
Illinois Journal of Mathematics
Volume 46, Number 1, Spring 2002, Pages 171–184
S 0019-2082

A CONVEXITY THEOREM FOR TORUS ACTIONS ON
CONTACT MANIFOLDS

EUGENE LERMAN

Abstract. We show that the image cone of a moment map for an ac-
tion of a torus on a contact compact connected manifold is a convex

polyhedral cone and that the moment map has connected fibers pro-
vided the dimension of the torus is bigger than 2 and that no orbit is
tangent to the contact distribution. This may be considered as a version
of the Atiyah–Guillemin–Sternberg convexity theorem for torus actions
on symplectic cones and as a direct generalization of the convexity the-

orem of Banyaga and Molino for completely integrable torus actions on
contact manifolds.

1. Introduction

The goal of the paper is to prove a convexity theorem for torus actions on
contact manifolds. Recall that a contact form on a manifold M of dimension
2n + 1 is a 1-form α such that α ∧ dαn 6= 0. A (co-oriented) contact struc-
ture on a manifold M is a subbundle ξ of the tangent bundle TM which is
given as the kernel of a contact form. Note that if f is any nowhere vanishing
function and α is a contact form, then kerα = ker fα. Thus a co-oriented
contact structure is a conformal class of contact forms. One can show that a
hyperplane subbundle ξ of TM is a co-oriented contact structure if and only
if its annihilator ξ◦ in T ∗M is a trivial line bundle and ξ◦ \ 0 is a symplectic
submanifold of the punctured cotangent bundle T ∗M \0 (we use 0 as a short-
hand for the image of the zero section). In fact, the map ψα : M × R → ξ◦,
(m, t) 7→ tαm, defines a trivialization, and the pull-back by ψα of the tauto-
logical 1-form on T ∗M is tα. The symplectic manifold (M × (0,∞), d(tα)) is
called the symplectization of (M,α).

Recall that a symplectic cone is a symplectic manifold (N,ω) with a proper
action of the real line which expands the symplectic form exponentially. For
example, the action of R on M × (0,∞) given by s · (m, t) = (m, est) makes
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the symplectization (M × (0,∞), d(tα)) of (M,α) into a symplectic cone.
Conversely a symplectic cone is the symplectization of a contact manifold.

Throughout the paper α will always denote a contact form and ξ will always
denote a co-oriented contact structure. We will refer either to a pair (M,α)
or to a pair (M, ξ) as a contact manifold.

An action of a Lie group G on a contact manifold (M, ξ) is contact if the
action preserves the contact structure. It is not hard to show that if addition-
ally the action of G is proper (for example if G is compact) and preserves the
co-orientation of ξ (for example if G is connected), then it preserves a contact
form α with ξ = kerα (see [L]).

Contact moment maps. We now recall the notion of a moment map for
an action of a group on a contact manifold. An action of a Lie group G on a
manifold M naturally lifts to a Hamiltonian action on the cotangent bundle
T ∗M . The corresponding moment map Φ : T ∗M → g∗ is given by

(1.1) 〈Φ(q, p), A〉 = 〈p,AM (q)〉,

for all vectors A ∈ g, all points q ∈ M and all covectors p ∈ T ∗qM . Here and
elsewhere in the paper AM denotes the vector field induced on M by A ∈ g.

If the action of the Lie group G on the manifold M preserves a contact
distribution ξ, then the lifted action preserves the annihilator ξ◦ ⊂ T ∗M .
Moreover, if the action of G preserves a co-orientation of ξ then it preserves
the two components of ξ◦ \ 0. Denote one of the components by ξ◦+. In this
case we define the moment map Ψ for the action of G on (M, ξ) to be the
restriction of Φ to ξ◦+:

Ψ = Φ|ξ◦+ .
An invariant contact form α on M defining the contact distribution ξ is a
nowhere zero section of ξ◦ → M . We may assume that α(M) ⊂ ξ◦+. In this
case we get a map Ψα : M → g∗ by composing Ψ with α: Ψα = Ψ ◦ α. It
follows from (1.1) that

(1.2) 〈Ψα(x), A〉 = αx(AM (x))

for all x ∈ M and all A ∈ g. Recall that the choice of a contact form on
M establishes a bijection between the space of smooth functions on M and
the space of contact vector fields. It is easy to check that for any A ∈ g the
contact vector field corresponding to the function 〈Ψα, A〉 is AM . Thus it
makes sense to think of Ψα as the moment map defined by the contact form
α and of Ψ as the moment map defined by the contact distribution ξ. The
image Ψα(M) depends on the action and the contact form, while the image
Ψ(ξ◦+) depends only on the action and the contact distribution. Clearly the
two sets are related:

Ψ(ξ◦+) = R
+Ψα(M).
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Definition 1.1. Let (M, ξ) be a co-oriented contact manifold with an ac-
tion of a Lie group G preserving the contact structure ξ and its co-orientation.
Let ξ◦+ denote a component of ξ◦ \ 0, the annihilator of ξ minus the zero sec-
tion. Let Ψ : ξ◦+ → g∗ denote the corresponding moment map. The moment
cone C(Ψ) is the set

C(Ψ) := Ψ(ξ◦+) ∪ {0}.
Note that if α is an invariant contact form with ξ = kerα and α(M) ⊂ ξ◦+,
and if Ψα : M → g∗ is the moment map defined by α, then C(Ψ) = {tf | f ∈
Ψα(M), t ∈ [0,∞)}.

We can now state the main result of the paper.

Theorem 1.2. Let (M, ξ) be a co-oriented contact manifold with an effec-
tive action of a torus G preserving the contact structure and its co-orientation.
Let ξ◦+ be a component of the annihilator of ξ in T ∗M minus the zero section:
ξ◦ \ 0 = ξ◦+ t (−ξ◦+). Assume that M is compact and connected and that
the dimension of G is bigger than 2. If 0 is not in the image of the contact
moment map Ψ : ξ◦+ → g∗ then the fibers of Ψ are connected and the moment
cone C(Ψ) = Ψ(ξ◦+) ∪ {0} is a convex rational polyhedral cone.

Remark 1.3. A polyhedral set in g∗ is the intersection of finitely many
closed half-spaces. A polyhedral set is rational if the annihilators of codimen-
sion one faces are spanned by vectors in the integral lattice ZG of g, that is,
by vectors in the kernel of exp : g → G. The whole space g∗ is trivially a
rational polyhedral cone. Note that a rational polyhedral cone C in g∗ is of
the form

C =
⋂
i

{vi ≥ 0}

for some finite collection of vectors v1, . . . , vr in the integral lattice ZG.

Remark 1.4. For actions of tori of dimension less than or equal than 2,
the fibers of the corresponding moment maps need not be connected. For
actions of two-dimensional tori the moment cone need not be convex. In
fact, it is easy to construct an example of an effective 2-torus action on an
overtwisted 3-sphere so that the image cone is not convex. It is also easy
to construct examples of moment maps for actions of 2-tori and circles with
non-connected fibers (the convexity result for circles is trivial). See [L].

Theorem 1.2 extends known convexity results for Hamiltonian torus actions
on symplectic manifolds. Such results have a long history. Atiyah [A] and, in-
dependently, Guillemin and Sternberg [GS] proved that for Hamiltonian torus
actions on compact symplectic manifolds the image of the moment map is a
rational polytope and that the fibers of the moment map are connected. The
assumption of compactness of the manifold has been subsequently weakened
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by de Moraes and Tomei [MT], by Prato [P], by Hilgert, Neeb, and Plank
[HNP] using the methods of [CDM], and by Lerman, Meinrenken, Tolman
and Woodward [LMTW] to the point where it is enough to assume that the
moment map is proper as a map from a symplectic manifold M to a convex
open subset U of the dual of the Lie algebra g∗. The conclusion is that the
fibers of the moment map are connected and that the intersection of the image
of the moment map with U is a convex locally polyhedral set. Note that the
hypotheses of Theorem 1.2 only guarantee that the moment map Ψ : ξ◦+ → g∗

is proper as a map into g∗ \ {0}, which is certainly not convex.
Theorem 1.2 is a direct generalization of a convexity theorem of Banyaga

and Molino [BM2]:

Theorem 1.5 (Banyaga–Molino). Let (M, ξ) be a co-oriented contact
manifold with an effective contact action of a torus G preserving the co-
orientation. Assume that M is compact and connected, that the dimension
of G is bigger than 2 and that dimM + 1 = 2 dimG. Then the moment cone
C(Ψ) is a convex rational polyhedral cone.

Remark 1.6. It is easy to show the hypotheses of the Banyaga–Molino
theorem guarantee that the image of the moment map does not contain the
origin:

Lemma 1.7. Let (M, ξ) be a co-oriented contact manifold with an effective
action of a torus G preserving the contact structure and its co-orientation. Let
α be an invariant contact form with kerα = ξ and let Ψα : M → g∗ be the
corresponding moment map. If dimM + 1 = 2 dimG then Ψα(x) 6= 0 for any
x ∈M .

Proof. Suppose not. Then for some point x ∈M the orbit G · x is tangent
to the contact distribution. Therefore the tangent space ζx := Tx(G · x) is
isotropic in the symplectic vector space (ξx, ωx) where ωx = dαx|ξ.

We now argue that this forces the action of G not to be effective. More
precisely we argue that the slice representation of the connected component
of identity H of the isotropy group of the point x is not effective. The group
H acts on ξx preserving the symplectic form ωx and preserving ζx = Tx(G ·x).
Since ζx is isotropic, ξx = (ζωx /ζx)⊕ (ζx × ζ∗x) as a symplectic representation
of H. Here ζωx denotes the symplectic perpendicular to ζx in (ξx, ωx). Note
that since G is a torus, the action of H on ζx is trivial. Hence it is trivial on
ζ∗x.

Observe next that the dimension of the symplectic vector space V =: ζωx /ζx
is dim ξx−2 dim ζx = dimM−1−2(dimG−dimH) = (dimM−1)−(dimM+
1)+2 dimH = 2 dimH−2. On the other hand, sinceH is a compact connected
Abelian group acting symplecticly on V , its image in the group of symplectic
linear transformations Sp(V ) lies in a maximal torus T of a maximal compact
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subgroup of Sp(V ). The dimension of T is dimV/2 = dimH − 1. Therefore
the representation of H on V is not faithful. Since the fiber at x of the
normal bundle of G · x in M is (TxM/ξx) ⊕ (ξx/ζx) ' R ⊕ (V ⊕ ζ∗x), the
slice representation of H is not faithful. Consequently the action of G in not
effective in a neighborhood of an orbit G · x. This is a contradiction. �

Remark 1.8. The paper [BM2] is not published. It is a revision of [BM1],
which is not widely available, but has an extensive review in Math. Reviews
(MR 94c53029). Theorem 1.5 is cited without proof in [B]. Providing an in-
dependent and easily accessible proof of Theorem 1.5 is one of the motivations
for this paper.

Remark 1.9. I do not know if the condition that no orbit is tangent to
the contact distribution is necessary for Theorem 1.2 to hold.

A note on notation. Throughout the paper the Lie algebra of a Lie group
denoted by a capital Roman letter will be denoted by the same small letter
in the fraktur font: thus g denotes the Lie algebra of a Lie group G, etc. The
vector space dual to g is denoted by g∗. The identity element of a Lie group is
denoted by 1. The natural pairing between g and g∗ will be denoted by 〈·, ·〉.

When a Lie group G acts on a manifold M we denote the action by an
element g ∈ G on a point x ∈ G by g · x; G · x denotes the G-orbit of x, and
so on. The vector field induced on M by an element X of the Lie algebra g
of G is denoted by XM . The isotropy group of a point x ∈ M is denoted by
Gx; the Lie algebra of Gx is denoted by gx and is referred to as the isotropy
Lie algebra of x. We recall that gx = {X ∈ g | XM (x) = 0}.

If P is a principal G-bundle then [p,m] denotes the point in the associated
bundle P ×GM = (P ×M)/G which is the orbit of (p,m) ∈ P ×M .

Acknowledgments. I thank Stephanie Alexander for commenting on a
draft of this manuscript and Yuri Burago for providing an advanced copy of
parts of [BBI].

2. Torus actions on contact manifolds

We now proceed with a proof of Theorem 1.2. The methods we use is a
mixture of the ideas from [CDM] and [LMTW].

Recall that M denotes a compact connected manifold with an effective
action of a torus G (dimG > 2) preserving a co-oriented contact distribution
ξ. Choose a G-invariant contact form α with kerα = ξ. Let Ψα : M → g∗

be the corresponding moment map; it is defined by equation (1.2). Recall
also that we assume that 0 6∈ Ψα(M). Note that this condition amounts to
saying that no orbit of G is tangent to the contact distribution ξ; thus it is a
condition on a contact distribution and not on a particular choice of a contact
form representing the distribution.
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Next fix an inner product on the dual of the Lie algebra g∗. Since Ψα(x) 6= 0
for all x we can define a new contact form α′ by

α′x :=
1

‖Ψα(x)‖
αx.

Then the corresponding moment map Ψα′ satisfies ‖Ψα′(x)‖ = 1 for all x ∈M .
We assume from now on that we have chosen an invariant contact form α in
such a way that the corresponding moment map Ψα sends M to the unit
sphere S := {f ∈ g∗ | ‖f‖ = 1}.

Lemma 2.1. Let (M, ξ) be a co-oriented contact manifold with an effective
contact action of a torus G. Assume that no orbit of G is tangent to the con-
tact distribution. Let α be a G-invariant contact form defining ξ normalized
so that the image of M under the corresponding moment map Ψα lies in the
unit sphere S in g∗. Let H ⊂ g∗ be an open half-space, i.e., suppose that for
some 0 6= v ∈ g we have H = {f ∈ g∗ | 〈f, v〉 > 0}.

For any connected component N of Ψ−1
α (H), the fibers of Ψα|N are con-

nected.

Lemma 2.2. Let M , ξ, G, α and Ψα be as in Lemma 2.1 above. Let H be
an open half-space and N a component of Ψ−1

α (H). Then Ψα(N) is a convex
rational polyhedral subset of H ∩ S ⊂ g∗ with open interior.

Remark 2.3. A subset W of the unit sphere S = {f ∈ g∗ | ‖f‖ = 1} is
convex iff there is a convex cone C ⊂ g∗ (with the vertex at the origin) so
that W = S ∩ C. Equivalently, W is convex if for any two points x, y ∈ W
there is a geodesic of length ≤ π connecting x to y and lying entirely in W .

A subset W of S (respectively of H∩S) is rational polyhedral if there exist
vectors v1, . . . vk in the integral lattice ZG = ker{exp : g→ G} such that

W = {f ∈ S | 〈f, vi〉 ≥ 0, 1 ≤ i ≤ k}
(respectively W = {f ∈ S ∩H | 〈f, vi〉 ≥ 0, 1 ≤ i ≤ k}).

Proof of Lemmas 2.1 and 2.2. Consider the symplectization (M×R, d(etα))
of (M,α). As usual t denotes the coordinate on R. The contact action of G
on M extends trivially to a Hamiltonian action on the symplectization. The
corresponding moment map Φ : M × R→ g∗ is given by

Φ(x, t) = etΨα(x).

The symplectic manifold (N×R, d(etα)|N×R) is a symplectization of (N,α|N ).
The manifold N × R is a connected symplectic manifold with a Hamiltonian
action of G, the map ΦN := Φ|N×R is a corresponding moment map for the
action of G. Moreover, it has the following two properties:

(1) ΦN (N × R) is contained in the convex open subset H of g∗;
(2) ΦN : N × R→ H is proper.
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Therefore Theorem 4.3 of [LMTW] applies. We conclude that the fibers of
ΦN are connected and that the image ΦN (N × R) is convex.

Next, since the action of the torus G on M is effective, it is free on a dense
open subset of M . This is a consequence of the principal orbit type theorem
and the fact that G is abelian. Consequently the action of G on N × R is
free on a dense open subset. Hence the image ΦN (N × R) has non-empty
interior. Also, since M is compact and G is abelian, the number of subgroups
of G that occur as isotropy groups of points of M is finite. Therefore not
only does [LMTW, Theorem 4.3] imply that ΦN (N ×R) is the intersection a
locally polyhedral subset of g∗ with the open half-space H, but that in fact
ΦN (N × R) = Φ(N × R) is a polyhedral cone. �

Lemma 2.4. Let M , G, α and Ψα be as in Lemma 2.1 above. Define
an equivalence relation ∼ on M by declaring the equivalence classes to be the
connected components of the fibers of the moment map Ψα. Let M = M/ ∼.

Then M is a compact path connected space and the moment map Ψα : M →
g∗ descends to a continuous map Ψ : M → S, where as before S is the unit
sphere in g∗ centered at 0.

Moreover, M is a length space and Ψ : M → S is locally an isometric
embedding. More precisely, for any open half-space H and any connected
component N of Ψ

−1
(H) the map Ψ|N : N → S is an isometric embedding.

Our proof of Lemma 2.4 uses length spaces, the notion that is due to
Gromov [G1, G2]. We therefore briefly summarize the relevant facts. The
treatment follows D. Burago, Yu. Burago and S. Ivanov [BBI].

2.1. Digression: length structures and length spaces. Let X be
a topological space. Consider a class A of continuous paths in X which is
closed under restrictions, concatenations and reparameterizations. Suppose
that there is a map L : A → [0,∞] (the “length”) satisfying the following
conditions for any curve γ : [a, b]→ X in A:

(a) L(γ) = L(γ|[a,c]) + L(γ|[c,b]) for any c ∈ (a, b).
(b) The function Lt := L(γ|[a,t]) is a continuous function of t ∈ [a, b].
(c) If ϕ : [c, d]→ [a, b] is monotone and continuous, then L(γ) = L(γ ◦ϕ).
(d) If a sequence of curves γi ∈ A converges to γ uniformly, then L(γ) ≤

lim inf L(γi).
(e) If U ⊂ X is a proper open subset, and p ∈ U is a point then the

number

inf{L(γ) | γ : [a, b]→ X, γ ∈ A, γ(a) = p, γ(b) 6∈ U}

is positive.
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Definition 2.5. The triple (X,A, L), where X is a topological space, A
is a class of continuous curves in X and L : A → [0,∞] is a map satisfying
the conditions above, is called a length structure.

Let (X,A, L) be a length structure. Suppose that for any two points x, y ∈
X there is a path γ ∈ A starting at x and ending at y. We then define the
distance dL : X ×X → [0,∞] by

dL(x, y) = inf{L(γ) | γ : [a, b]→ X, γ(a) = x, γ(y) = b, γ ∈ A}.

One can check that if dL(x, y) <∞ for all x, y ∈ X then dL is a metric.
Suppose (X, d) is a metric space. Then we can take A to be the set of

rectifiable paths and L = Ld : A → [0,∞] to be the length functional. Then
(X,A, L) is a length structure. Note that in general dL(x, y) ≥ d(x, y) for
x, y ∈ X. If dL = d then (X, d) is called a length space. A unit sphere S in a
normed finite dimensional vector space with the standard metric induced by
the embedding is an example of a length space.

Definition 2.6. Let (X,A, L) be a length structure. Let γ : [a, b] → X
be a curve in A. It is a geodesic if for any c, d ∈ [a, b] with |c− d| sufficiently
small L(γ|[c,d]) = dL(γ(c), γ(d)).

Remark 2.7. We think of geodesics as maps, not as subsets. Also, from
now on all geodesics are parameterized by arc length.

If (X, d) is a compact connected metric space then a version of the Hopf-
Rinow theorem holds, and so any two points of X can be connected by a
geodesic. See, for example, Proposition 3.7 in [BH]. This ends our digression
on length spaces.

Proof of Lemma 2.4. It is clear that M is a compact path-connected topo-
logical space and that the moment map Ψα : M → g∗ descends to a con-
tinuous map Ψ : M → S = {‖f‖ = 1}. Moreover, by Lemmas 2.1 and 2.2,
for any open half-space H ⊂ g∗ and any component Z of Ψ

−1
(H), the map

Ψ : Z → S ∩H is a topological embedding which is a homeomorphism on an
open dense set.

This gives us a way to define a length structure on M : We define the class
A to be the set of all curves γ : [a, b] → M such that Ψ ◦ γ is a rectifiable
curve in the unit sphere S. For γ ∈ A we set L(γ) = LS(Ψ ◦ γ), where
LS is the length functional on the rectifiable curves in the sphere defined
by the standard metric. Let dL be the corresponding metric on M . Then,
since for any half-space H and any component Z of Ψ

−1
(H) the set Ψ(Z) is

convex in the sphere S, the map Ψ : Z → S is an isometric embedding. Thus
Ψ : M → S is locally an isometric embedding. �
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Corollary 2.8. Let M , Ψ and S be as in Lemma 2.4. If γ is a geodesic
in M then Ψ ◦ γ is a geodesic in S.

Remark 2.9. Since Ψ is a local isometry it maps geodesics in M to
geodesics in the unit sphere S of the same length. In particular, if the end
points of a (nonconstant) geodesic γ in M are sent by Ψ to the same point
in the sphere, then Ψ ◦ γ multiply covers a great circle and consequently the
length of γ is an integer multiple of 2π.

We emphasize that Lemmas 2.1 and 2.2 can be restated for the induced
map Ψ : M → S of Lemma 2.4 as follows:

Lemma 2.10. For any open half-space H and any connected component
N of Ψ

−1
(H) the map Ψ|N → S is an isometric embedding.

Lemma 2.11. For any open half-space H and any connected component
N of Ψ

−1
(H) the set Ψ(N) is a convex polyhedral subset of the sphere S with

non-empty interior.

As a consequence of Lemmas 2.10 and 2.11 we get:

Corollary 2.12. Let Ψ : M → S be as in Lemma 2.4. Suppose the
points x1, x2 ∈ M lie in the same connected component of Ψ

−1
(H) for some

open half-space H.
If Ψ(x1) = Ψ(x2) then x1 = x2. If Ψ(x1) 6= Ψ(x2) then there is a geodesic

γ in M connecting x1 to x2. Moreover we may choose γ such that Ψ ◦ γ is
a geodesic in S lying entirely in the half-space H and connecting Ψ(x1) and
Ψ(x2).

As a consequence of Lemma 2.4 we get:

Corollary 2.13. Any two points in M can be connected by a short ge-
odesic, i.e., for any two points x, y ∈ M there is a geodesic γ with γ(0) = x
and γ(d) = y, where d is the distance between x and y (recall that all geodesics
are parameterized by arc length).

Remark 2.14. Such a geodesic in M need not be unique. For example,
consider the unit co-sphere bundle M in the cotangent bundle of a flat torus
G. Then M = G × S, Ψ : G × S → S ⊂ g∗ is the projection and M is the
unit sphere S. In this case for any point x ∈M = S there are infinitely many
geodesics of length π connecting x and −x.

The following lemma uses the notation above.
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Lemma 2.15. Suppose x1, x2 are two points in M connected by a path γ
with the property that Ψ ◦ γ lies entirely in some open half-space H. Then the
points x1, x2 lie in the same connected component of Ψ

−1
(H).

Proof. The image of γ lies in a connected component of Ψ
−1

(H). �

Lemma 2.16 below is the main technical tool for proving the connectedness
of fibers of moment maps.

Lemma 2.16. Let Ψ : M → S be as in Lemma 2.4. Suppose γ1, γ2 are two
distinct geodesics in M with γ1(0) = γ2(0), and suppose that Ψ◦γ1 and Ψ◦γ2

trace out two distinct great circles in the unit sphere S. Then γ2(0) = γ2(2π)
(and so γ1(0) = γ1(2π)).

Remark 2.17. Note that the assumption dimG > 2 is crucial for the
lemma to make sense.

Proof of Lemma 2.16. The idea of the proof is to show that there is an
open half-space H containing Ψ(γ2(0)) such that γ2(0) and γ2(2π) lie in
the same connected component of Ψ

−1
(H). For then, by Corollary 2.12,

γ2(0) = γ2(2π).
Given a path γi in M we write γi for the path Ψ ◦ γi in S.
Since by assumption the geodesics γ1 and γ2 trace out two distance great

circles in S, γ1(π2 ) 6= ±γ2(π2 ). On the other hand, we clearly have γ1(0) =
−γ1(π) = −γ2(π), γ1(2π) = γ2(2π) = γ1(0), γ1( 3π

2 ) = −γ1(π2 ), and γ2( 3π
2 ) =

−γ2(π2 ).
Since γ1(π2 ) 6= ±γ2(π2 ), there is an open half-space H1 containing the points

γ1(0), γ1(π2 ) and γ2(π2 ). By Lemma 2.15, γ1(π2 ) and γ2(π2 ) lie in the same

connected component of Ψ
−1

(H1) as γ1(0). By Corollary 2.12 there a geodesic
σ1 in M connecting γ1(π2 ) to γ2(π2 ) such that σ1 := Ψ ◦ σ1 traces out a short
geodesic connecting γ1(π2 ) to γ2(π2 ).

Choose an open half-space H2 containing the points γ1(π2 ), γ2(π2 ) and
γ1(π) = γ2(π). Note that by construction γ1(π2 ) is connected to γ2(π2 ) by
σ1, γ1(π2 ) is connected to γ1(π) by a piece of γ1 and γ2(π2 ) is connected to
γ2(π) by a piece of γ2. By Lemma 2.15 γ1(π) and γ2(π) lie in the same
connected component of Ψ

−1
(H2). By Corollary 2.12 we have γ1(π) = γ2(π).

Choose a half-space H3 containing γ1(π), γ1(π2 ) and γ2( 3π
2 ). Since γ1(π) =

γ2(π), since γ1(π) is connected to γ1(π2 ) by a piece of γ1 and since γ2(π)
is connected to γ2( 3π

2 ) by a piece of γ2, γ1(π2 ) and γ2( 3π
2 ) lie in the same

connected component of Ψ
−1

(H3). By Corollary 2.12 there a geodesic σ2 in
M connecting γ1(π2 ) to γ2( 3π

2 ) such that σ2 := Ψ ◦ σ2 traces out a short
geodesic connecting γ1(π2 ) to γ2( 3π

2 ).
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Finally choose a half-space H4 containing γ1(0) = γ2(0) = γ2(2π), γ1(π2 )
and γ2( 3π

2 ). Arguing as above we see that γ2(0) and γ2(2π) lie in the same

connected component of Ψ
−1

(H4). Hence, by Corollary 2.12, γ2(0) = γ2(2π).
�

Lemma 2.18. The fibers of the map Ψ : M → S are connected, i.e., Ψ is
an embedding.

Proof. Suppose x1, x2 ∈ M are two points with Ψ(x1) = Ψ(x2). We want
to show that x1 = x2. Suppose not. Then the distance d between x1 and x2 is
positive. Let γ1 be a short geodesic connecting x1 and x2, so that γ1(0) = x1

and γ1(d) = x2. Then γ1 := Ψ ◦ γ1 is a geodesic in the unit sphere S starting
and ending at γ1(0). Therefore γ1 multiply covers a great circle in S (and so
d is an integer multiple of 2π).

Suppose that we can construct a geodesic γ2 connecting x1 to x2 so that
γ2 := Ψ ◦ γ2 covers a great circle distinct from the one covered by γ1. Then
by Lemma 2.16 γ1(0) = γ1(2π), contradicting the choice of γ1 as a short
geodesic.

Now we construct γ2 with the required properties. Pick an open half-
space H containing γ1(0). Let N denote the connected component of Ψ

−1
(H)

containing x1. By Lemma 2.11 the set Ψ(N) is convex with nonempty interior.
Pick a point y in N so that Ψ(y) is not in the image of the geodesic γ1. By
Corollary 2.12 there is a geodesic σ connecting x1 to y with the image of
σ := Ψ ◦ σ lying entirely in H. Let τ be a short geodesic connecting y to x2.
If the image of τ := Ψ ◦ τ lies entirely in a half-space containing Ψ(x2) and
Ψ(y) then by Lemma 2.15 we have x1 = x2.

Otherwise τ traces out a long geodesic connecting Ψ(y) to Ψ(x2) = γ1(0).
If τ passes through x1 then the piece of τ starting at x1 and ending at x2 is
the desired geodesic γ2. If τ does not pass through x1, concatenate σ with τ .
The concatenation γ2 is the desired geodesic. �

Lemma 2.19. The image of the map Ψ : M → S is convex.

Proof. Suppose f1, f2 are two points in the image of Ψ. Then either f1

and f2 lie in some open half-space H or f1 = −f2. In the former case, by
Lemma 2.18, N = Ψ

−1
(H) is connected. Hence, by Lemma 2.11, Ψ(N) =

H ∩Ψ(M) is convex and consequently Ψ(M) is convex.
In the latter case we argue as follows. The sets Ψ

−1
(fi), i = 1, 2 consists

of single points; denote these points by xi. Connect x1 and x2 by a short
geodesic γ. Then the image of γ = Ψ ◦ γ contains an arc of a great circle
in S passing through f1 and f2 = −f1 (in fact it follows from the proof of
Lemma 2.16 that the image of γ is exactly such an arc). �
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Lemma 2.20. Let Ψα : M → g∗ be a moment map as in Lemma 2.1. The
corresponding moment cone C(Ψ) is a rational convex polyhedral cone. That
is either C(Ψ) = g∗ or there exist vectors v1, . . . , vk in the integral lattice ZG
of the torus G such that

C(Ψ) =
⋂
i

{vi ≥ 0}.

Proof. By Lemmas 2.11 and 2.18 for any open half-space H of g∗ there
exist vectors v1, . . . , vr in the integral lattice ZG (r depends on H) such that

C(Ψ) ∩H =

(⋂
i

{vi ≥ 0}

)
∩H.

Moreover, we may and will assume that the set of vi’s is minimal. Thus no
vi is strictly positive on C(Ψ) ∩ H. Since the moment cone is a cone on a
compact set, there exist finitely many open half-spaces H1, . . . ,Hs such that⋃
β H

β contains C(Ψ) \ {0}. For each such half-space Hβ , let vβ1 , . . . , v
β
r(β) be

the minimal set of integral vectors so that

C(Ψ) ∩Hβ =

(⋂
i

{vβi ≥ 0}

)
∩Hβ .

We claim that
C(Ψ) =

⋂
i,β

{vβi ≥ 0}.

As a first step we argue that for any i, β we have

C(Ψ) ⊂ {vβi ≥ 0}.

By choice of vβi there exists a point x ∈ C(Ψ)∩Hβ such that vβi (x) = 0 (since
x ∈ Hβ , x 6= 0). Suppose there exists a point y ∈ C(Ψ) with vβi (y) < 0. Since
C(Ψ) is convex, tx + (1 − t)y ∈ C(Ψ) for all t ∈ [0, 1]. On the other hand,
vβi (tx+ (1− t)y) = (1− t)vβi (y) < 0 for all t ∈ [0, 1). Since Hβ is open there
is ε > 0 so that tx+ (1− t)y ∈ Hβ for all t ∈ (ε, 1]. Therefore for all t ∈ (ε, 1)
we have

tx+ (1− t)y ∈ Hβ ∩ C(Ψ) ⊂ {vβi ≥ 0},
which is a contradiction. We conclude that

C(Ψ) ⊂
⋂
i,β

{vβi ≥ 0}.

Next we argue that the reverse inclusion, i.e.,
⋂
i,β{v

β
i ≥ 0} ⊂ C(Ψ), holds

as well. By construction, for each β

C(Ψ) ∩Hβ =

(⋂
i

{vβi ≥ 0}

)
∩Hβ .
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Since
⋃
β H

β ∪ {0} covers the image cone C(Ψ), we have

C(Ψ) = C(Ψ) ∩

⋃
β

Hβ ∪ {0}

 = {0} ∪
⋃
β

(C(Ψ) ∩Hβ)

=
⋃
β

(⋂
i

{vβi ≥ 0} ∩ (Hβ ∪ {0}

)

⊇

⋂
i,β

{vβi ≥ 0}

 ∩
⋃

β

Hβ ∪ {0}

 .

Therefore

(2.1) C(Ψ) =

⋂
i,β

{vβi ≥ 0}

 ∩
⋃

β

Hβ ∪ {0}

 .

Finally, since
⋂
i,β{v

β
i ≥ 0} is closed and convex, its intersection with the unit

sphere S ∩
⋂
i,β{v

β
i ≥ 0} is closed and connected. On the other hand,

(2.2) S ∩
⋂
i,β

{vβi ≥ 0} =

S ∩⋂
i,β

{vβi ≥ 0} ∩

⋃
β

Hβ


t S ∩

⋂
i,β

{vβi ≥ 0} \

⋃
β

Hβ

 .

It follows from (2.1) and (2.2) that the set S∩
⋂
i,β{v

β
i ≥ 0} is a disjoint union

of two closed sets. Therefore the set S ∩
(⋂

i,β{v
β
i ≥ 0} \ ∪βHβ

)
is empty.

We conclude that

C(Ψ) =
⋂
i,β

{vβi ≥ 0} ∩

⋃
β

Hβ ∪ {0}

 =
⋂
i,β

{vβi ≥ 0}. �
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