and ¢’ € B i) 0/2) such that
(3) Clig,re) By (0, R)) D BT, 1 (d'm) -

Hence ¢’ € G ) .(ak) = Ga,h).(a,k), contradicting that g' € B(qu)(f7 5/2)

and Bs;] - k)(f’ ) N G (a,h),(q,k) = 0.

We now show that if ky is a growth function that dominates k, then
G(g.h).(a.ks) € G(g.h),(qk) and the topologies generated by || . [[(g,rr) and
I« [l(g,rk2) O0 G(gh),(q,ks) are identical. By Proposition 3.5(3) there exists
a constant C' = C(k, ko) such that for every f and é > 0,

(qu'z (f’ ) (qr,k)(fvé/c) .

Hence we immediately see that G4 1), (q.ks) C G(q,h),(q.k)- AlS0, by Proposition
3.5(3).16 f — 1 i1 [l guys thets Fo o F i - [nmny. Comversely, if f, — f
in |+ ll(g,rks) With f € Ggn).(qks), then fr — fin LY (). We have that
I € Gg.n),(q,ks)- Hence there exist R > 0 and J > 0 such that

(4) Bﬁ] rh)(OaR) D) B‘(SZI,r,k:z)(fa (5) .
Since f, — f in ||+ [|(grks), Dy (4) we may assume that for all n, f, €

B{, k) (f:0). Thus for all n, |[fallgrn < R. Since k dominates h and
fn — [ in L{ (u), using Proposition 3.5(5) we conclude that f, — f in
I+ Ml ¢qor k- O

The above theorem states that changing the growth condition k£ does not
affect the topology strongly. A similar result is true when we change q. How-
ever, care must be taken when changing q. For each 7 € Rt and each growth
condition h, we set h,(t) = h(7t). Note that Proposition 2.1 gives the follow-
ing result.



80 K. ROGOVIN

ProroSITION 3.8. Let f: R™ — R be A-harmonic. Then for each growth
condition h, each 1 < r < 0o, each 1 < q < oo and each T > 1 we have

Ifll(o,rhry < C(Cas 7, 7)1 f gy, -

THEOREM 3.9. Let S C LM (1), with h a growth condition, 1 < ¢ < oo
and 1 <r < 0o, be a family of A-harmonic functions that is closed in L (j).
Then for every growth function k that dominates h, with T > 1 and every
1 < s < oo there exists a set G(qn), s,y C S which is locally compact in
L@k (1), open and dense in S under the topology of L™ (1), Also, if
s < 53 < 00, then Ggn),(s,k) C G(q,h),(sa,k) and the topologies of LR (1)

and L(S""T’k)(,u) agree on G (g p),(s,k)-

Proof. We only sketch the proof, as it closely mirrors the proof of Theorem
3.7. By Proposition 3.8 and Remark 2.2, we have that S C L(""7) (1) and
S is closed in L} (u) for all 1 < u < oo. We set

Cla)(sk) = {f €S|3R>0,35>0st. BS . (0,.R)2BS (/. 5)} .

Using the same argument as for Theorem 3.7 and the fact that S is closed,
we obtain that G'q pn),(s,k) is relatively open and dense in S under || . ||(s r.z)-
To see that G (g n),(s,k) is locally compact in ||« ||(s,rx), let f € G(g,n),(s,k) and
let R > 0 and § > 0 be as in the definition of G p),(s,x)- We will show
that B‘(imk)(f, 0/2) is pre-compact. Indeed, let {f,}52; be any sequence in
Bigs,r,k)(fv §/2). Then for all n we have, by Proposition 3.8,

(5) ||fTLH(S,7',hT) S ”fn”(oo,r,hT) S Can”(q,’r',h) < CR.

Hence the sequence is bounded in L{ .(1). As before, apply Proposition 2.3
to extract a subsequence that converges is Lj (p). By (5), this subsequence
is bounded in || [|(s,rn,), and because k dominates h., Proposition 3.5(5)
implies that it converges in || « [|(s,r k), as needed.

That G(gn),(s,) C G(q,h),(s2,k) follows directly from the inequality

(6) || . ”(S,r,k) < || . ||(82,r,k)7

which follows from Hélder’s inequality. To show that the topologies are equiv-
alent, note that by (6) the topology generated by ||+ ||(s,rk) is coarser than the
topology generated by || || (s,,rk). For the other inclusion, let f, — f under
|« ll(s,rky With f € Gg.pn),(s,k). As before, we may assume that there exists
R > 0 such that for all n, || fu|l(grn) < R. Applying (5), we have for all n
that || foll(s5,r,n,) < CR. Since fp, — fin ||+ ||(s,rx), We also have that f, — f
in Lj .(u), and applying Remark 2.2 yields that f,, — f in L;2 (). Using the

assumption that k& dominates h, and applying Proposition 3.5(5) gives that
fn - f in H . H(sz,r,k)- U
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REMARK 3.10. Although we have presented our results in R™, the only
really necessary tools for the proof are the inequalities of Proposition 2.1.
The proofs presented in [HKM93] can be adapted to the manifold setting
or beyond with great ease, as they do not use the specific properties of R™.
Rather, these proofs require only that the measure satisfies a (1, p)-Poincaré
inequality and that it is doubling.

4. p-harmonic functions in the plane

Here we extend the fact that the space of all harmonic functions on the
plane with growth of order at most d is finite dimensional to the space of
p-harmonic functions. Our key technique is a result of Iwaniec and Manfredi
found in [IM89] stating that the complex derivative of p-harmonic function is
a quasiregular mapping. We combine this result with one found in [HK95] and
[V&i72] to show that if a sequence of p-harmonic functions, all with polynomial
growth of order bounded by a fixed number d, converges locally uniformly,
then the limit function also satisfies a bound on its growth. We now begin to
describe the details, which involve the theory of quasiregular mappings. We
refer the reader to the monograph by Rickman [Ric93].

We use the notation of [Ric93, Chapter 1]: For an open discrete continuous
mapping f : R" — R", By refers to the branch set of f, #S refers to the
cardinality of a set S. We define N (y, f,U) as the cardinality of f~*(y)NU and
set N(f,U) :=sup,cy N(y, f,U). We say a point y € R" is (U, f)-admissible
if y ¢ f(OU), and in this case we denote the local degree by u(y, f,U).

PROPOSITION 4.1.  Let {f;} be a sequence that converges locally uniformly
in R™ to a function f with each f; K-quasiregular and N(f;,R™) < m. Then
either f is a constant or N(f,R"™) < m.

Proof. Since each f, is K-quasiregular, f is also K-quasiregular. If f is
a constant, then we are done. Otherwise f is a continuous, open, discrete
mapping. Let § = f(Bf)UU;il [j(By,;). Then S has Lebesgue measure zero.
Thus T' = R™ — S has full measure and hence is dense. We first show that
for y € T, N(y, f,R") < m. Indeed, suppose there exists a y in T so that
N(y, f,R™) > m + 1. Then there exist at least m + 1 distinct points in R,
{z; ;1*11 such that f(z;) =y. Now, f is discrete and open. Hence there exists
an R > 0 and an € > 0 such that for all ¢, |z;| < R and

(7) Y y)NB(0,R+¢) C B(O,R —¢) .

Note that (7) implies that dist(y, f(0Bgr)) > 0. Now, f; — f locally uniformly
in R™. Hence there exists a j such that

1 .
(8) sup |f — f;| < —dist(y, f(OBR)),
B(0,2R+2¢) 10
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which implies that y is (f;, B(0, R))-admissible. Since y ¢ f;(By,), apply-
ing [Ric93, 1.4.10] we conclude that N(y, f;,B(0, R)) = u(y, f;,B(0, R)). Let
hi(z) =tf(x)+ (1 —t)fj(x). Then hy = f, ho = f; and h; maps f homotopi-
cally to f;. Also, by (7) and (8), y ¢ h(0B(0, R)) for each 0 < ¢t < 1. We
thus have
m+1<N(y, f,B(0,R)) < u(y, f,B(0, R))
= ﬂ’(ya fj» B(Ov R)) = N(y’ fjv B<Ov R)) S m,

a contradiction. Hence for y ¢ f(By) U U;’;l [i(By,;), N(y, f,R") < m. For
y ¢ T, suppose that #f~1(y) > m + 1. As before, let R > 0 be such that
#f~1(y)NB(0, R) > m+1 and f~1(y)NOB(0, R) = 0. Since #f1(y) > m+1,
we can use [Ric93, 1.4.10] to conclude that m + 1 < u(y, f, B(0, R)). Now, f
is quasiregular. Hence f(0B(0, R)) has Lebesgue n-measure zero. Let U be
the component of R” — f(0B(0, R)) containing y. As T" and the complement
of f(0B(0, R)) have full measure, we know there exists an element y' € UNT
that is not an element of f(6B(0,R)). Hence ¢’ is (f,B(0, R)) admissible.
The preceding argument showed that u(y’, f,B(0, R)) < m. Since y and g/’
are both in the same component of R — f(9B(0, R)), [Ric93, 1.4.4] implies
that

m+1 < u(y, f,B(0,R)) = pu(y', f,B(0, R)) < m,
a contradiction. Hence, for all y, N(y, f,R™) < m. O

We now quote and paraphrase a portion of Theorem 1.5 of [HK95]. Actu-
ally, Koskela and Heinonen show quite more than the following, but this is all
that we need here. Additionally, the first implication of the following theorem
was first shown by Véisilé; see [V&iT2].

THEOREM 4.2. Let f : R® — R™ be a non-constant K -quasiregular map-
ping. If there exist constants C > 0 and d > 0 such that |f(z)| < C(1+ |z|9),
then N(f,R™) < m = m(n,K,d). Also, if N(f,R") < oo, then there exist
constants C > 0 and d = d(n, K, N(f,R")) such that |f(z)| < C(1+ |z|?).

Combining Theorem 4.2 and Proposition 4.1 gives the following result.

COROLLARY 4.3. Let {f,} be a sequence of K -quasireqular mappings of
R™ with polynomial growth of order at most d that converges locally uniformly
to a function f. Then f is a K-quasiregular mapping with polynomial growth
of order at most D = D(d, K,n).

We also need the following result, which was also first proved by Reshet-
nyak; we cite [HKM93, pp. 269-273] for the proof.

THEOREM 4.4. Let f : R" — R™ be K-quasiregular. Then each of the
coordinate functions of f is Ag-harmonic for some n-acceptable family Ay
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under the Lebesgue n-measure, with C4, depending only on K and n. In
particular, if {f;} is a sequence of K -quasiregular mappings that converge to
a mapping f in L{ (R™;R™) for some 1 < q < oo, then it also converges to f
in Ly (R™R"™) for each 1 < s < 0.

One can easily adapt the norms and proofs of Theorems 3.7 and 3.9 to
obtain the following result.

COROLLARY 4.5. Let Q(K,n,m) be the set of all K -quasiregular mappings
f:R™ = R™ with f constant or N(f,R™) < m. Then for each 1 < q < o0
there exists a family of Banach spaces, each a subset of Li (R™;R™), for

loc
which Q(K,n,m) is a closed subset, such that under each of these Banach

spaces there exists a relatively dense open subset of Q(K,n, m) which is locally
compact. Moreover, the topology generated by each of these Banach spaces is
stronger than the topology generated by Li (R™;R™).

loc

The following Caccioppoli estimate shows that a sequence of p-harmonic

functions converges in LP, (R") if and only if it converges in W,-7”(R™).

PrROPOSITION 4.6. Let f and g be p-harmonic functions defined on an
open set Q. Then for each 1p € C(Q) we have for p > 2,

1/p
[ wlr1v-pas < ) ( / |w|pfg|pdz)
Q Q

< ([oerwseass [ opwarar) "
Q Q

1/2
/ WPV £~ VglPde < C(p) < / VYIS g|Pda:)
Q Q

1/2
P P p p
< (/Q WP dx+/ﬂ|w| vz dx) .

Proof. Note that for A, (z,v) := [v[P~?v we have

—A(z,w),v—-w L v w)P2v — w|?
(9) (A(z,v) — Az, w), >ZC(p)(‘ |+ WP~ I

Let h = |4|P(f — g). Then h € W, (Q). Hence,

0:/ (A(z,Vf),Vh)dx :/ (A(z,Vg),Vh)dx
Q Q
and by calculation,

Vh = py[p[P72(f = g) VY + [Y[P(Vf = Vg),

and for 1 <p <2,
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Hence,
/Q (A2, Vf) — Al, V), [P (V f — Vg)) da

—— [ (A~ A Vo). p0ls ol V)

Taking absolute values, and applying Holder’s inequality yields
[ (4695 - At T9) 102 (VF - T
<) [ 1011 ol V0] A, 1) = Ale, Vo)l da

<C) [ Wl 1f = ol (90 (VP + VgP ) do

p—1

1/p
<o) ( / IWJIPIfgI”dx)

x ( /Q PV flPde + /Q |w|p|Vg|pdx) '

For p > 2 we have by using (9)
[ wir1vs = Valras

<) /Q WIP (A2, V) — Az, Vg), Vf — Vg) da

1/p
< C) (/Q PPl - gpdx)

P P P p ?
x ( [ wriwspas+ [ vl da:)

and for 1 < p < 2, letting ¢ = 2/p > 1, we have, again by using (9),
[ 119 = Vol
Q

= [ 1PV = VaP (V1 + V6D (VS + V) T da

p/2
< ( [ wrivs - vopes+ Vg|>“dx)
Q

P

. ( [ wravs+ |Vg|>pdx)
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p/2
<o) ( [ 1AV - 4G T, (9 - V) dx)

2—p

< ([ 10P(vs1+ 1vgra)

1/2
<c) ( /Q TyPP|f - g|Pdw)

x ( /Q PV fPda + /Q wwgwczx) :

x ( [ s+ |Vg|>pda:)
Q

1/2
<o) ([ [worls - grae)

1/2
x (/Q leplvflpdm/ﬂwwgv’dx) . O

We now quote a remarkable result stated in [IM89, p. 4].
THEOREM 4.7. Let u:R%? — R be a p-harmonic function. Then f = % :
R? — R? is K -quasiregular with K < max(p —1,1/(p — 1)). Here,

ou _ (1o 10w
0z \20z" 20y)

We are now ready to prove that for each d > 0 the set of all p-harmonic
functions on R? with growth of order at most d is essentially small. We let
Tu(p) be the set of all p-harmonic functions defined on the plane with growth
of order at most d. We also define S4(p) as the closure of Ty(p) in LY (R?).

loc

PROPOSITION 4.8. For each d > 0 there exists m = m(d,p) such that
Sa(p) € T (p)-

Proof. Let {u;} be a sequence in Ty(p) that converges in LP (R?) to a

loc
function w. Then, by Remark 2.2, Proposition 2.3, and Proposition 4.6, u
is also p-harmonic and u; — u in VVli’f(RQ). Let f; = % and f = %.
Then f; — f in LI (R?;/R?). Moreover, by Theorem 4.7, for each j, f; is K-

quasiregular with K < max(p—1,1/(p — 1)). Hence, by Theorem 4.4, f; — f
locally uniformly and f is also K-quasiregular. Now, for each j and r» > 0 we
have

rp/ [Vu;Pde < C lu;[Pda .
B(0,r) B(0,2r)
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Hence, for each j and r» > 0 we have
/ |fj|pdx < CT*p/ |uj|pdx <C(1+ T(dfl)erZ)
B(0,r) B(0,2r)

with C' = C(p, u;). Now each f; is K-quasiregular. Thus, by Theorem 4.4, for
each j, the coordinate functions of f; are .A;-harmonic for some 2-acceptable
family A; with C4, = C(K). Applying Proposition 2.1(4) yields for each j
and r > 0,
1/p

sw (<0 (fIpp] e

B(0,r) B )
with C = C(f;,p). Hence, by Theorem 4.3, there exists N = N(d,p) such
that f has polynomial growth of order at most N. Now, |Vu(z)| = 2|f(z)].
Hence |Vu(z)| also has polynomial growth of order at most N. Integration
gives that |u(z)| < C(1 + |x|™), where m = m(d,p). Hence u € T,,(p), as
needed. U

)

Proposition 4.8 and Theorem 3.7 give our main result.

THEOREM 4.9. Let Sq(p) be the closure in LY (R?) of all p-harmonic

loc
functions defined on the plane with polynomial growth of order at most d.

Then there exists a family of Banach spaces, each a subset of LY. (R?), for

loc
which Sq(p) is a closed subset, such that under each of these Banach spaces

there exists a relatively dense open set of S which is locally compact.
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