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LOCAL COMPACTNESS FOR FAMILIES OF A-HARMONIC
FUNCTIONS

K. ROGOVIN

Abstract. We show that if a family of A-harmonic functions that ad-
mits a common growth condition is closed in Lploc, then this family is
locally compact on a dense open set under a family of topologies, all

generated by norms. This implies that when this family of functions is
a vector space, then such a vector space of A-harmonic functions is finite

dimensional if and only if it is closed in Lploc. We then apply our theorem
to the family of all p-harmonic functions on the plane with polynomial
growth at most d to show that this family is essentially small.

1. Introduction

A classical theorem states that the vector space of harmonic functions in
R
n that have polynomial growth of order at most d is finite dimensional with

dimension depending on d and n. Recently, Colding and Minicozzi showed in
[CMI98] that the same theorem holds on a Riemannian manifold that admits
a (1, 2)-Poincaré inequality (with a bound on the dimension depending only
on d and the quantitative data of the manifold).

Often one views A-harmonic functions (in the sense of [HKM93]) as a
natural generalization of harmonic functions. However, A-harmonicity is not
in general a linear condition. We will call a family of A-harmonic functions
small if there exists a topology generated by a norm for which this family is
locally compact. Note that for a vector space local compactness is equivalent
to having finite dimension. We pursue a slightly weaker condition than local
compactness, though in the context of a vector space it, too, is equivalent to
having finite dimension.

Definition 1.1. We will say that a family S of functions on Rn has a com-
mon growth condition if there exists a non-decreasing function g : [0,∞) →
(0,∞) so that for each f ∈ S there exists Cf > 0 such that |f(x)| ≤ Cfg(|x|)
for all x ∈ Rn. In particular, we will say S is of polynomial growth of order d
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if g(t) = 1 + td. We will say a function f has polynomial growth of order d if
the set {f} is of polynomial growth of order d.

The main theorems of this paper are the following. Throughout µ is a
p-admissible measure on Rn and A is p-acceptable under µ (see Section 2 for
the definitions). We write f ∈ Lqloc(µ) for a function f : Rn → R if for each
r > 0,

∫
B(0,r)

|f |qdµ < ∞. We say a net {fm} in Lqloc(µ) converges to f in
Lqloc(µ) if and only if fm converges to f in Lq(B(0, r), µ) for each r > 0. We
will write Lqloc(Rn) for Lqloc(λ), where λ is the Lebesgue n-measure on Rn.

Theorem 1.2. Let S be a family of A-harmonic functions on Rn with
a common growth condition that is closed in Lqloc(µ) for some 1 ≤ q ≤ ∞.
Then there exists a family of Banach spaces, each a subset of Lqloc(µ), for
which S is a closed subset, such that under each of these Banach spaces there
exists a relatively dense open set of S which is locally compact. Moreover,
the topology generated by each of these Banach spaces is stronger than the
topology generated by Lqloc(µ).

Corollary 1.3. Let S be a vector space of A-harmonic functions that
admits a growth condition. Then S is finite dimensional if and only if S is
closed in Lqloc(µ) for some 1 ≤ q ≤ ∞.

Theorem 1.4. Let d > 0, let 1 < p < ∞ and let S be the closure in
Lploc(R2) of all p-harmonic functions defined on the plane with polynomial
growth of order at most d. Then there exists a family of Banach spaces, each
a subset of Lploc(R2), for which S is a closed subset, such that under each
of these Banach spaces there exists a relatively dense open set of S which is
locally compact. Moreover, the topology generated by each of these Banach
spaces is stronger than the topology generated by Lploc(R2).

2. Definitions

Throughout let 1 ≤ p <∞ and let µ be a measure on Rn that satisfies the
following conditions.

(1) dµ(x) = ω(x)dx, where ω is a locally integrable a.e. positive function
on Rn.

(2) µ is a doubling measure, i.e., there exists a constant Cµ such that for
every x ∈ Rn and 0 < r <∞ we have µ(B(x, 2r)) ≤ Cµµ(B(x, r)).

(3) There exists a constant CI such that∫
B(x,r)

|ψ − ψB(x,r)|dµ ≤ CI r

(∫
B(x,r)

|∇ψ|pdµ

)1/p

for every ball B(x, r) and each ψ ∈ C∞(B(x, r)) ∩ L1(B(x, r), µ).
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Here and throughout, we set
∫
A
fdµ := 1

µ(A)

∫
A
fdµ. Condition (3) is often

called a (1, p)-Poincaré inequality. The above hypotheses imply the following
three conditions.

(A) If Ω is an open set in Rn and {ψj} ⊂ C∞(Ω) is such that
∫

Ω
|ψj |pdµ→

0 and
∫

Ω
|∇ψj−v|pdµ→ 0 as j →∞ with v a Borel measurable vector

field in Lp(Ω, µ), then v = 0 almost everywhere.
(B) There exist constants χ = χ(CI, Cµ) > 1 and CII = CII(CI, Cµ) such

that(∫
B(x,r)

|ψ|χpdµ

)1/χp

≤ CII r

(∫
B(x,r)

|∇ψ|pdµ

)1/p

for every ball B(x, r) and every ψ ∈ C∞c (B(x, r)).
(C) There exists a constant CIII = CIII(CI, Cµ) such that∫

B(x,r)

|ψ − ψB(x,r)|pdµ ≤ CIII r
p

∫
B(x,r)

|∇ψ|pdµ

for every ball B(x, r) and every ψ ∈ C∞(B(x, r)) ∩ L1(B(x, r), µ).

Haj lasz, Koskela and Franchi showed (A) in Theorem 10 of [FHK99] under
much more general conditions. Heinonen and Koskela showed (C) in Lemma
5.15 of [HK98] (see also Theorem 4.18 of [Hei01]) in the context of geodesic
metric spaces. Haj lasz and Koskela showed (B) in Theorem 5.1 of [HK00],
also in a much more general setting than a manifold. We follow [HKM93] and
call a measure µ satisfying (1)–(3) above p-admissible. Hölder’s inequality
shows that if µ is p-admissible, then for all q > p, µ is q-admissible.

If µ is a p-admissible measure, for each open set Ω of Rn we can form
the Sobolev space H1,p(Ω, µ); see Chapter 1 of [HKM93] for its properties.
We also define H1,p

loc (µ) as the set of measurable functions f defined on all of
R
n such that for each bounded open set Ω the function f is an element of

H1,p(Ω, µ).
We say a function f ∈ H1,p

loc (µ) is A-harmonic if it weakly satisfies the
equation

div(A(x,∇f)) = 0,

i.e., if for each φ ∈ C∞c (Rn) we have∫
Rn

〈A(x,∇f),∇φ〉 dx = 0 ,

where A : Rn × Rn → R
n satisfies the following conditions.

(1) A is Borel.
(2) For a.e. x ∈ Rn, the mapping v→ A(x,v) is continuous.
(3) There exists Ci > 0 such that |A(x,v)| ≤ Ci |v|p−1 ω(x).
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(4) If λ 6= 0, then for a.e. x ∈ Rn and v ∈ Rn we have

A(x, λv) = λ|λ|p−2A(x,v) .

(5) There exists Cii > 0 such that for a.e. x and for all v in Rn we have

〈A(x,v),v〉 ≥ Cii|v|pω(x) .

(6) For a.e. x in Rn and every v and w in Rn with v 6= w we have

〈A(x,v)−A(x,w),v −w〉 > 0 .

We will write CA to represent the constants Ci and Cii. We will call A p-
acceptable with constants Ci and Cii under µ whenever it satisfies conditions
(1)–(6) above. For each 1 < p < ∞, Ap(x,v) := |v|p−2v is p-acceptable
under the Lebesgue measure. Functions which are Ap-harmonic are called
p-harmonic functions.

The following can be found in Chapters 3 and 6 of [HKM93].

Proposition 2.1. Let f : Rn → R be A-harmonic. Then the following
hold.

(1) The function f has a continuous representative.
(2) There exist constants α = α(Cµ, CI, CA) > 0 and C = C(Cµ, CI, CA)

> 0 such that for each x ∈ Rn and 0 < r < R <∞ we have

osc
B(x,r)

f ≤ C(r/R)α osc
B(x,R)

f .

(3) There exists a constant C = C(Cµ, CI, CA) such that

rp
∫

B(x,r)

|∇f |pdµ ≤ C
∫

B(x,2r)

|f |pdµ

for each r > 0 and x in Rn.
(4) For each 0 < q < ∞ and each τ > 1 there exists a constant C =

C(Cµ, CI, CA, τ, q) such that

sup
B(x,r)

|f | ≤ C

(∫
B(x,τr)

|f |qdµ

)1/q

for each r > 0 and x in Rn.

When we refer to an A-harmonic function we will always refer to the point-
wise defined continuous representative of f .

Remark 2.2. Using the Arzela-Ascoli theorem, properties (2) and (4)
immediately imply that if {fn} is a sequence of A-harmonic functions that
converges to a function f in L1

loc(µ), then this sequence also converges to f
in Lqloc(µ) for every 1 ≤ q ≤ ∞. Moreover, Theorem 6.13 of [HKM93] shows
that the convergence in L∞loc(µ) implies that f is also A-harmonic. Hence a
set S of A-harmonic functions is closed in Lqloc(µ) for some 1 ≤ q ≤ ∞ if and
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only if it is closed in Lsloc(µ) for each 1 ≤ s ≤ ∞. Property (4) implies that if
S is a set of A-harmonic functions, then S is bounded in L1

loc(µ) if and only
if S is bounded in Lqloc(µ) for every 1 ≤ q ≤ ∞. Additionally, property (3)
implies that S is bounded in H1,p

loc (µ) if and only if S is bounded in Lploc(µ).
Moreover, the Arzela-Ascoli theorem also gives the following result.

Proposition 2.3. Let {fn} be a sequence of A-harmonic functions that
is bounded in Lqloc(µ) for some 1 ≤ q ≤ ∞. Then there exists a subsequence
that converges in Lrloc(µ) for every 1 ≤ r ≤ ∞ to an A-harmonic function f .

3. Norms

Definition 3.1. We call a non-decreasing continuous function h : [1,∞)→
(0,∞) with

∫∞
1

1
h(t)dt <∞ a growth condition.

Definition 3.2. Let h, k : [1,∞)→ (0,∞) be growth conditions. We say
k dominates h if

lim
t→∞

h(t)
k(t)

= 0 .

Definition 3.3. Let h : [1,∞) → (0,∞) be a growth condition, 1 ≤
q, r <∞, and f ∈ Lqloc(µ). Set

‖f‖(q,r,h) :=

∫ ∞
1

1
h(t)

(∫
B(0,t)

|f |qdµ

)r/q
dt

1/r

and

‖f‖(∞,r,h) :=
(∫ ∞

1

1
h(t)

(
ess supB(0,t) |f |

)r
dt

)1/r

.

The following proposition can easily be proved by mimicking a common
proof of Minokowski’s inequality.

Proposition 3.4. Let h be a growth condition, let 1 ≤ r < ∞ and let
1 ≤ q ≤ ∞. Then on the set

L(q,r,h)(µ) := {f ∈ Lqloc(µ) | ‖f‖(q,r,h) <∞},

‖ · ‖(q,r,h) is a norm.

Proposition 3.5. Let h be a growth condition, 1 ≤ q ≤ ∞ and 1 ≤ r <
∞. We then have the following for each sequence {fj} ⊂ L(q,r,h)(µ).

(1) If f ∈ L(q,r,h)(µ) with limj→∞ ‖f − fj‖(q,r,h) = 0, then fj → f in
Lqloc(µ).

(2) If fj → f in Lqloc(µ), then ‖f‖(q,r,h) ≤ lim infj→∞ ‖fj‖(q,r,h).
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(3) If k is another growth condition with k ≥ Ch for some constant C,
then L(q,r,h)(µ) ⊂ L(q,r,k)(µ) and ‖ · ‖(q,r,k) ≤ C ′‖ · ‖(q,r,h) with C ′ =
C ′(C, r).

(4) If S ⊂ L(q,r,h)(µ) is bounded in L(q,r,h)(µ), then S is bounded in
Lqloc(µ).

(5) If fj → f in Lqloc(µ) and supj ‖fj‖(q,r,h) < ∞ and if k is another
growth condition that dominates h, then limj→∞ ‖f − fj‖(q,r,k) = 0.

Proof. Items (1), (3) and (4) are immediate consequences of the definition.
Item (2) follows from Fatou’s lemma. To prove item (5), note that by items
(2) and (3) we have f ∈ L(q,r,h)(µ) ⊂ L(q,r,k)(µ) with ‖f‖(q,r,h) ≤ M , where
M = supj ‖fj‖(q,r,h). Now, for each m > 1 we have

lim
j→∞

‖f − fj‖r(q,r,k) = lim
j→∞

∫ ∞
1

1
k(t)

(∫
B(0,t)

|f − fj |qdµ

)r/q
dt

= lim
j→∞

∫ m

1

1
k(t)

(∫
B(0,t)

|f − fj |qdµ

)r/q
dt

+ lim
j→∞

∫ ∞
m

1
k(t)

(∫
B(0,t)

|f − fj |qdµ

)r/q
dt

≤ 0 + sup
t≥m

h(t)
k(t)

lim
j→∞

‖f − fj‖r(q,r,h)

≤ (2M)r sup
t≥m

h(t)
k(t)

,

which goes to zero as m→∞. �

Proposition 3.6. For each growth condition h, each 1 ≤ q ≤ ∞ and each
1 ≤ r <∞, the normed space L(q,r,h)(µ) is a Banach space.

Proof. Since L(q,r,h)(µ) is a normed space, we only need to show that if
{fn} ⊂ L(q,r,h)(µ) is a sequence such that

∑∞
n=1 ‖fn‖(q,r,h) ≤ N < ∞, then

there exists an f ∈ L(q,r,h)(µ) such that limn→∞ ‖f − Sn‖(q,r,h) = 0, where
Sn =

∑n
k=1 fk. Let Tn =

∑n
k=1 |fk|. Then for each n, ‖Tn‖(q,r,h) ≤ N .

Hence {Tn} is bounded in L(q,r,h)(µ). Applying Proposition 3.5(4) yields that
for every R > 0, {Tn} is bounded in Lq(B(0, R), µ). Since Tn =

∑n
k=1 |fk|,

and for each ball B(0, R), Lq(B(0, R), µ) is a Banach space, there exists f (R)

such that Sn → f (R) in Lq(B(0, R), µ). Since limits are unique, we have
f (R) = f (r) almost everywhere on B(0, r) whenever r < R. Hence we can
define f to be equal to fR on B(0, R). We have that Sn → f in Lqloc(µ).
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Thus, by Proposition 3.5(2),

‖f‖(q,r,h) ≤ lim inf
n→∞

‖Sn‖(q,r,h)

≤ lim inf
n→∞

‖Tn‖(q,r,h) ≤ N .

Hence, f ∈ L(q,r,h)(µ). Also, for almost every y, we have f(y) =
∑∞
n=1 fn(y).

Using that
∞∑
k=1

‖fk‖(q,r,h) ≤ N <∞ ,

we have

lim
n→∞

‖f − Sn‖(q,r,h) = lim
n→∞

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=1

fk −
n∑
k=1

fk

∣∣∣∣∣
∣∣∣∣∣
(q,r,h)

≤ lim
n→∞

∞∑
k=n+1

‖fk‖(q,r,h) = 0 . �

We are now ready to prove our first main theorem.

Theorem 3.7. Let S ⊂ L(q,r,h)(µ), with h a growth condition, 1 ≤ q ≤ ∞
and 1 ≤ r < ∞, be a family of A-harmonic functions that is closed in
Lqloc(µ). Then for every growth function k that dominates h there exists a
set G(q,h),(q,k) ⊂ S which is locally compact in L(q,r,k)(µ), open and dense
in S under the topology of L(q,r,k)(µ). Also, if k2 is another growth func-
tion that dominates k, then G(q,h),(q,k2) ⊂ G(q,h),(q,k) and the topologies of
L(q,r,k)(µ) and L(q,r,k2)(µ) agree on G(q,h),(q,k2). Moreover, the set G(q,h),(q,k)

is canonically defined by q, r, h and k.

Proof. Let

Ḡ(q,h),(q,k) =
{
f ∈ S | ∃R > 0,∃δ > 0 s.t.

Cl(q,r,k)(BS
(q,r,h)(0, R)) ⊇ BS

(q,r,k)(f, δ)
}

and

G(q,h),(q,k) =
{
f ∈ S | ∃R > 0,∃δ > 0 s.t.

BS
(q,r,h)(0, R) ⊇ BS

(q,r,k)(f, δ)
}
,

where, for a growth function l,

BS
(q,r,l)(f, δ) = {g ∈ S | ‖f − g‖(q,r,l) < δ}
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and for every T ⊆ S,

Cl(q,r,k)(T ) = Closure of T under ‖ � ‖(q,r,k) .

We define
B
S

(q,r,k)(f, s) = {g ∈ S | ‖f − g‖(q,r,k) ≤ s}

and define B
S

(q,r,h)(f, s) similarly. Because S is closed in Lqloc(µ) and conver-
gence in ‖ � ‖(q,r,k) implies convergence in Lqloc(µ) for sequences, we have that
for every subset T of S, Cl(q,r,k)(T ) ⊆ S. We first claim that Ḡ(q,h),(q,k) =
G(q,h),(q,k). Clearly,

Cl(q,r,k)(BS
(q,r,h)(0, R)) ⊇ BS

(q,r,h)(0, R),

which implies that G(q,h),(q,k) ⊆ Ḡ(q,h),(q,k). For the other set inclusion,
note that by Proposition 3.5(2), ‖g‖(q,r,h) ≤ lim infn→∞ ‖gn‖(q,r,h) whenever
{gn}∞n=1 is a sequence in Lqloc(µ) that converges to g in Lqloc(µ). Hence

Cl(q,r,k)(BS
(q,r,h)(0, R)) ⊆ B

S

(q,r,h)(0, R) ⊂ BS
(q,r,h)(0, R+ 1),

which implies that G(q,h),(q,k) ⊇ Ḡ(q,h),(q,k). We will now show that G(q,h),(q,k)

is a relatively open subset of S in the topology generated by L(q,r,k)(µ). For
each f ∈ G(q,h),(q,k), there exists an R > 0 and a δ > 0 such that

BS
(q,r,h)(0, R) ⊇ BS

(q,r,k)(f, δ) .

Let g ∈ BS
(q,r,k)(f, δ/2). We then have

BS
(q,r,h)(0, R) ⊇ BS

(q,r,k)(f, δ) ⊇ BS
(q,r,k)(g, δ/2) .

We conclude that BS
(q,r,k)(f, δ/2) ⊆ G(q,h),(q,k).

We will now show that G(q,h),(q,k) is locally compact in L(q,r,k)(µ). Indeed,
fix an f ∈ G(q,h),(q,k) and let R > 0 and δ > 0 be as in the definition of

G(q,h),(q,k). It suffices to show that B
S

(q,r,k)(f, δ/2) is compact in L(q,r,k)(µ).

Let {fn}∞n=1 ⊂ B
S

(q,r,k)(f, δ/2). Then for all n, ‖fn‖(q,r,h) ≤ R. Hence by
Proposition 3.5(4) the sequence is bounded in Lqloc(µ). Applying Proposition
2.3 creates a subsequence {fnm} that converges in Lqloc(µ) to a function g.
Moreover, g will be in S because S is closed in Lqloc(µ). We have that for
all m, ‖fnm‖(q,r,h) ≤ R, and k dominates h. Applying Proposition 3.5(5)
we conclude that fnm → g in ‖ � ‖(q,r,k) and ‖f − g‖(q,r,k) ≤ δ/2. Hence

g ∈ B
S

(q,r,k)(f, δ/2).
In the proof that G(q,h),(q,k) is dense in S under the topology of L(q,r,k)(µ)

we will slightly mirror the proof of the Open Mapping Theorem by using
the Baire Category Theorem. Suppose G(q,h),(q,k) is not dense in S under
L(q,r,k)(µ). Then there exists an f ∈ S and δ > 0 such that BS

(q,r,k)(f, δ) ∩
G(q,h),(q,k) = ∅. Now, S is closed in Lqloc(µ) and hence in the Banach space
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L(q,r,k)(µ). Because S is closed in L(q,r,k)(µ) we have that B
S

(q,r,k)(f, δ/2) is
closed in the Banach space L(q,r,k)(µ) and hence complete under ‖ � ‖(q,r,k).
Since S ⊂ L(q,r,h)(µ), we have

B
S

(q,r,k)(f, δ/2) =
∞⋃
R=1

(
B
S

(q,r,k)(f, δ/2) ∩BS
(q,r,h)(0, R)

)
.(1)

Let AR = Cl(q,r,k)(BS
(q,r,h)(0, R)). Then by Baire Category Theorem there

exists an R ∈ N such that the set AR has non-empty relative interior as
a subset of B

S

(q,r,k)(f, δ/2) under ‖ � ‖(q,r,k). Hence there exists a function

g ∈ B
S

(q,r,k)(f, δ/2) and an ε > 0 such that

(2) Cl(q,r,k)(BS
(q,r,h)(0, R)) ⊃ BS

(q,r,k)(g, ε) ∩B
S

(q,r,k)(f, δ/2) .

Thus there exist η > 0 and g′ ∈ BS
(q,r,k)(f, δ/2) such that

(3) Cl(q,r,k)(BS
(q,r,h)(0, R)) ⊃ BS

(q,r,k)(g
′, η) .

Hence g′ ∈ Ḡ(q,h),(q,k) = G(q,h),(q,k), contradicting that g′ ∈ BS
(q,r,k)(f, δ/2)

and BS
(q,r,k)(f, δ) ∩G(q,h),(q,k) = ∅.

We now show that if k2 is a growth function that dominates k, then
G(q,h),(q,k2) ⊂ G(q,h),(q,k) and the topologies generated by ‖ � ‖(q,r,k) and
‖ � ‖(q,r,k2) on G(q,h),(q,k2) are identical. By Proposition 3.5(3) there exists
a constant C = C(k, k2) such that for every f and δ > 0,

BS
(q,r,k2)(f, δ) ⊃ BS

(q,r,k)(f, δ/C) .

Hence we immediately see that G(q,h),(q,k2) ⊂ G(q,h),(q,k). Also, by Proposition
3.5(3), if fn → f in ‖�‖(q,r,k), then fn → f in ‖�‖(q,r,k2). Conversely, if fn → f
in ‖ � ‖(q,r,k2) with f ∈ G(q,h),(q,k2), then fn → f in Lqloc(µ). We have that
f ∈ G(q,h),(q,k2). Hence there exist R > 0 and δ > 0 such that

(4) BS
(q,r,h)(0, R) ⊃ BS

(q,r,k2)(f, δ) .

Since fn → f in ‖ � ‖(q,r,k2), by (4) we may assume that for all n, fn ∈
BS

(q,r,k2)(f, δ). Thus for all n, ‖fn‖(q,r,h) ≤ R. Since k dominates h and
fn → f in Lqloc(µ), using Proposition 3.5(5) we conclude that fn → f in
‖ � ‖(q,r,k). �

The above theorem states that changing the growth condition k does not
affect the topology strongly. A similar result is true when we change q. How-
ever, care must be taken when changing q. For each τ ∈ R+ and each growth
condition h, we set hτ (t) = h(τt). Note that Proposition 2.1 gives the follow-
ing result.
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Proposition 3.8. Let f : Rn → R be A-harmonic. Then for each growth
condition h, each 1 ≤ r < ∞, each 1 ≤ q ≤ ∞ and each τ > 1 we have
‖f‖(∞,r,hτ ) ≤ C(CA, τ, r)‖f‖(q,r,h).

Theorem 3.9. Let S ⊂ L(q,r,h)(µ), with h a growth condition, 1 ≤ q ≤ ∞
and 1 ≤ r <∞, be a family of A-harmonic functions that is closed in Lqloc(µ).
Then for every growth function k that dominates hτ with τ > 1 and every
1 ≤ s ≤ ∞ there exists a set G(q,h),(s,k) ⊂ S which is locally compact in
L(q,r,k)(µ), open and dense in S under the topology of L(s,r,k)(µ). Also, if
s ≤ s2 ≤ ∞, then G(q,h),(s,k) ⊂ G(q,h),(s2,k) and the topologies of L(s,r,k)(µ)
and L(s2,r,k)(µ) agree on G(q,h),(s,k).

Proof. We only sketch the proof, as it closely mirrors the proof of Theorem
3.7. By Proposition 3.8 and Remark 2.2, we have that S ⊂ L(∞,r,hτ )(µ) and
S is closed in Luloc(µ) for all 1 ≤ u ≤ ∞. We set

G(q,h),(s,k) =
{
f ∈ S | ∃R > 0,∃δ > 0 s.t. BS

(q,r,h)(0, R) ⊇ BS
(s,r,k)(f, δ)

}
.

Using the same argument as for Theorem 3.7 and the fact that S is closed,
we obtain that G(q,h),(s,k) is relatively open and dense in S under ‖ � ‖(s,r,k).
To see that G(q,h),(s,k) is locally compact in ‖ � ‖(s,r,k), let f ∈ G(q,h),(s,k) and
let R > 0 and δ > 0 be as in the definition of G(q,h),(s,k). We will show
that BS

(s,r,k)(f, δ/2) is pre-compact. Indeed, let {fn}∞n=1 be any sequence in
BS

(s,r,k)(f, δ/2). Then for all n we have, by Proposition 3.8,

(5) ‖fn‖(s,r,hτ ) ≤ ‖fn‖(∞,r,hτ ) ≤ C‖fn‖(q,r,h) ≤ CR .

Hence the sequence is bounded in Lsloc(µ). As before, apply Proposition 2.3
to extract a subsequence that converges is Lsloc(µ). By (5), this subsequence
is bounded in ‖ � ‖(s,r,hτ ), and because k dominates hτ , Proposition 3.5(5)
implies that it converges in ‖ � ‖(s,r,k), as needed.

That G(q,h),(s,k) ⊂ G(q,h),(s2,k) follows directly from the inequality

(6) ‖ � ‖(s,r,k) ≤ ‖ � ‖(s2,r,k),

which follows from Hölder’s inequality. To show that the topologies are equiv-
alent, note that by (6) the topology generated by ‖ �‖(s,r,k) is coarser than the
topology generated by ‖ � ‖(s2,r,k). For the other inclusion, let fn → f under
‖ � ‖(s,r,k) with f ∈ G(q,h),(s,k). As before, we may assume that there exists
R > 0 such that for all n, ‖fn‖(q,r,h) ≤ R. Applying (5), we have for all n
that ‖fn‖(s2,r,hτ ) ≤ CR. Since fn → f in ‖ �‖(s,r,k), we also have that fn → f
in Lsloc(µ), and applying Remark 2.2 yields that fn → f in Ls2loc(µ). Using the
assumption that k dominates hτ and applying Proposition 3.5(5) gives that
fn → f in ‖ � ‖(s2,r,k). �
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Remark 3.10. Although we have presented our results in Rn, the only
really necessary tools for the proof are the inequalities of Proposition 2.1.
The proofs presented in [HKM93] can be adapted to the manifold setting
or beyond with great ease, as they do not use the specific properties of Rn.
Rather, these proofs require only that the measure satisfies a (1, p)-Poincaré
inequality and that it is doubling.

4. p-harmonic functions in the plane

Here we extend the fact that the space of all harmonic functions on the
plane with growth of order at most d is finite dimensional to the space of
p-harmonic functions. Our key technique is a result of Iwaniec and Manfredi
found in [IM89] stating that the complex derivative of p-harmonic function is
a quasiregular mapping. We combine this result with one found in [HK95] and
[Väi72] to show that if a sequence of p-harmonic functions, all with polynomial
growth of order bounded by a fixed number d, converges locally uniformly,
then the limit function also satisfies a bound on its growth. We now begin to
describe the details, which involve the theory of quasiregular mappings. We
refer the reader to the monograph by Rickman [Ric93].

We use the notation of [Ric93, Chapter 1]: For an open discrete continuous
mapping f : Rn → R

n, Bf refers to the branch set of f , #S refers to the
cardinality of a set S. We define N(y, f, U) as the cardinality of f−1(y)∩U and
set N(f, U) := supy∈U N(y, f, U). We say a point y ∈ Rn is (U, f)-admissible
if y /∈ f(∂U), and in this case we denote the local degree by µ(y, f, U).

Proposition 4.1. Let {fj} be a sequence that converges locally uniformly
in Rn to a function f with each fj K-quasiregular and N(fj ,Rn) ≤ m. Then
either f is a constant or N(f,Rn) ≤ m.

Proof. Since each fn is K-quasiregular, f is also K-quasiregular. If f is
a constant, then we are done. Otherwise f is a continuous, open, discrete
mapping. Let S = f(Bf )∪

⋃∞
j=1 fj(Bfj ). Then S has Lebesgue measure zero.

Thus T = R
n − S has full measure and hence is dense. We first show that

for y ∈ T , N(y, f,Rn) ≤ m. Indeed, suppose there exists a y in T so that
N(y, f,Rn) ≥ m + 1. Then there exist at least m + 1 distinct points in Rn,
{xi}m+1

i=1 such that f(xi) = y. Now, f is discrete and open. Hence there exists
an R > 0 and an ε > 0 such that for all i, |xi| < R and

(7) f−1(y) ∩B(0, R+ ε) ⊂ B(0, R− ε) .

Note that (7) implies that dist(y, f(∂BR)) > 0. Now, fj → f locally uniformly
in Rn. Hence there exists a j such that

(8) sup
B(0,2R+2ε)

|f − fj | <
1
10

dist(y, f(∂BR)),
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which implies that y is (fj ,B(0, R))-admissible. Since y /∈ fj(Bfj ), apply-
ing [Ric93, I.4.10] we conclude that N(y, fj ,B(0, R)) = µ(y, fj ,B(0, R)). Let
ht(x) = tf(x) + (1− t)fj(x). Then h1 = f , h0 = fj and ht maps f homotopi-
cally to fj . Also, by (7) and (8), y /∈ ht(∂B(0, R)) for each 0 ≤ t ≤ 1. We
thus have

m+ 1 ≤ N(y, f,B(0, R)) ≤ µ(y, f,B(0, R))

= µ(y, fj ,B(0, R)) = N(y, fj ,B(0, R)) ≤ m,

a contradiction. Hence for y /∈ f(Bf ) ∪
⋃∞
j=1 fj(Bfj ), N(y, f,Rn) ≤ m. For

y /∈ T , suppose that #f−1(y) ≥ m + 1. As before, let R > 0 be such that
#f−1(y)∩B(0, R) ≥ m+1 and f−1(y)∩∂B(0, R) = ∅. Since #f−1(y) ≥ m+1,
we can use [Ric93, I.4.10] to conclude that m+ 1 ≤ µ(y, f,B(0, R)). Now, f
is quasiregular. Hence f(∂B(0, R)) has Lebesgue n-measure zero. Let U be
the component of Rn − f(∂B(0, R)) containing y. As T and the complement
of f(∂B(0, R)) have full measure, we know there exists an element y′ ∈ U ∩T
that is not an element of f(∂B(0, R)). Hence y′ is (f,B(0, R)) admissible.
The preceding argument showed that µ(y′, f,B(0, R)) ≤ m. Since y and y′

are both in the same component of Rn − f(∂B(0, R)), [Ric93, I.4.4] implies
that

m+ 1 ≤ µ(y, f,B(0, R)) = µ(y′, f,B(0, R)) ≤ m,
a contradiction. Hence, for all y, N(y, f,Rn) ≤ m. �

We now quote and paraphrase a portion of Theorem 1.5 of [HK95]. Actu-
ally, Koskela and Heinonen show quite more than the following, but this is all
that we need here. Additionally, the first implication of the following theorem
was first shown by Väisälä; see [Väi72].

Theorem 4.2. Let f : Rn → R
n be a non-constant K-quasiregular map-

ping. If there exist constants C > 0 and d > 0 such that |f(x)| ≤ C(1 + |x|d),
then N(f,Rn) ≤ m = m(n,K, d). Also, if N(f,Rn) < ∞, then there exist
constants C > 0 and d = d(n,K,N(f,Rn)) such that |f(x)| ≤ C(1 + |x|d).

Combining Theorem 4.2 and Proposition 4.1 gives the following result.

Corollary 4.3. Let {fn} be a sequence of K-quasiregular mappings of
R
n with polynomial growth of order at most d that converges locally uniformly

to a function f . Then f is a K-quasiregular mapping with polynomial growth
of order at most D = D(d,K, n).

We also need the following result, which was also first proved by Reshet-
nyak; we cite [HKM93, pp. 269–273] for the proof.

Theorem 4.4. Let f : Rn → R
n be K-quasiregular. Then each of the

coordinate functions of f is Af -harmonic for some n-acceptable family Af
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under the Lebesgue n-measure, with CAf depending only on K and n. In
particular, if {fj} is a sequence of K-quasiregular mappings that converge to
a mapping f in Lqloc(Rn;Rn) for some 1 ≤ q ≤ ∞, then it also converges to f
in Lsloc(Rn;Rn) for each 1 ≤ s ≤ ∞.

One can easily adapt the norms and proofs of Theorems 3.7 and 3.9 to
obtain the following result.

Corollary 4.5. Let Q(K,n,m) be the set of all K-quasiregular mappings
f : Rn → R

n with f constant or N(f,Rn) ≤ m. Then for each 1 ≤ q ≤ ∞
there exists a family of Banach spaces, each a subset of Lqloc(Rn;Rn), for
which Q(K,n,m) is a closed subset, such that under each of these Banach
spaces there exists a relatively dense open subset of Q(K,n,m) which is locally
compact. Moreover, the topology generated by each of these Banach spaces is
stronger than the topology generated by Lqloc(Rn;Rn).

The following Caccioppoli estimate shows that a sequence of p-harmonic
functions converges in Lploc(Rn) if and only if it converges in W 1,p

loc (Rn).

Proposition 4.6. Let f and g be p-harmonic functions defined on an
open set Ω. Then for each ψ ∈ C∞c (Ω) we have for p ≥ 2,∫

Ω

|ψ|p|∇f−∇g|pdx ≤ C(p)
(∫

Ω

|∇ψ|p|f − g|pdx
)1/p

×
(∫

Ω

|ψ|p|∇f |pdx+
∫

Ω

|ψ|p|∇g|pdx
) p−1

p

,

and for 1 < p < 2,∫
Ω

|ψ|p|∇f−∇g|pdx ≤ C(p)
(∫

Ω

|∇ψ|p|f − g|pdx
)1/2

×
(∫

Ω

|ψ|p|∇f |pdx+
∫

Ω

|ψ|p|∇g|pdx
)1/2

.

Proof. Note that for Ap(x,v) := |v|p−2v we have

(9) 〈A(x,v)−A(x,w),v −w〉 ≥ 1
C(p)

(|v|+ |w|)p−2|v −w|2 .

Let h = |ψ|p(f − g). Then h ∈W 1,p
0 (Ω). Hence,

0 =
∫

Ω

〈A(x,∇f),∇h〉 dx =
∫

Ω

〈A(x,∇g),∇h〉 dx

and by calculation,

∇h = pψ|ψ|p−2(f − g)∇ψ + |ψ|p(∇f −∇g),



84 K. ROGOVIN

Hence,∫
Ω

〈A(x,∇f)−A(x,∇g), |ψ|p(∇f −∇g)〉 dx

= −
∫

Ω

〈
A(x,∇f)−A(x,∇g), pψ(f − g)|ψ|p−2∇ψ

〉
dx.

Taking absolute values, and applying Hölder’s inequality yields∫
Ω

〈
A(x,∇f)−A(x,∇g), |ψ|p(∇f −∇g)

〉
dx

≤ C(p)
∫

Ω

|ψ|p−1|f − g| |∇ψ| |A(x,∇f)−A(x,∇g)| dx

≤ C(p)
∫

Ω

|ψ|p−1|f − g| |∇ψ| (|∇f |p−1 + |∇g|p−1) dx

≤ C(p)
(∫

Ω

|∇ψ|p|f − g|pdx
)1/p

×
(∫

Ω

|ψ|p|∇f |pdx+
∫

Ω

|ψ|p|∇g|pdx
) p−1

p

.

For p ≥ 2 we have by using (9)∫
Ω

|ψ|p|∇f −∇g|pdx

≤ C(p)
∫

Ω

|ψ|p 〈A(x,∇f)−A(x,∇g),∇f −∇g〉 dx

≤ C(p)
(∫

Ω

|∇ψ|p|f − g|pdx
)1/p

×
(∫

Ω

|ψ|p|∇f |pdx+
∫

Ω

|ψ|p|∇g|pdx
) p−1

p

and for 1 < p < 2, letting q = 2/p > 1, we have, again by using (9),∫
Ω

|ψ|p|∇f −∇g|pdx

=
∫

Ω

|ψ|p|∇f −∇g|p(|∇f |+ |∇g|)
p−2
q (|∇f |+ |∇g|)

2−p
q dx

≤
(∫

Ω

|ψ|p|∇f −∇g|2(|∇f |+ |∇g|)p−2dx

)p/2
×
(∫

Ω

|ψ|p(|∇f |+ |∇g|)pdx
) 2−p

2
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≤ C(p)
(∫

Ω

〈A(x,∇f)−A(x,∇g), |ψ|p(∇f −∇g)〉 dx
)p/2

×
(∫

Ω

|ψ|p(|∇f |+ |∇g|)pdx
) 2−p

2

≤ C(p)
(∫

Ω

|∇ψ|p|f − g|pdx
)1/2

×
(∫

Ω

|ψ|p|∇f |pdx+
∫

Ω

|ψ|p|∇g|pdx
) p−1

2

×
(∫

Ω

|ψ|p(|∇f |+ |∇g|)pdx
) 2−p

2

≤ C(p)
(∫

Ω

|∇ψ|p|f − g|pdx
)1/2

×
(∫

Ω

|ψ|p|∇f |pdx+
∫

Ω

|ψ|p|∇g|pdx
)1/2

. �

We now quote a remarkable result stated in [IM89, p. 4].

Theorem 4.7. Let u : R2 → R be a p-harmonic function. Then f = ∂u
∂z :

R
2 → R

2 is K-quasiregular with K ≤ max(p− 1, 1/(p− 1)). Here,

∂u

∂z
:=
(

1
2
∂u

∂x
,−1

2
∂u

∂y

)
.

We are now ready to prove that for each d > 0 the set of all p-harmonic
functions on R2 with growth of order at most d is essentially small. We let
Td(p) be the set of all p-harmonic functions defined on the plane with growth
of order at most d. We also define Sd(p) as the closure of Td(p) in Lploc(R2).

Proposition 4.8. For each d > 0 there exists m = m(d, p) such that
Sd(p) ⊂ Tm(p).

Proof. Let {uj} be a sequence in Td(p) that converges in Lploc(R2) to a
function u. Then, by Remark 2.2, Proposition 2.3, and Proposition 4.6, u
is also p-harmonic and uj → u in W 1,p

loc (R2). Let fj = ∂uj
∂z and f = ∂u

∂z .
Then fj → f in Lploc(R2;R2). Moreover, by Theorem 4.7, for each j, fj is K-
quasiregular with K ≤ max(p−1, 1/(p− 1)). Hence, by Theorem 4.4, fj → f
locally uniformly and f is also K-quasiregular. Now, for each j and r > 0 we
have

rp
∫

B(0,r)

|∇uj |pdx ≤ C
∫

B(0,2r)

|uj |pdx .
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Hence, for each j and r > 0 we have∫
B(0,r)

|fj |pdx ≤ Cr−p
∫

B(0,2r)

|uj |pdx ≤ C(1 + r(d−1)p+2)

with C = C(p, uj). Now each fj is K-quasiregular. Thus, by Theorem 4.4, for
each j, the coordinate functions of fj are Aj-harmonic for some 2-acceptable
family Aj with CAj = C(K). Applying Proposition 2.1(4) yields for each j
and r > 0,

sup
B(0,r)

|fj | ≤ C

(∫
B(0,2r)

|fj |p
)1/p

≤ C(1 + rd−1)

with C = C(fj , p). Hence, by Theorem 4.3, there exists N = N(d, p) such
that f has polynomial growth of order at most N . Now, |∇u(x)| = 2|f(x)|.
Hence |∇u(x)| also has polynomial growth of order at most N . Integration
gives that |u(x)| ≤ C(1 + |x|m), where m = m(d, p). Hence u ∈ Tm(p), as
needed. �

Proposition 4.8 and Theorem 3.7 give our main result.

Theorem 4.9. Let Sd(p) be the closure in Lploc(R2) of all p-harmonic
functions defined on the plane with polynomial growth of order at most d.
Then there exists a family of Banach spaces, each a subset of Lploc(R2), for
which Sd(p) is a closed subset, such that under each of these Banach spaces
there exists a relatively dense open set of S which is locally compact.
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