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WEIGHTED POINCARE INEQUALITIES FOR SOLUTIONS
TO A-HARMONIC EQUATIONS

SHUSEN DING AND CRAIG A. NOLDER

ABSTRACT. We first prove a local A,-weighted Poincaré inequality for
solutions to A-harmonic equations of the form d*A(z,dw) = B(z,dw).
Then, as an application of this local result, we prove a global A,-
weighted Poincaré inequality for functions that are solutions to such
equations in John domains.

1. Introduction

Poincaré inequalities are now ubiquitous in analysis. We mention only [9],
[2], and especially [3] for geometric applications of these inequalities.

In contrast, we show here that, for certain A-harmonic tensors, a weak
local Poincaré inequality holds in R™ for all positive exponents. This borrows
results from [4], [5], [7] and [8].

Using this result we obtain a global weighted Poincaré inequality for A-
harmonic functions in John domains for all positive exponents.

Throughout this paper we assume 2 is a connected open subset of R™. Let

€1,€s,...,e, denote the standard unit basis of R®. For [ = 0,1,...,n, the
linear space of [-vectors, spanned by the exterior products e = e;; Ae;, A
-+ Aey,, corresponding to all ordered I-tuples I = (i1, 42,...,4;), 1 <i3 <ig <

--- < i; < n, is denoted by Al = AI(R™). The Grassman algebra A = @A! is
a graded algebra with respect to the exterior products. For a = 3" afe;r € A
and 3 = Y. pBTe; € A, the inner product in A is given by (a, 3) = Y. al3!,
where the summation is over all I-tuples I = (i1,42,...,4;) and all integers
Il =0,1,...,n. We define the Hodge star operator x: A — A by the rule
*1l=ejAeaA---Nep and aAxf = fA*xa = («a, B)(x1) for all , 8 € A. Hence
the norm of a € A is given by the formula |a|? = (o, a) = x(aAxa) € A =R.
The Hodge star is an isometric isomorphism on A with x: Al — A"t and
xok (=)D AL AL
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Let 0 < p < co. We denote the weighted LP-norm of a measurable function

f over E by
, p 1/p
s = ([ 17 Putalas)

A differential [-form w on € is a Schwartz distribution on {2 with values in
ALR™). We denote the space of differential I-forms by D’(Q, Al). We write
LP(Q,A!) for the I-forms w(z) = Y, wr(z)drr = > wiriy. i (@)dxi, A dziy A
<o+ ANdwy, with wy € LP(Q,R) for all ordered I-tuples I. Thus LP(Q, Al) is a
Banach space with norm

[wllp, 5 = (/E Iw(x)l”d$>l/p= /E (212 Iwz(%)l2>p/2 da

Similarly, VVp1 (Q,A!) is the space of those differential I-forms on € whose
coefficients are in W, (Q,R). The notations W;lOC(Q,R) and W;lOC(Q,/\l)
are self-explanatory. We denote by d: D'(Q,Al) — D'(, A1) the exterior
derivative for I = 0,1,...,n. Its formal adjoint operator d*: D'(Q, AI*1) —
D'(Q, Al) is given by d* = (—1)™*+! xdx on D'(Q, A, 1 =0,1,...,n.

We consider here solutions to the equation

(1.1) d*A(z,dw) = B(z, dw),

1/p

where A: Q x AL(R™) — Al(R™) satisfies the conditions
(1.2) Az, )] < al¢P, (A(2,€),€) > [€]F and |B(z, €)| < blgfP~

for almost every x €  and all £ € A/(R"). Here a > 0 is a constant and
1 < p < oo is a fixed exponent associated with (1.1). Henceforth, p will
denote this exponent. A solution to (1.1) is an element of the Sobolev space
Wl (9, A'=1) such that

p,loc

/Q<A(x, dw), d) + (B(z,dw), ) = 0

for all o € W1

p,sloc

(€, Al=1) with compact support.

DEFINITION 1.3. We call v an A-harmonic tensor in  if u satisfies the
A-harmonic equation (1.1) in .

ExAMPLE 1.4.  We call u a p-harmonic function if u satisfies the p-harmonic
equation

div(Vu|Vu|P™2) = 0
with p > 1.
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2. The local weighted Poincaré inequality

For a measurable set E C R"™ we write |E| for the n dimensional Lebesgue
measure of E. Throughout ¢ C R" is a cube and ¢@, ¢ > 0, denotes the
cube with the same center as @ and volume |cQ| = ¢™|Q)|.

DEFINITION 2.1. Let 7 > 1. We say that the weight w(z) € L{ _(R™)
satisfies the A, condition, and write w € A,, if w(x) > 0 a.e. and

1 1 1\ O
sup (—/ wdx) —/ (—) dx < o0
Q Q| Q Q| Q \w
for all Q@ C R”™.

See [1] and [2] for the basic properties of A,-weights.
We also need the following lemma, which is a reverse Holder inequality [1].

LEMMA 2.2. Ifw € A,, then there exist constants 3 > 1 and C, indepen-
dent of w, such that
lwlls.q < ClRIYP|lw 1o
for all Q@ C R™.

The following Lemma 2.3 appears in [8].

LEMMA 2.3. Let u be an A-harmonic tensor in Q, o > 1, and 0 < s,t <
00. Then there exists a constant C, independent of u, such that
lulls,e < CIRI™*!|ullr.0q
for all Q with cQ C Q.
Lemma 2.4 contains the classical Poincaré inequality as well as a general-

ization to differential forms given in [4]. When w is a function, we denote its
average value over ) by

wo = IQI/Qw(y) dy.

Otherwise wg is the exterior derivative of a suitable transform of w and plays
the role of average value in the Poincaré inequality; see [4].

LEMMA 2.4. Letu € D'(Q,A') and du € LY(Q,AN"FY). Then u — ug is in
WHQ, A" with 1 < g < oo and

lu—uglle.e < Cn,@)| Q™| dullq.q
for@Q@ inR", 1=0,1,...,n.

We next state a Caccioppoli-type inequality. For this result see [8] and [7].
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LEMMA 2.5. Let u be a solution to (1.1) in 2 and let o > 1. There exists
a constant C, depending only on a, b, p and n, such that

(2.6) dullp,e < CIQI™"|[ullp.rq
for all Q with c@Q C Q.

We also need the following result from [5].

LEMMA 2.7. Suppose that [v| € L{ (), 0 > 1, and 0 < t < s. If there
exists a constant A such that

(2.8) olls, < AIQI“/* [[u]le,2q

for all cubes Q with 2QQ C Q, then for all r > 0 there exists a constant B,
depending only on o, n, s, t, r and A, such that

lolls. < BIQI" ™" [vll:00
for all Q with c@Q C Q.

LEMMA 2.9. Suppose that u is a solution to (1.1), ¢ > 1, and ¢ > 0.
There exists a constant C, depending only on o, n, p, a, b and q, such that

(2.10) ldullpq < CIQI“™P/P | dully,0q
for all Q with c@Q C Q.

Proof. By Lemmas 2.5, 2.3 and 2.4 with p’ = (p+1)/2,
[[dul

pQ = 01|Q|1/n||u — uoQllp, o0
< Co|QIP PP U — ol o
< G| Q|7 PP | dully o

Thus du satisfies the reverse Holder inequality (2.8), and (2.10) follows from
Lemma 2.7. g

We also require a result from [7].

LEMMA 2.11.  There exists a constant C, depending only on n and q, such
that

[v="2qllq.@ < Cllv——cllgq
for allv € LY(Q,A) and all ¢ € D'(Q, ) with dc = 0. Here 1 < ¢ < 0o and

vQ 15 the average value of v over Q) or the exterior derivative of a suitable
transform of v.

We now have the following local weighted Poincaré inequality for A-har-
monic tensors.
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THEOREM 2.12.  Let u € D'(Q, Al) be an A-harmonic tensor in a domain
QCR”, and du € L*(Q AT, 1 =0,1,...,n. Assume that o > 1,0 < s <
00, and w € A, for somer > 1. Then

(2.13) lu = uglls.Quw < CIQIM"dulls.0q.uw

for all cubes Q with c@Q C 2. Here C is a constant independent of u.

Proof. Choose t = sB/(8 — 1), where (3 is the exponent in Lemma 2.2.
Then 0 < s <t and 8 =1t/(t — s). By Lemma 2.2 and Holder’s inequality,

s\ /s
(2.14) lu — uglls.quw = (/Q (1~ uqlw'’*) >

1
< Jlu — ugleqllwlly
_ 1
< C1QI AP w1 lu — uglleq-

Next choose a@ = s/r so that &« < s < t. If @ > 1 and ¢ > 1, then using
Lemmas 2.11, 2.3 and 2.4, we have

(2.15) lu —uglltg < Cllu—usqllie
<RIy =ty a0
< C|QI =m0 du| o, -

If t <1, then first

lu —ugllee < C1QIZ 2 lu —ugll2q
< CIQIP™ P lu — unq
< C1QI“ |y — ug|

l2,v7Q
0.0Q,

and again (2.15) follows.
If @ <1, then using Lemmas 2.3, 2.11 and 2.4, we have

(2.16) lu —uglleq < CIOIP|lu — ugll, yoq
< ClRIP™ P Ju —u 0y, e
< ClQIP=QIY " |dully,yo-

Applying (2.10), (2.16) becomes

(2.17) lu = uglliq < ClQI =/ dul|y 0.

Next, we have

11/wl||

(2.18) ldullaoo < ldullsooull /w10 0o
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Combining (2.14), (2.15), (2.17) and (2.18), we obtain

(2.19)  [lu—uqllsQuw
<C (a—n)/na 1 1/s d
< ClQ| (lwllellt/wlass-ayeq) " lldu|
Finally, Definition 2.1 gives the desired result
lu = uglls.quw < ClQIM"|dulls,0q.u- O

s,0Q,w-

3. A global result in John domains

We now consider solutions u to div A(z, Vu) = B(z, Vu) in Q C R™, which
we call A-harmonic functions. We write dy = w dx and denote the p-average
of the function u over the cube @ by

1 / d
UuQu = —— [ udp.
@ w(@Q) Q
We assume that 0 < p(Q) < oo for all Q.
DEFINITION 3.1. A é-John domain is a bounded domain 2 C R™ with

John center xg if every point = € ) can be joined to xg by a continuous curve
~ C Q for which d(&, 9) > 6]|¢ — x| for all £ € ~.

We define the sharp norm of a real-valued function f over E by

g 1/p
VI = Tnfuc ( fir- apdu) .

To obtain a global result we need the following result from [6]:

THEOREM 3.2. Suppose that f and g are measurable in a 6-John domain
Q with distinguished cube Qo C Q and 0 < q < oo. If, for some constant A,
17100 < Allglla.oqu

for all cubes Q with o@Q C S, then there exists a constant B, depending only
onn, q, o and &, such that

I£1I% .. < ABllg

q,Q2,w-

(See also [5].)
Together with the local result, this gives a Poincaré inequality over John
domains.

THEOREM 3.3. Suppose that u is an A-harmonic function in a §-John
domain , 0 < ¢ < 00, and w € A,.(Q). There exists a constant C, depending
only q, 6, n, p and r, such that

: < C|Q|1/n||vu”q79,w-

q,QQw —

[[u
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We remark that in the case ¢ > 1 and 0 < u(E) < oo, we have
10 < 1S = ol

< 2||f||ﬁ,E,;,L
(See [6].) Thus we have the following corollary.

COROLLARY 3.4. In addition to the hypotheses of Theorem 3.3, assume
that ¢ > 1 and uq , < co. Then

lu = ugullg.0w < 20101 Vullg.00-
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