ESTIMATES OF FUNCTIONS WITH VANISHING PERIODIZATIONS

OLEG KOVRIJKINE

Abstract

We prove that if a function $f \in L^{p}\left(\mathbb{R}^{d}\right)$ has vanishing periodizations then $\|f\|_{p^{\prime}} \lesssim\|f\|_{p}$, provided $1 \leq p<2 d /(d+2)$ and $d \geq 3$.

1. Introduction

Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$. Define a family of its periodizations with respect to a rotated integer lattice by

$$
\begin{equation*}
g_{\rho}(x)=\sum_{\nu \in \mathbb{Z}^{d}} f(\rho(x-\nu)) \tag{1}
\end{equation*}
$$

for all rotations $\rho \in \mathrm{SO}(d)$. We have the trivial estimate $\left\|g_{\rho}\right\|_{1} \leq\|f\|_{1}$, and $\widehat{g_{\rho}}(m)=\hat{f}(\rho m)$, where $m=\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}$. The author has shown recently that g_{ρ} is in $L^{2}\left([0,1]^{d} \times \mathrm{SO}(d)\right)$ if and only if $f \in L^{2}\left(\mathbb{R}^{d}\right)$, provided $d \geq 5$. The requirement $f \in L^{1}\left(\mathbb{R}^{d}\right)$ can be replaced by $f \in L^{p}\left(\mathbb{R}^{d}\right)$ for a certain range of p; for details see [6] and [7].

The main object of our research are functions f whose periodizations g_{ρ} vanish identically for a.e. rotations $\rho \in \mathrm{SO}(d)$. This property is equivalent to the statement that \hat{f} vanishes on all spheres of radius $|m|=\left(m_{1}^{2}+\cdots+m_{d}^{2}\right)^{1 / 2}$, where $m \in \mathbb{Z}^{d}$. Such functions are closely related to the Steinhaus tiling set problem (see [4] and [5]): Does there exists a (measurable) set $E \subset \mathbb{R}^{d}$ such that every rotation and translation of E contains exactly one integer lattice point? M. Kolountzakis [4] showed that if $f \in L^{1}$ and $|x|^{\alpha} f(x) \in L^{1}$ for a certain $\alpha>0$ and f has constant periodizations, then $\hat{f} \in L^{1}$ in the case of dimension $d=2$. Kolountzakis and Wolff [5, Theorem 1] proved that if the periodizations of a function from $L^{1}\left(\mathbb{R}^{d}\right)$ are constant, then the function is continuous and, in fact, bounded, provided that the dimension d is at least three. Here we generalize the latter result for functions f in $L^{1}\left(\mathbb{R}^{d}\right) \cap L^{p}\left(\mathbb{R}^{d}\right)$:

[^0]Theorem 1. Let $d \geq 3$ and let $f \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{p}\left(\mathbb{R}^{d}\right), 1 \leq p<2 d /(d+2)$, have identically vanishing periodizations. Then $f \in L^{p^{\prime}}\left(\mathbb{R}^{d}\right)$, and

$$
\|f\|_{p^{\prime}} \leq C\|f\|_{p}
$$

where C depends only on d and p.
The main reason for the condition $d \geq 3$ is due to the famous result of Lagrange stating that every positive integer can be represented as a sum of four squares, and that every integer of the form $8 k+1$ can be written as a sum of three squares. Since relatively few integers can be represented as sums of two squares, we will show in Section 3 that the result of Kolountzakis and Wolff does not hold if $d=2$. This is why there is no analogous theorem for $d=2$. Another reason why the dimension d has to be at least 3 is because we consider the family of periodizations with respect to the group of rotations $\mathrm{SO}(d)$. This leads to estimates involving the decay of spherical harmonics. For $d=2$ the rate of decay is not fast enough, although it is almost fast enough. In the case $d=2$ the range for p in the theorem becomes $1 \leq p<1$, and hence is empty.

REmARK 1. There is no essential difference between the case of identically vanishing periodizations and the case where the functions g_{ρ} are trigonometric polynomials of uniformly bounded degrees for all $\rho \in \mathrm{SO}(d)$.

Corollary 1. If $p \leq r \leq p^{\prime}$, then under the conditions of Theorem 1 we have

$$
\|f\|_{r} \leq C\|f\|_{p}
$$

where C depends only on d and p.
We will show in Section 3 that the range of r in this result is sharp.
We will use the notation $x \lesssim y$ if $x \leq C y$ for some constant $C>0$ independent from x and y, and we write $x \sim y$ if $x \lesssim y$ and $y \lesssim x$ both hold.

2. Proof of the theorem

We define functions $h, h_{1}, h_{2}: \mathbb{R}^{d} \times \mathbb{R}^{+} \rightarrow \mathbb{C}$ by

$$
\begin{align*}
h(y, t) & =\int \hat{f}(\xi) e^{i 2 \pi y \cdot \xi} d \sigma_{t}(\xi) \tag{2}\\
& =\int_{\mathbb{R}^{d}} f(x) \widehat{d \sigma_{t}}(y-x) d x \\
& =\int_{\mathbb{R}^{d}} f(y-x) \widehat{d \sigma_{t}}(x) d x, \\
h_{1}(y, t) & =\int_{|x| \leq 1} f(y-x) \widehat{d \sigma}_{t}(x) d x, \tag{3}
\end{align*}
$$

$$
\begin{equation*}
h_{2}(y, t)=\int_{|x|>1} f(y-x) \widehat{d \sigma_{t}}(x) d x \tag{4}
\end{equation*}
$$

where $d \sigma_{t}$ is the Lebesgue surface measure on a sphere of radius t. Clearly, $h=h_{1}+h_{2}$. To proceed further we will need certain technical estimates involving the functions h_{1} and h_{2}; these are given in two lemmas below. The proof of the theorem itself begins after Remark 2 following Lemma 2. The Fourier transforms in the two lemmas below are taken with respect to variable t, except in the second part of the proof of Lemma 2. The $L^{p^{\prime}}$ norms are taken with respect to the variable y. We will use some techniques of Kolountzakis and Wolff [5] and Kovrijkine [6], [7].

Lemma 1. Let $q: \mathbb{R} \rightarrow \mathbb{R}$ be a Schwartz function supported in $[1 / 2,2]$, let $f \in L^{p}\left(\mathbb{R}^{d}\right)$, where $1 \leq p \leq 2$, and let $b \in[0,1)$. Define $H_{1, N}: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{C}$ by

$$
H_{1, N}(y, t)=\frac{1}{\sqrt{t+b}} h_{1}(y, \sqrt{t+b}) q\left(\frac{\sqrt{t+b}}{N}\right)
$$

Then

$$
\begin{equation*}
\sum_{l \geq 0} \sum_{\nu \neq 0}\left\|\hat{H}_{1,2^{l}}(y, \nu)\right\|_{p^{\prime}} \leq C\|f\|_{p} \tag{5}
\end{equation*}
$$

where C depends only on q and d.
Proof. It will be enough to show that

$$
\begin{equation*}
\sum_{\nu \neq 0}\left\|\hat{H}_{1, N}(y, \nu)\right\|_{p^{\prime}} \leq \frac{C\|f\|_{p}}{N} \tag{6}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left|\hat{H}_{1, N}(y, \nu)\right| \leq \frac{C}{|\nu|^{k}} \int\left|\frac{\partial^{k}}{\partial t^{k}} H_{1, N}(y, t)\right| d t \tag{7}
\end{equation*}
$$

for $\nu \neq 0$. Applying Minkowski's inequality to (7) we obtain

$$
\begin{equation*}
\left\|\hat{H}_{1, N}(y, \nu)\right\|_{p^{\prime}} \leq \frac{C}{|\nu|^{k}} \int\left\|\frac{\partial^{k}}{\partial t^{k}} H_{1, N}(y, t)\right\|_{L^{p^{\prime}}(d y)} d t \tag{8}
\end{equation*}
$$

We need to estimate the integrand on the right side of (8). To do so we will first estimate the $L^{p^{\prime}}$ norm of derivatives of $h_{1}(y, t)$ when $t \geq 1$. We have

$$
\begin{equation*}
\left\|\frac{\partial^{k}}{\partial t^{k}} h_{1}(y, t)\right\|_{p^{\prime}} \lesssim t^{d-1}\|f\|_{p} \tag{9}
\end{equation*}
$$

with an implicit constant depending only on k and d. In order to obtain (9), we rewrite the definition (3) of h_{1} as

$$
\begin{aligned}
h_{1}(y, t) & =\int_{|x| \leq 1} f(y-x) \widehat{d \sigma_{t}}(x) d x \\
& =t^{d-1} \int_{\mathbb{R}^{d}} f(y-x) \cdot \chi_{\{|x| \leq 1\}} \int_{|\xi|=1} e^{-i 2 \pi t x \cdot \xi} d \sigma(\xi) d x
\end{aligned}
$$

differentiate the last expression k times, and apply Young's inequality.
We can easily prove by induction that

$$
\begin{equation*}
\frac{d^{k}}{d t^{k}}\left(\frac{h_{1}(\sqrt{t+b})}{\sqrt{t+b}}\right)=\sum_{i=0}^{k} C_{i, k} \frac{h_{1}^{(i)}(\sqrt{t+b})}{(\sqrt{t+b})^{2 k+1-i}} \tag{10}
\end{equation*}
$$

Combining (10) and (9) we obtain for $t \sim N^{2}$

$$
\begin{equation*}
\left\|\frac{\partial^{k}}{\partial t^{k}}\left(\frac{h_{1}(y, \sqrt{t+b})}{\sqrt{t+b}}\right)\right\|_{p^{\prime}} \leq C N^{d-k-2}\|f\|_{p} \tag{11}
\end{equation*}
$$

with C depending only on k and d.
Since $q((\sqrt{t+b}) / N)=q\left(\sqrt{t^{\prime}+b^{\prime}}\right)=\tilde{q}\left(t^{\prime}\right)$ with $t^{\prime}=t / N^{2}$ and $b^{\prime}=b / N^{2}$ and $\tilde{q}\left(t^{\prime}\right)$ is a Schwartz function supported in $t^{\prime} \sim 1$, we have

$$
\begin{equation*}
\left|\frac{d^{k}}{d t^{k}} q\left(\frac{(\sqrt{t+b})}{N}\right)\right|=N^{-2 k}\left|\frac{d^{k}}{d t^{\prime k}} \tilde{q}\left(t^{\prime}\right)\right| \leq C N^{-2 k} \tag{12}
\end{equation*}
$$

with C depending only on k and q.
Now $q((\sqrt{t+b}) / N)$ is supported in $t \sim N^{2}$. Hence we obtain from (11) and (12)

$$
\begin{align*}
\left\|\frac{\partial^{k}}{\partial t^{k}} H_{1, N}(y, t)\right\|_{p^{\prime}} & =\left\|\frac{d^{k}}{d t^{k}}\left(\frac{h_{1}(y, \sqrt{t+b})}{\sqrt{t+b}} q\left(\frac{\sqrt{t+b}}{N}\right)\right)\right\|_{p^{\prime}} \tag{13}\\
& \leq C N^{d-2-k}\|f\|_{p}
\end{align*}
$$

with C depending only on k, d and q. Since $H_{1, N}(y, t)$ is also supported in $t \sim N^{2}$, we have

$$
\int\left\|\frac{\partial^{k}}{\partial t^{k}} H_{1, N}(y, t)\right\|_{L^{p^{\prime}}(d y)} d t \leq C N^{d-k}\|f\|_{p}
$$

Substituting this estimate into (8) we obtain

$$
\begin{equation*}
\left\|\hat{H}_{1, N}(y, \nu)\right\|_{p^{\prime}} \leq \frac{C N^{d-k}\|f\|_{p}}{|\nu|^{k}} \tag{14}
\end{equation*}
$$

for every $\nu \neq 0$.
Summing (14) over all $\nu \neq 0$ and putting $k=d+1$ we obtain our desired result

$$
\sum_{\nu \neq 0}\left\|\hat{H}_{1, N}(y, \nu)\right\|_{p^{\prime}} \leq \frac{C\|f\|_{p}}{N}
$$

where C depends only on q and d. The assertion of the lemma follows by summing over dyadic values N.

The next lemma will be proven using the methods of the Stein-Tomas restriction theorem (see [1, p. 104]).

Lemma 2. Let $q: \mathbb{R} \rightarrow \mathbb{R}$ be a Schwartz function supported in $[1 / 2,2]$, let $f \in L^{p}\left(\mathbb{R}^{d}\right)$, where $1 \leq p<2 d /(d+2)$ and let $b \in[0,1)$. Define $H_{2, N}$: $\mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{C}$ by

$$
H_{2, N}(y, t)=\frac{1}{\sqrt{t+b}} h_{2}(y, \sqrt{t+b}) q\left(\frac{\sqrt{t+b}}{N}\right)
$$

Then we have

$$
\begin{equation*}
\sum_{\nu \neq 0}\left\|\sum_{l \geq 0} \hat{H}_{2,2^{l}}(y, \nu)\right\|_{p^{\prime}} \leq C\|f\|_{p} \tag{15}
\end{equation*}
$$

with C depending only on p, q and d.
Proof. We have

$$
\begin{align*}
& \hat{H}_{2, N}(y, \nu)=\int H_{2, N}(y, t) e^{-i 2 \pi \nu t} d t \tag{16}\\
& =2 e^{i 2 \pi \nu b} \int N q(t) h_{2}(y, t N) e^{-i 2 \pi \nu(N t)^{2}} d t \\
& =2 e^{i 2 \pi \nu b} \int N q(t) e^{-i 2 \pi \nu(N t)^{2}} \int_{|x|>1} f(y-x) \widehat{d \sigma_{N t}}(x) d x d t \\
& =2 e^{i 2 \pi \nu b} \int_{|x|>1} f(y-x) \int N q(t) e^{-i 2 \pi \nu(N t)^{2}}(N t)^{d-1} \widehat{d \sigma}(N t x) d t d x \\
& =\left(D_{N, \nu} * f\right)(y),
\end{align*}
$$

where

$$
\begin{equation*}
D_{N, \nu}(x)=2 e^{i 2 \pi \nu b} \chi_{\{|x|>1\}} \int N q(t) e^{-i 2 \pi \nu(N t)^{2}}(N t)^{d-1} \widehat{d \sigma}(N t x) d t \tag{17}
\end{equation*}
$$

Set

$$
\begin{equation*}
K_{\nu}(x)=\sum_{l \geq 0} D_{2^{l}, \nu}(x) \tag{18}
\end{equation*}
$$

We need to estimate

$$
\left\|\sum_{l \geq 0} \hat{H}_{2,2^{l}}(y, \nu)\right\|_{p^{\prime}}=\left\|K_{\nu} * f\right\|_{p^{\prime}}
$$

If $p^{\prime}=\infty$ or $p^{\prime}=2$, then

$$
\begin{aligned}
\left\|K_{\nu} * f\right\|_{\infty} & \leq\left\|K_{\nu}\right\|_{\infty}\|f\|_{1} \\
\left\|K_{\nu} * f\right\|_{2} & \leq\left\|\hat{K}_{\nu}\right\|_{\infty}\|f\|_{2}
\end{aligned}
$$

We first show that

$$
\begin{align*}
\left\|K_{\nu}\right\|_{\infty} & \leq\left\|\sum_{l \geq 0}\left|D_{2^{l}, \nu}\right|(x)\right\|_{\infty} \tag{19}\\
& \leq C|\nu|^{-d / 2}
\end{align*}
$$

To this end we need to estimate $D_{N, \nu}$.
We will use the well-known fact that $\widehat{d \sigma}(x)=\operatorname{Re}(B(|x|))$ with $B(r)=$ $a(r) e^{i 2 \pi r}$ and $a(r)$ satisfying

$$
\begin{equation*}
\left|a^{k}(r)\right| \leq \frac{C}{r^{(d-1) / 2+k}} \tag{20}
\end{equation*}
$$

with C depending only on k and d. We now estimate the integral in (17) with $B(|x|)$ instead of $\widehat{d \sigma}(x)$:

$$
\text { (21) } \begin{array}{rl}
\int N & q(t) e^{-i 2 \pi \nu(N t)^{2}}(N t)^{d-1} a(N|x| t) e^{i 2 \pi N|x| t} d t \\
& =\frac{N^{\frac{d+1}{2}}}{|x|^{\frac{d-1}{2}}} \int q(t) e^{-i 2 \pi \nu(N t)^{2}} t^{d-1} a(N|x| t)(N|x|)^{\frac{d-1}{2}} e^{i 2 \pi N|x| t} d t \\
& =\frac{N^{\frac{d+1}{2}}}{|x|^{\frac{d-1}{2}}} e^{i 2 \pi \frac{|x|^{2}}{4 \nu}} \int q(t) a(N|x| t)(N|x|)^{\frac{d-1}{2}} t^{d-1} e^{-i 2 \pi \nu N^{2}\left(t-\frac{|x|}{2 \nu N}\right)^{2}} d t \\
& =\frac{N^{\frac{d+1}{2}}}{|x|^{\frac{d-1}{2}}} e^{i 2 \pi \frac{|x|^{2}}{4 \nu}} \int \phi(t,|x|) e^{-i 2 \pi \nu N^{2}\left(t-\frac{|x|}{2 \nu N}\right)^{2}} d t
\end{array}
$$

where $\phi(t,|x|)=q(t) a(N|x| t)(N|x|)^{(d-1) / 2} t^{d-1}$ is a Schwartz function with respect to the variable t supported in $[1 / 2,2]$, which, by (20), is bounded, together with each derivative, uniformly in $t,|x| \geq 1$, and N. Note that we used here the fact that $N|x| \geq 1$. We can say even more. Let $|x|=c \cdot r$, where $c \geq 2$ and $r \geq 1 / 2$. Then all partial derivatives of $\phi(t, c \cdot r)$ with respect to t and r are also bounded uniformly in t, r, c and N. Hence $\phi(t, c \cdot t)$ is a Schwartz function supported in $[1 / 2,2]$ which is bounded, together with each derivative, uniformly in t, c and N. We will use this fact later to estimate \hat{K}_{ν} 。

Fix some x with $|x| \geq 1$. In the calculations below we will write $\phi(t)$ instead of $\phi(t,|x|)$ for simplicity. From the method of stationary phase (see
[3, Theorem 7.7.3]) it follows that if $k \geq 1$ then

$$
\begin{gather*}
\left|\int \phi(t) e^{-i 2 \pi \nu N^{2}\left(t-\frac{|x|}{2 \nu N}\right)^{2}} d t-\sum_{j=0}^{k-1} c_{j}\left(\nu N^{2}\right)^{-j-1 / 2} \phi^{(2 j)}\left(\frac{|x|}{2 \nu N}\right)\right| \tag{22}\\
\leq c_{k}\left(|\nu| N^{2}\right)^{-k-1 / 2}
\end{gather*}
$$

with some constants c_{j}.
Since ϕ is supported in $[1 / 2,2]$, we conclude from (22) that

$$
\left|\int \phi(t) e^{-i 2 \pi \nu N^{2}\left(t-\frac{|x|}{2 \nu N}\right)^{2}} d t\right| \leq \begin{cases}C\left(|\nu| N^{2}\right)^{-1 / 2} & \text { if } N \in\left[\frac{|x|}{4 \nu}, \frac{|x|}{\nu}\right] \tag{23}\\ C_{k}\left(|\nu| N^{2}\right)^{-k-1 / 2} & \text { if } N \notin\left[\frac{|x|}{4 \nu}, \frac{|x|}{\nu}\right] .\end{cases}
$$

Replacing in (17) $\widehat{d \sigma}(x)$ by $(B(|x|)+\bar{B}(|x|)) / 2$, it follows from (23) that

$$
\left|D_{N, \nu}(x)\right| \leq \frac{N^{\frac{d+1}{2}}}{|x|^{\frac{d-1}{2}}} \begin{cases}C\left(|\nu| N^{2}\right)^{-1 / 2} & \text { if } N \in\left[\frac{|x|}{4|\nu|}, \frac{|x|}{|\nu|}\right] \tag{24}\\ C_{k}\left(|\nu| N^{2}\right)^{-k-1 / 2} & \text { if } N \notin\left[\frac{|x|}{4|\nu|}, \frac{|x|}{|\nu|}\right]\end{cases}
$$

The number of dyadic $N \in\left[\frac{|x|}{4 \nu}, \frac{|x|}{\nu}\right]$ is at most 3. Therefore choosing $k \geq$ $(d-1) / 2$ and summing (24) over all dyadic N we have

$$
\left|K_{\nu}(x)\right| \leq \sum_{l \geq 0}\left|D_{2^{l}, \nu}(x)\right| \leq C|\nu|^{-d / 2}
$$

with C depending only on d and q. Thus we have proved (19).
We now show that

$$
\begin{equation*}
\left\|\hat{K}_{\nu}\right\|_{\infty} \leq\left\|\sum_{l \geq 0}\left|\hat{D}_{2^{l}, \nu}\right|(y)\right\|_{\infty} \leq C \tag{25}
\end{equation*}
$$

Since supp $\phi \in[1 / 2,2]$, we can rewrite (22) using a stronger version of the method of stationary phase (see [3, Theorems 7.6.4, 7.6.5, 7.7.3]).

$$
\begin{aligned}
& \left|\int \phi(t) e^{-i 2 \pi \nu N^{2}\left(t-\frac{|x|}{2 \nu N}\right)^{2}} d t-\sum_{j=0}^{k-1} c_{j}\left(\nu N^{2}\right)^{-j-1 / 2} \phi^{(2 j)}\left(\frac{|x|}{2 \nu N}\right)\right| \\
& \quad \leq \frac{c_{k}\left(|\nu| N^{2}\right)^{-k-1 / 2}}{\max \left(1, \frac{|x|}{8 N|\nu|}\right)^{k}}
\end{aligned}
$$

where the numbers c_{j} are suitable constants. Therefore, for $\nu>0$,

$$
\begin{equation*}
D_{N, \nu}(x)=\chi_{\{|x|>1\}} \frac{N^{\frac{d+1}{2}}}{|x|^{\frac{d-1}{2}}} e^{i 2 \pi \frac{|x|^{2}}{4 \nu}} \sum_{j=0}^{k-1} c_{j}\left(\nu N^{2}\right)^{-j-1 / 2} \phi^{(2 j)}\left(\frac{|x|}{2 \nu N}\right)+\phi_{k}(x) \tag{26}
\end{equation*}
$$

where

$$
\left|\phi_{k}(x)\right| \leq \chi_{\{|x|>1\}} \frac{N^{\frac{d+1}{2}}}{|x|^{\frac{d-1}{2}}} \frac{c_{k}\left(|\nu| N^{2}\right)^{-k-1 / 2}}{\max \left(1, \frac{|x|}{8 N|\nu|}\right)^{k}} .
$$

If $\nu<0$ then we simply replace $\phi^{(2 j)}(|x| /(2 \nu N))$ by $\bar{\phi}^{(2 j)}(-|x| /(2 \nu N))$. We further assume that $\nu>0$. Choosing $k \geq(d+2) / 2$ we have

$$
\begin{equation*}
\left\|\hat{\phi}_{k}\right\|_{\infty} \leq\left\|\phi_{k}\right\|_{1}=\int_{|x| \leq 8 \nu N}\left|\phi_{k}\right| d x+\int_{|x|>8 \nu N}\left|\phi_{k}\right| d x \leq \frac{C}{N} \tag{27}
\end{equation*}
$$

where C depends only on d and q. We can ignore the factor $\chi_{\{|x|>1\}}$ in front of the sum in (26) because if $|x| /(2 \nu N) \in[1 / 2,2]$, then $|x| \geq \nu N \geq 1$. We will only consider the term $j=0$ in the sum; the other terms can be treated similarly. The Fourier transform of

$$
\frac{N^{\frac{d+1}{2}}}{|x|^{\frac{d-1}{2}}} e^{i 2 \pi \frac{|x|^{2}}{4 \nu}}\left(\nu N^{2}\right)^{-1 / 2} \phi\left(\frac{|x|}{2 \nu N}\right)
$$

at a point y is equal to

$$
\begin{align*}
& N^{\frac{d+1}{2}}(2 \nu N)^{\frac{d+1}{2}}\left(\nu N^{2}\right)^{-1 / 2} \int_{\mathbb{R}^{d}} \psi(|x|) e^{i 2 \pi \nu N^{2}|x|^{2}} e^{-i 2 \pi 2 \nu N x \cdot y} d x \tag{28}\\
&=C\left(\nu N^{2}\right)^{d / 2} e^{-i 2 \pi \nu|y|^{2}} \int_{\mathbb{R}^{d}} \psi(|x|) e^{i 2 \pi \nu N^{2}\left|x-\frac{y}{N}\right|^{2}} d x
\end{align*}
$$

where $\psi(t)=\phi(t, 2 \nu N t) t^{-(d-1) / 2}$ is a Schwartz function supported in [1/2,2] whose derivatives and the function itself are bounded uniformly in t, ν and N (see the remark after (21)). The same holds for the partial derivatives of $\psi(|x|)$. Applying the stationary phase method for \mathbb{R}^{d} (see [3, Theorem 7.7.3]), we get

$$
\left|\int_{\mathbb{R}^{d}} \psi(|x|) e^{i 2 \pi \nu N^{2}\left|x-\frac{y}{N}\right|^{2}} d x\right| \leq \begin{cases}C\left(\nu N^{2}\right)^{-d / 2} & \text { if } N \in\left[\frac{|y|}{2}, 2|y|\right] \tag{29}\\ C_{k}\left(\nu N^{2}\right)^{-k-d / 2} & \text { if } N \notin\left[\frac{|y|}{2}, 2|y|\right]\end{cases}
$$

Therefore the absolute value of (28) can be bounded from above by

$$
\leq \begin{cases}C & \text { if } N \in\left[\frac{|y|}{2}, 2|y|\right] \tag{30}\\ C_{k}\left(\nu N^{2}\right)^{-k} & \text { if } N \notin\left[\frac{|y|}{2}, 2|y|\right]\end{cases}
$$

Similar inequalities hold for the Fourier transforms of the other terms in the sum in (26). The number of dyadic values $N \in[|y| / 2,2|y|]$ is bounded by 3 . Using (27), choosing $k \geq 1$ in (30), and summing over all dyadic N, we obtain

$$
\begin{equation*}
\sum_{l \geq 0}\left|\hat{D}_{2^{l}, \nu}(y)\right| \leq C \tag{31}
\end{equation*}
$$

with C depending only on d and q, provided $\nu \neq 0$. Thus we have proved (25).

Using (19) and (25) and interpolating between $p=1$ and $p=2$, we obtain

$$
\begin{equation*}
\left\|K_{\nu} * f\right\|_{p^{\prime}} \leq C|\nu|^{-\alpha_{p}}\|f\|_{p} \tag{32}
\end{equation*}
$$

where $\alpha_{p}=(d / 2)(2-p) / p$. Note that $\alpha_{p}>1$ if $p<2 d /(d+2)$. Summing (32) over all $\nu \neq 0$ yields the desired inequality

$$
\sum_{\nu \neq 0}\left\|\sum_{l \geq 0} \hat{H}_{2,2^{l}}(y, \nu)\right\|_{p^{\prime}} \leq C\|f\|_{p}
$$

Remark 2. It is clear from the proof that we have the same inequality if the summation over $l \geq 0$ is replaced by a summation over any subset of the nonnegative integers.

We are now in a position to proceed with the proof of the theorem. Let $q: \mathbb{R} \rightarrow \mathbb{R}$ be a fixed nonnegative Schwartz function supported in $[1 / 2,2]$ such that

$$
q(t)+q(t / 2)=1
$$

when $t \in[1,2]$. It follows that

$$
\begin{equation*}
\sum_{l \geq 0} q\left(\frac{t}{2^{l}}\right)=1 \tag{33}
\end{equation*}
$$

when $t \geq 1$. Define

$$
q_{0}(t)=1-\sum_{l \geq 0} q\left(\frac{t}{2^{l}}\right)
$$

for $t \geq 0$. It is clear that $q_{0}(|x|)$ is a Schwartz function supported in $|x| \leq 1$. Let $\psi(t)=q_{0}(t)+q(t)$. Then

$$
\psi_{k}(t)=\psi\left(\frac{t}{2^{k}}\right)=q_{0}(t)+\sum_{l \geq 0}^{k} q\left(\frac{t}{2^{l}}\right)
$$

and $\psi(|x|)$ is a Schwartz function supported in $|x| \leq 2$ such that $\psi(|x|)=1$ if $|x| \leq 1$. Therefore

$$
\int \hat{f}(x) e^{2 \pi x \cdot y} \psi\left(\frac{|x|}{2^{k}}\right) d x=\left(f * \widehat{\psi_{k}}\right)(y)
$$

converges to f in L^{p} as $k \rightarrow \infty$. To prove that $f \in L^{p^{\prime}}$ and $\|f\|_{p^{\prime}} \lesssim\|f\|_{p}$ it will be enough to show that

$$
\left\|f * \widehat{\psi_{k}}\right\|_{p^{\prime}} \leq C\|f\|_{p}
$$

an application of Fatou's lemma to a subsequence of $f * \widehat{\psi_{k}}$ converging a.e. to f will then yield the assertion.

We have

$$
\begin{align*}
\left(f * \widehat{\psi_{k}}\right)(y) & =\left(f * \widehat{q_{0}}\right)(y)+\sum_{l \geq 0}^{k} \int \hat{f}(x) e^{2 \pi x \cdot y} q\left(\frac{|x|}{2^{l}}\right) d x \tag{34}\\
& =\left(f * \widehat{q_{0}}\right)(y)+\sum_{l \geq 0}^{k} \int_{0}^{\infty} q\left(\frac{t}{2^{l}}\right) \int \hat{f}(\xi) e^{i 2 \pi y \cdot \xi} d \sigma_{t}(\xi) d t \\
& =\left(f * \widehat{q_{0}}\right)(y)+\sum_{l \geq 0}^{k} \int_{0}^{\infty} q\left(\frac{t}{2^{l}}\right) h(y, t) d t .
\end{align*}
$$

By Young's inequality we have

$$
\begin{equation*}
\left\|f * \widehat{q_{0}}\right\|_{p^{\prime}} \lesssim\|f\|_{p} \tag{35}
\end{equation*}
$$

for $1 \leq p \leq 2$. It thus remains to estimate the sum over l.
A well-known result in number theory due to Lagrange states that every positive integer can be represented as a sum of four squares (see [2, p. 25]). Moreover, there exists an infinite arithmetic progression of positive integers (e.g., integers of the form $8 n+1$) which can be represented as sums of three squares (see [2, p. 38]). We will only use the latter result. By rescaling we can assume that \hat{f} vanishes on all spheres of radius $\sqrt{n+b}$, where n is a nonnegative integer and $0<b<1$ is a fixed number. Therefore $h(y, \sqrt{n+b})=$ 0 for all $y \in \mathbb{R}^{d}$. Making a change of variables and keeping in mind that q is supported in $[1 / 2,2]$, we rewrite the terms in the sum as follows:

$$
\int_{0}^{\infty} q\left(\frac{t}{N}\right) h(y, t) d t=\int \frac{1}{2 \sqrt{t+b}} q\left(\frac{\sqrt{t+b}}{N}\right) h(y, \sqrt{t+b}) d t
$$

An application of Poisson's summation formula gives

$$
\begin{aligned}
0 & =\sum_{n} \frac{1}{\sqrt{n+b}} q\left(\frac{\sqrt{n+b}}{N}\right) h(y, \sqrt{n+b}) \\
& =\sum_{\nu}\left(\frac{1}{\sqrt{t+b}} q\left(\frac{\sqrt{t+b}}{N}\right) h(y, \sqrt{t+b})\right)^{\wedge}(\nu) \\
& =\int \frac{1}{\sqrt{t+b}} q\left(\frac{\sqrt{t+b}}{N}\right) h(y, \sqrt{t+b}) d t+\sum_{\nu \neq 0} \hat{H}_{1, N}(y, \nu)+\sum_{\nu \neq 0} \hat{H}_{2, N}(y, \nu)
\end{aligned}
$$

where

$$
H_{i, N}(y, t)=\frac{1}{\sqrt{t+b}} q\left(\frac{\sqrt{t+b}}{N}\right) h_{i}(y, \sqrt{t+b}), \quad i=1,2
$$

Applying Lemmas 1 and 2, along with Remark 2, we can bound the sum by

$$
\begin{aligned}
&\left\|\sum_{l \geq 0}^{k} \int_{0}^{\infty} q\left(\frac{t}{2^{l}}\right) h(y, t) d t\right\|_{p^{\prime}} \leq \sum_{l \geq 0} \sum_{\nu \neq 0}\left\|\hat{H}_{1,2^{l}}(y, \nu)\right\|_{p^{\prime}} \\
&+\sum_{\nu \neq 0}\left\|\sum_{l \geq 0}^{k} \hat{H}_{2,2^{l}}(y, \nu)\right\|_{p^{\prime}} \\
& \leq C\|f\|_{p}
\end{aligned}
$$

Combining (34), (35), and the last inequality, we obtain the desired inequality

$$
\left\|f * \widehat{\psi_{k}}\right\|_{p^{\prime}} \leq C\|f\|_{p}
$$

from which the statement of the theorem follows.
Remark 3. We say that a function $f \in L^{p}$ has vanishing periodizations if there exists a sequence of Schwartz functions f_{k} with vanishing periodizations converging to f in L^{p}. It follows from Theorem 1 that $f \in L^{p^{\prime}}$ and the functions f_{k} converge to f in $L^{p^{\prime}}$ if $d \geq 3$ and $1 \leq p<2 d /(d+2)$.

3. Counterexamples and open questions

When $d=1$ or $d=2$, Theorem 1 does not apply. The case $d=1$ is not interesting. We can easily construct examples of functions f with vanishing periodizations such that their L^{p} norms are not bounded by their L^{q} norms, for any given pair $p \neq q$.

We now show that, when $d=2$, the assertion of Theorem 1 does not hold. More precisely, Lemma 3 below shows that if $1 \leq p<2$, then the inequality

$$
\|f\|_{p^{\prime}} \lesssim\|f\|_{p}
$$

does not hold for functions with vanishing periodizations. This lemma deals with a sequence of functions f_{n} such that \hat{f}_{n} vanishes on all circles of radius $\sqrt{l^{2}+k^{2}}$. Denote by X_{2} the Banach space of functions from $L^{1}\left(\mathbb{R}^{2}\right)$ whose Fourier transforms vanish on all circles of radius $\sqrt{l^{2}+k^{2}}$, i.e.,

$$
X_{2}=\left\{f \in L^{1}\left(\mathbb{R}^{2}\right): \hat{f}(\mathbf{r})=0 \text { if }|\mathbf{r}|=\sqrt{l^{2}+k^{2}},(k, l) \in \mathbb{Z}^{2}\right\}
$$

The lemma depends in crucial way on the following fact from number theory (see [2, p. 22]):

The number of integers in $[n, 2 n]$ which can be represented as sums of two squares is $n \epsilon_{n}$, where $\epsilon_{n} \lesssim 1 / \ln ^{1 / 2} n \rightarrow 0$ as $n \rightarrow \infty$.

We only need that $\lim _{n \rightarrow \infty} \epsilon_{n}=0$.

Lemma 3. Let $1 \leq p<2$ and $d=2$. Then there exists a sequence of Schwartz functions $f_{n} \in X_{2}$ such that

$$
\lim _{n \rightarrow \infty} \frac{\left\|f_{n}\right\|_{p^{\prime}}}{\left\|f_{n}\right\|_{p}}=\infty
$$

Proof. Let $a_{1}<a_{2}<a_{3}<\cdots$ be the enumeration of the numbers $a_{m}=$ $\sqrt{l^{2}+k^{2}}$ in ascending order, and set $\delta_{m}=a_{m+1}-a_{m}$. As mentioned above, the number of a_{m} in the interval $[\sqrt{n}, 2 \sqrt{n}]$ is $n \epsilon_{n}$. Let $a_{m_{0}}$ and $a_{m_{1}}$ denote, respectively, the smallest and largest elements a_{m} in this interval. Then

$$
\sum_{m=m_{0}}^{m_{1}-1} \delta_{m}=a_{m_{1}}-a_{m_{0}} \sim \sqrt{n}
$$

Let

$$
\begin{equation*}
\delta=\frac{C}{\sqrt{n} \epsilon_{n}} \tag{36}
\end{equation*}
$$

with a small enough constant $C>0$ so that if

$$
M=\left\{m_{0} \leq m<m_{1}: \delta_{m} \geq \delta\right\}
$$

then

$$
\sqrt{n} \lesssim \sum_{m \in M} \delta_{m}
$$

This is possible since $m_{1}-m_{0} \sim n \epsilon_{n}$. Choose coordinate axes x and y. We will construct functions \hat{f}_{n} supported in $\bigcup_{m \in M} R_{m}$, where R_{m} is a largest possible rectangle inscribed between circles of radius a_{m} and a_{m+1} with sides parallel to the coordinate axes. Then R_{m} is of size $\sim \delta_{m} \times \sqrt{\delta_{m} a_{m}} \gtrsim \delta_{m} \times \sqrt{\delta \sqrt{n}} \gtrsim$ $\delta_{m} \times 1$. We split each rectangle R_{m} further into $\left[\delta_{m} / \delta\right.$] smaller rectangles r of the same size $\sim \delta \times 1$. The number of these rectangles r is

$$
\begin{equation*}
N=\sum_{m \in M}\left[\frac{\delta_{m}}{\delta}\right] \sim \sum_{m \in M} \frac{\delta_{m}}{\delta} \sim \frac{\sqrt{n}}{1 / \sqrt{n} \epsilon_{n}}=n \epsilon_{n} \tag{37}
\end{equation*}
$$

since $\delta_{m} \geq \delta$ for $m \in M$. Enumerate these rectangles by $r_{k}, k=1, \ldots, N$. Let r_{k} be centered at $\left(\lambda_{k}, 0\right)$. It is clear that $\left|\lambda_{k}-\lambda_{l}\right| \geq \delta$ for $k \neq l$. Let ϕ be a nonnegative Schwartz function on \mathbb{R} supported in $[-1 / 2,1 / 2]$. Then $\check{\phi}(x) \geq C>0$ if x is small enough. Define \hat{f}_{n} by

$$
\begin{equation*}
\hat{f}_{n}(x, y)=\sum_{k=1}^{N} \phi\left(\frac{x-\lambda_{k}}{\delta}\right) \phi(y) \tag{38}
\end{equation*}
$$

The k th term in (38) is supported in r_{k}. Therefore, \hat{f}_{n} is a Schwartz function supported in $\bigcup_{m \in M} R_{m}$. Hence \hat{f}_{n} vanishes on all circles of radius a_{l}. Taking
the inverse Fourier transform of (38), we get

$$
\begin{equation*}
f_{n}(\xi, \eta)=\delta \check{\phi}(\xi \delta) \check{\phi}(\eta) \sum_{k=1}^{N} e^{i \lambda_{k} \xi} \tag{39}
\end{equation*}
$$

Assume first that $p^{\prime}<\infty$. Then

$$
\begin{aligned}
\int\left|f_{n}(\xi, \eta)\right|^{p^{\prime}} d \xi d \eta & \geq\|\check{\phi}\|_{p^{\prime}}^{p^{\prime}} \delta^{p^{\prime}} \int_{|\xi| \leq\left(100^{-1}\right) / \sqrt{n}}|\check{\phi}(\xi \delta)|^{p^{\prime}}\left|\sum_{k=1}^{N} e^{i \lambda_{k} \xi}\right|^{p^{p^{\prime}}} d \xi \\
& \gtrsim \delta^{p^{\prime}} N^{p^{p^{\prime}}} \frac{1}{\sqrt{n}} \sim(\sqrt{n})^{p^{\prime}-1}
\end{aligned}
$$

where the second step follows from the bound

$$
\left|\sum_{k=1}^{N} e^{i \lambda_{k} \xi}\right| \geq\left|\sum_{k=1}^{N} \cos \left(\lambda_{k} \xi\right)\right| \gtrsim N
$$

since $\left|\lambda_{k} \xi\right| \leq 1 / 50$, and the third step follows from (36) and (37). Therefore

$$
\begin{equation*}
\left\|f_{n}\right\|_{p^{\prime}} \gtrsim(\sqrt{n})^{1 / p} \tag{40}
\end{equation*}
$$

If $p^{\prime}=\infty$ we obtain in a similar way that

$$
\begin{equation*}
\left\|f_{n}\right\|_{\infty} \geq\left|f_{n}(0)\right| \gtrsim \sqrt{n} \tag{41}
\end{equation*}
$$

We now estimate the L^{p} norm from above. Set

$$
g(x)=\sum_{k=1}^{N} e^{i\left(\lambda_{k} / \delta\right) \xi}
$$

Since $\left|\left(\lambda_{k}-\lambda_{l}\right) / \delta\right| \geq \delta / \delta=1$ for $k \neq l$, we have

$$
\int_{I}|g|^{2} \sim N
$$

for any interval I of length 4π (see [8, Theorem 9.1]). Therefore,

$$
\begin{equation*}
\int_{I}|g|^{p} \leq|I|^{1-2 / p}\left(\int_{I}|g|^{2}\right)^{p / 2} \lesssim N^{p / 2} \tag{42}
\end{equation*}
$$

for any interval I of length 4π. Since $\check{\phi}$ is a Schwartz function, we have

$$
|\check{\phi}(x)| \lesssim \frac{1}{1+x^{2}}
$$

Therefore

$$
\begin{aligned}
\int\left|f_{n}(\xi, \eta)\right|^{p} d \xi d \eta & =\|\check{\phi}\|_{p}^{p} \delta^{p-1} \int|\check{\phi}(\xi)|^{p} \cdot\left|\sum_{k=1}^{N} e^{i\left(\lambda_{k} / \delta\right) \xi}\right|^{p} d \xi \\
& =C \delta^{p-1} \sum_{l=-\infty}^{\infty} \int_{l 4 \pi}^{(l+1) 4 \pi}|\check{\phi}(\xi)|^{p} \cdot|g(\xi)|^{p} d \xi \\
& \lesssim \delta^{p-1} \sum_{l=-\infty}^{\infty} \frac{1}{\left(1+l^{2}\right)^{p}} N^{p / 2} \\
& \lesssim \sqrt{n} \epsilon_{n}^{1-p / 2}
\end{aligned}
$$

where the last step follows from (36) and (37). Hence

$$
\begin{equation*}
\left\|f_{n}\right\|_{p} \lesssim(\sqrt{n})^{1 / p} \epsilon_{n}^{(2-p) / 2 p} \tag{43}
\end{equation*}
$$

Dividing (40) by (43) we obtain the desired result

$$
\frac{\left\|f_{n}\right\|_{p^{\prime}}}{\left\|f_{n}\right\|_{p}} \geq \frac{(\sqrt{n})^{1 / p}}{(\sqrt{n})^{1 / p} \epsilon_{n}^{(2-p) /(2 p)}}=\frac{1}{\epsilon_{n}^{(2-p) /(2 p)}} \rightarrow \infty
$$

as $n \rightarrow \infty$ since $p<2$.
Corollary 2. There exists a function $f \in X_{2}$ such that

$$
\|f\|_{L^{\infty}(D(0,1))}=\infty
$$

Proof. It follows immediately from the lemma and (41) that if $p=1$ then

$$
\sup _{f \in X_{2}} \frac{\|f\|_{L^{\infty}(D(0,1))}}{\|f\|_{1}}=\infty
$$

We claim that there exists a function $f \in X_{2}$ such that $\|f\|_{L^{\infty}(D(0,1))}=\infty$. Suppose, to get a contradiction, that this is not true. Then the restriction operator

$$
T:\left.f \rightarrow f\right|_{D(0,1)}
$$

maps X_{2} to $L^{\infty}(D(0,1))$. Note that if $f_{n} \rightarrow f$ in L^{1} and $f_{n} \rightarrow g$ in $L^{\infty}(D(0,1))$, then $f=g$ a.e. on $D(0,1)$. An application of the Closed Graph Theorem shows that T is a bounded operator acting from X_{2} to $L^{\infty}(D(0,1))$. This contradicts Corollary 2, and thus proves our claim.

Obviously, this function f is not continuous. Therefore the theorem of Kolountzakis and Wolff mentioned in the Introduction does not hold for dimension 2.

REMARK 4. It is an open problem whether, for $f \in X_{2}$, the inequality

$$
\|f\|_{r} \lesssim\|f\|_{p}
$$

holds when $1 \leq p<2$ and $p<r<p^{\prime}$.
We now show that the range of r in Corollary 1 is sharp. We need to consider two cases, $r>p^{\prime}$ and $r<p$. In the first case the argument is similar to the one given in the previous lemma, and we therefore give only a sketch. We will deal with a sequence of functions f_{n} such that the functions \hat{f}_{n} vanish on all circles of radius $\sqrt{m_{1}^{2}+\cdots+m_{d}^{2}}$. Denote by X_{d} the Banach space of functions from $L^{1}\left(\mathbb{R}^{d}\right)$ whose Fourier transforms vanish on all circles of radius $\sqrt{m_{1}^{2}+\cdots+m_{d}^{2}}$, i.e.,

$$
X_{d}=\left\{f \in L^{1}\left(\mathbb{R}^{d}\right): \hat{f}(\mathbf{r})=0 \text { if }|\mathbf{r}|=\sqrt{m_{1}^{2}+\cdots+m_{d}^{2}},\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}\right\}
$$

We will construct a sequence of Schwartz functions f_{n} with Fourier transforms supported outside of spheres of radius \sqrt{m}. Therefore these functions automatically belong to X_{d}.

Lemma 4. Let $1<p \leq 2$ and $r>p^{\prime}$. Then there exists a sequence of Schwartz functions $f_{n} \in X$ such that

$$
\lim _{n \rightarrow \infty} \frac{\left\|f_{n}\right\|_{r}}{\left\|f_{n}\right\|_{p}}=\infty
$$

Proof. A maximal rectangle inscribed between spheres of radius \sqrt{n} and $\sqrt{n+1}$ has dimensions $\sim(1 / \sqrt{n}) \times 1 \times 1 \times \cdots \times 1$. Let r_{k} denote parallel identical rectangles inscribed between spheres of radius $\sqrt{n+k}$ and $\sqrt{n+k+1}$, for $k=0,1, \ldots, n-1$, with dimensions $\sim(1 / \sqrt{n}) \times 1 \times 1 \times \cdots \times 1$, and centered at $\left(\lambda_{k}, 0,0, \ldots, 0\right)$. It is clear that $\lambda_{k+1}-\lambda_{k} \sim 1 / \sqrt{n}$. Let ϕ be a nonnegative Schwartz function on \mathbb{R} supported in $[-1 / 100,1 / 100]$. We have $\check{\phi}(x) \geq C>0$ when x is small enough. Define \hat{f}_{n} by

$$
\begin{equation*}
\hat{f}_{n}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{k=0}^{n-1} \phi\left(\left(x_{1}-\lambda_{k}\right) \sqrt{n}\right) \prod_{l=2}^{d} \phi\left(x_{l}\right) \tag{44}
\end{equation*}
$$

The k th term in (44) is supported in r_{k}. Therefore, \hat{f}_{n} is a Schwartz function vanishing on all spheres of radius \sqrt{m}. Taking the inverse Fourier transform of (44), we get

$$
\begin{equation*}
f_{n}\left(y_{1}, y_{2}, \ldots, y_{d}\right)=\prod_{l=2}^{d} \check{\phi}\left(y_{l}\right) \frac{1}{\sqrt{n}} \check{\phi}\left(\frac{y_{1}}{\sqrt{n}}\right) \sum_{k=0}^{n-1} e^{i \lambda_{k} y_{1}} \tag{45}
\end{equation*}
$$

Arguing as in the proof of Lemma 3, we obtain

$$
\left\|f_{n}\right\|_{r} \gtrsim(\sqrt{n})^{1 / r^{\prime}}
$$

and

$$
\left\|f_{n}\right\|_{p} \lesssim(\sqrt{n})^{1 / p}
$$

Therefore,

$$
\frac{\left\|f_{n}\right\|_{r}}{\left\|f_{n}\right\|_{p}} \gtrsim(\sqrt{n})^{\left(1 / p^{\prime}\right)-(1 / r)} \rightarrow \infty
$$

as $n \rightarrow \infty$, since $r>p^{\prime}$.
The case when $r<p$ is very simple. Let

$$
\hat{f}(x)=\phi\left(\frac{x-x_{0}}{\epsilon}\right)
$$

where ϕ is a Schwartz function supported in $B^{d}(0,1)$ so that \hat{f} is supported in a small ball $B^{d}\left(x_{0}, \epsilon\right)$ placed between two fixed spheres of radius \sqrt{n} and $\sqrt{n+1}$. Then $f(y)=\epsilon^{d} \check{\phi}(\epsilon y)$ and

$$
\frac{\|f\|_{r}}{\|f\|_{p}} \sim \frac{\epsilon^{d / r^{\prime}}}{\epsilon^{d / p^{\prime}}} \rightarrow \infty
$$

as $\epsilon \rightarrow 0$, since $r<p$. Note that we did not impose any restriction on p here.
We now show that Theorem 1 does not hold if $p>2$. More precisely, let $p>2$ and $r \neq p$. Then the following inequality is not true for functions with vanishing periodizations:

$$
\|f\|_{r} \lesssim\|f\|_{p}
$$

Since we have already dealt with the case when $r<p$, we only need to consider the case $r>p$. The argument is almost the same as in the proof of Lemma 4. We construct a sequence of Schwartz functions f_{n} with Fourier transforms vanishing on all spheres of radius \sqrt{m} and such that $\left\|f_{n}\right\|_{r} \gtrsim(\sqrt{n})^{1 / r^{\prime}}$ and $\left\|f_{n}\right\|_{p} \leq\left\|\hat{f}_{n}\right\|_{p^{\prime}} \lesssim(\sqrt{n})^{1 / p^{\prime}}$. Therefore

$$
\frac{\left\|f_{n}\right\|_{r}}{\left\|f_{n}\right\|_{p}} \gtrsim(\sqrt{n})^{(1 / p)-(1 / r)} \rightarrow \infty
$$

Remark 5. Since Theorem 1 trivially holds for $p=2$, it is natural to expect that it also holds for $1 \leq p \leq 2$. However, the question whether the theorem holds for $2 d /(d+2) \leq p<2$ is still open.

Another interesting question is whether the inequality

$$
\begin{equation*}
\|\hat{f}\|_{p} \lesssim\|f\|_{p} \tag{46}
\end{equation*}
$$

holds for some range of $p<2$ if f has vanishing periodizations. It would then follow that

$$
\begin{equation*}
\|\hat{f}\|_{r} \lesssim\|f\|_{p} \tag{47}
\end{equation*}
$$

for $p \leq r \leq p^{\prime}$. From Theorem 1 we see that (47) holds when $2 \leq r \leq p^{\prime}$, $1 \leq p<2 d /(d+2)$ and $d \geq 3$, since $\|f\|_{2} \lesssim\|f\|_{p}$.

Our final open question is whether the following inequalities are true for functions with not necessarily vanishing periodizations g_{ρ} :

$$
\|f\|_{p^{\prime}} \lesssim\|f\|_{p}+\|g\|_{p^{\prime}}
$$

and

$$
\|g\|_{p^{\prime}} \lesssim\|f\|_{p}+\|f\|_{p^{\prime}}
$$

for some range of $p \leq 2 d /(d+1)$, where

$$
\|g\|_{p^{\prime}}=\left(\int_{\rho \in \operatorname{SO}(d)}\left\|g_{\rho}\right\|_{p^{\prime}}^{p} d \rho\right)^{1 / p}
$$

References

[1] K.M. Davis and Y.-C. Chang, Lectures on Bochner-Riesz means, Cambridge University Press, Cambridge, 1987.
[2] E. Grosswald, Representations of integers as sums of squares, Springer-Verlag, New York, 1985.
[3] L. Hörmander, The analysis of linear partial differential operators I, Springer-Verlag, Berlin, 1983.
[4] M. Kolountzakis, A new estimate for a problem of Steinhaus, Intern. Math. Res. Notices, 1996, no. 11, 547-555.
[5] M. Kolountzakis and T. Wolff, On the Steinhaus tiling problem, Mathematika, 46 (1999), 253-280.
[6] O. Kovrijkine, On the L^{2}-norm of periodizations of functions, Intern. Math. Res. Notices, 2001, no. 19, 1003-1025.
[7] , Some estimates of Fourier transforms, Ph.D. Thesis, Caltech, 2000.
[8] A. Zygmund, Trigonometric series. Vol. I, II, Cambridge University Press, New York, 1968.

MIT, 2-273, Dept of Math, 77 Mass. Ave., Cambridge, MA 02139, USA
E-mail address: oleg@math.mit.edu

[^0]: Received January 30, 2001; received in final form April 21, 2002.
 2000 Mathematics Subject Classification. 42B35.
 This research was partially conducted by the author for the Clay Mathematics Institute and partially supported by NSF grant DMS 97-29992.

