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ASYMPTOTIC `p HEREDITARILY INDECOMPOSABLE
BANACH SPACES

IRENE DELIYANNI AND ANTONIS MANOUSSAKIS

Abstract. For every 1 < p <∞ we construct an asymptotic `p Banach
space which is hereditarily indecomposable and such that its dual is
asymptotic `q hereditarily indecomposable, where q is the conjugate
of p. We prove that c0 is finitely representable in these spaces and
that every bounded linear operator on these spaces is a strictly singular
perturbation of a multiple of the identity.

1. Introduction

In recent years the study of the geometry of hereditarily indecomposable
(HI) Banach spaces has revealed new structural phenomena in Banach space
theory. A Banach space X is called HI if no infinite-dimensional closed sub-
space of X can be written as the direct sum of two infinite-dimensional closed
subspaces. The study of the geometry of HI Banach spaces has been initi-
ated after the solution of the unconditional basic sequence problem by W.T.
Gowers and B. Maurey [15], and the dichotomy theorem due to W.T. Gowers
[14]. Concerning the geometry of HI spaces, S.A. Argyros and the first named
author [2] provided examples of asymptotic `1 HI spaces, and V. Ferenczi [11]
using complex interpolation arguments gave examples of uniformly convex HI
Banach spaces. Concerning the structure of the dual as well as the quotients
of an HI space, V. Ferenczi [12] proved that the dual and the quotients of
the Gowers-Maurey space are HI spaces. The Argyros-Felouzis dichotomy [5]
shows that in general this is not the case, since from their results it follows
that the classical spaces are quotients of HI spaces. Moreover, S.A. Argyros
and A. Tolias [8] proved that every separable Banach space Z not containing
`1 is a quotient of an HI space X and Z∗ is complemented in X∗. We refer
the reader to the handbook article of B. Maurey [17] and the lecture notes by
S.A. Argyros [7] for a comprehensive study of HI spaces.
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In this paper we provide examples of asymptotic `p HI Banach spaces, for
1 < p <∞. We recall the definition of an asymptotic `p Banach space.

Definition 1.1. Let 1 ≤ p ≤ ∞. A Banach space X with a normalized
basis (en)n is said to be an asymptotic `p space if there exists a constant C
such that, for every n ∈ N, any sequence of normalized vectors (xi)n

i=1 with
n ≤ suppx1 < · · · < suppxn is C–equivalent to the unit vector basis of `np .

Examples of asymptotic `1 HI Banach spaces were given in [2]. In the
present paper we construct, for every 1 < p < ∞, a real asymptotic `p HI
space X(p). We also prove that the spaces X(p) have the following properties:

(1) For every infinite-dimensional closed subspace Y ofX(p), every bounded
linear operator T : Y → X(p) is of the form T = λIY +S, where λ is a scalar, IY
is the inclusion operator from Y to X(p) and S is a strictly singular operator.
Real asymptotic `1 spaces with the same property were constructed in [8].
Recall also that, as proved by V. Ferenczi in [10] (see also [15]), this property
characterizes complex HI Banach spaces.

(2) c0 is finitely representable in every subspace of X(p). It was proved
in [3] that the asymptotic `1 HI Banach spaces constructed in [2] also have
this property. It follows that the spaces X(p) do not contain uniformly convex
subspaces. We do not know whether similar constructions can yield examples
of uniformly convex HI spaces. This would be interesting in particular in the
case p = 2, since it is related to the question whether there exists a weak
Hilbert HI Banach space.

(3) The dual X∗
(p) of the space X(p) is also an HI space. Since the dual of

an asymptotic `p space is asymptotic `q, where 1
p + 1

q = 1, we get, for every
1 < q <∞, an asymptotic `q HI space X(q), and a dually defined asymptotic
`q HI space X∗

(p), which are proved to be totally incomparable. We note that
asymptotic `1 HI Banach spaces with HI duals were constructed in [8].

Our construction is based on a p-convexified mixed Tsirelson space. Namely,
we use as frame the mixed Tsirelson spaces X = T [(Snj , θj)j ] introduced in
[2], where (nj)j is an increasing sequence of positive integers, (θj)j is a se-
quence of positive reals decreasing to zero and, for n ∈ N, Sn is the Schreier
family of order n. Let us recall the definition.

Definition 1.2 ([1]). We set

S0 = {{n} : n ∈ N} ∪ {∅} , S1 = {F ⊂ N : #F ≤ minF} ∪ {∅}

and for n = 1, 2, . . . ,

Sn+1 =
{ k⋃

i=1

Fi : Fi ∈ Sn for all i ≤ k, F1 < · · · < Fk

and (minFi)k
i=1 ∈ S1

}
∪ {∅} .
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We next give a brief description of the space X(p). Denote by q the conju-
gate of p. We first consider the unconditional counterpart Xu,p of the space
X(p). This is an asymptotic `p Banach space with an unconditional basis.
The ball of X∗

u,p is closed as a subset of `∞ under the (Snj
, θj) q-convex op-

eration for every j ∈ N. This means that if f1 < · · · < fd is a Snj -admissible
family in BX∗

u,p
(Definition 2.1), then θj

∑d
i=1 βifi ∈ BX∗

u,p
for every choice

of coefficients (βi)d
i=1 ∈ B`q . Moreover, BX∗

u,p
is minimal with this property.

In fact, Xu,p is the p-convexification of the asymptotic `1 space T [(Snj
, θj)j ]

constructed in [2].
We now turn to the space X(p). X(p) has a norming set D ⊂ BX∗

(p)
, which is

closed under the (Sn2j , θ2j) q-convex operation for every j ∈ N. This implies
in particular that, if (xi)d

i=1 is a block sequence in X(p) with d ≤ min suppx1,
then ∥∥∥∥∥

d∑
i=1

xi

∥∥∥∥∥ ≥ θ2

(
d∑

i=1

‖xi‖p

)1/p

.

Using an appropriate coding function σ, i.e., an injective map from the count-
able set of finite block sequences of vectors with rational coordinates to the
natural numbers, we define for every j ∈ N some special Sn2j+1-admissible
sequences of vectors, which we call (σ, 2j + 1)-sequences. If (f1, . . . , f2d) is a
(σ, 2j + 1)-sequence, then every functional of the form

θ2j+1E

d∑
i=1

γi(f2i−1 + f2i),

where (21/qγi)d
i=1 ∈ B`q and E is an interval of N, is called a (Sn2j+1 , θ2j+1)-

special functional.
The norming set D is rationally convex and minimal with the property of

being closed under the (Sn2j , θ2j) q-convex operation for every j ∈ N as well
as under the formation of (Sn2j+1 , θ2j+1) special functionals for every j ∈ N.

The use of some type of special functionals defined by means of a coding
function is common in every construction of an HI space so far, starting from
[15]. Let us add a few comments on our choice of special functionals:

The fact that the coefficients (γi)d
i=1 are chosen freely yields that the space

satisfies an upper `p estimate (Proposition 2.9). On the other hand, the
restriction that the two elements of each pair (f2i−1, f2i) have the same coef-
ficient allows us to prove the following:

For every j ∈ N and every pair of block subspaces Y and Z of X(p), there
exist a sequence of vectors (xk)2d

k=1 in BX(p) with x2i−1 ∈ Y and x2i ∈ Z, for
every i = 1, . . . , d, and a p-convex combination x =

∑d
i=1 ai(x2i−1+x2i), such

that:
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(i) x is well normed by a (Sn2j+1 , θ2j+1)-special functional of the form
θ2j+1

∑d
i=1 γi(f2i−1 + f2i), where, for each k = 1, . . . , 2d, fk(xk) = 1.

(ii) The norm of x̃ =
∑d

i=1 ai(x2i−1 − x2i) is less than Cθ2j+1‖x‖ (where
C is a constant).

This yields that the space X(p) is hereditarily indecomposable using the fol-
lowing standard characterization of HI spaces. A Banach spaceX is hereditar-
ily indecomposable if and only if, for every ε > 0 and all infinite-dimensional
subspaces Y, Z of X there exist y ∈ Y and z ∈ Z with ‖y − z‖ ≤ ε‖y + z‖.

Our terminology and notation is standard and can be found in [16].

Acknowledgment. We would like to thank S. Argyros for valuable dis-
cussions.

2. The space X(p) and its norming set

In this section we give the definition of the space X(p), by constructing its
norming set. We give some properties of the norming set of this space and
we prove that X(p) is an asymptotic `p space (Proposition 2.9). We show
that the dual space X∗

(p) is an asymptotic `q-space, where q is the conjugate
of p, and moreover that the asymptotic `q spaces X∗

(p) and X(q) are totally
incomparable.

Let (ei)∞i=1 be the standard basis of the linear space c00 of finitely supported
sequences. For x =

∑∞
i=1 aiei ∈ c00, the support of x is the set suppx = {i ∈

N : ai 6= 0}. The range of x, written ranx, is the smallest interval of N
containing the support of x. For finite subsets E,F of N, E < F means
maxE < minF or either E or F is empty. For n ∈ N, E ⊂ N, n < E
(resp. E < n) means n < minE (resp. maxE < n). For x, y in c00, x < y
means suppx < supp y. For n ∈ N, x ∈ c00, we write n < x (resp. x < n) if
n < suppx (resp. suppx < n). We say that the sets Ei ⊂ N, i = 1, . . . , n, are
successive if E1 < E2 < · · · < En. Similarly, the vectors xi, i = 1, . . . n, are
successive if x1 < x2 < · · · < xn. For x =

∑∞
i=1 aiei and E a subset of N, we

denote by Ex the vector Ex =
∑

i∈E aiei.
Let M be a family of finite subsets of N. We say that M is compact if

it is closed in the topology of pointwise convergence in 2N. M is hereditary
if whenever B ⊂ A and A ∈ M, then B ∈ M. M is spreading if whenever
A = {m1, . . . ,mk} ∈ M and B = {n1, . . . , nk} is such that, for all i = 1, . . . k,
mi ≤ ni, then B ∈M.

It is easy to see that, for every n ∈ N, the Schreier family Sn (Definition
1.2) is compact, hereditary and spreading.

Definition 2.1. Let M be a family of finite subsets of N.
(a) A finite sequence (Ei)d

i=1 of subsets of N is M-admissible if there
exists (ki)d

i=1 ∈ M such that k1 ≤ E1 < k2 ≤ E2 < · · · < kd ≤ Ed.
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If M is spreading, this is equivalent to E1 < E2 < · · · < Ed and
{minE1, . . . ,minEd} ∈ M.

(b) A finite sequence (xi)n
i=1 of vectors in c00 is M-admissible if the se-

quence (suppxi)n
i=1 is M-admissible.

Fix p ∈ [1,∞). In the sequel, whenever we write mj or nj we shall refer to
a pair of fixed recursively defined sequences of natural numbers satisfying the
following properties: m1 = 4, n1 = 1 and, for j ∈ N,

(1) mj+1 is a power of 2 and mj+1 ≥ m5
j ,

and

(2) (log2(mj)+1)(γ(j)(nj−1+1)+1) < nj , where γ(j) = [3p logm1
(mj)]+2.

Let

W =
{

(f1, . . . , fd) : fi ∈ c00, fi 6= 0, fi(n) ∈ Q

for all i ≤ d, n ∈ N, and f1 < · · · < fd

}
.

We consider a partition of N into two infinite sets N1 and N2. We also consider
a coding function σ : W → {2j : j ∈ N2} with the following properties.

(i) σ is one-to-one.
(ii) σ(f1, . . . , fi−1) < σ(f1, . . . , fi−1, fi).

(iii) mσ(f1,...,fi) > max
{

1
|fj(ek)|

: k ∈ supp fj , j = 1, . . . , i
}
·max supp fi

for every (f1, . . . , fd) ∈ W and i = 1, . . . , d.

Definition 2.2. Let (K2i)i∈N be a sequence of subsets of c00 consisting of
vectors with rational coordinates and let j ∈ N. A sequence (f1, . . . , fd) ∈ W
is called a (σ, j)-sequence (with respect to the family (K2i)i∈N) if:

(i) f1 ∈ K2j1 for some j1 ∈ N1 with 2j1 ≥ j + 5, and fi ∈ Kσ(f1,...,fi−1)

for i = 2, . . . , d.
(ii) The set (f1, . . . , fd) is Snj -admissible.

We now construct a sequence (Kn)n of subsets of c00 as follows:
We set K0 = {±en : n ∈ N} and D0 = convQ K

0, where convQ M denotes
the rational convex hull of M . Assume that for some n ≥ 0 we have defined
the sets Kn

j , j ∈ N, and we have set Kn =
⋃

j K
n
j and Dn = convQ K

n. Then,
for j ∈ N, we set

Kn+1
2j = Kn

2j ∪
{

1
m2j

d∑
i=1

βifi : d ∈ N, fi ∈ Dn, βi ∈ Q for i = 1, 2, . . . , d,

(βi)i≤d ∈ B`q \ {0} and (f1, f2, . . . , fd) is Sn2j -admissible
}
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and

Kn+1
2j+1 =Kn

2j+1 ∪
{

1
m2j+1

E

d∑
i=1

γi(f2i−1 + f2i) : E is an interval of N, d ∈ N,

γi ∈ Q for i = 1, . . . , d, (21/qγi)i≤d ∈ B`q \ {0} and (f1, . . . , f2d)

is a (σ, 2j + 1)− sequence with respect to the family (Kn
2i)i∈N

}
.

We set Kn+1 =
⋃

j K
n+1
j and Dn+1 = convQ K

n+1.
For every i ∈ N, we set Li =

⋃
n∈N K

n
i . For j ∈ N, the functionals contained

in the set L2j+1 =
⋃

n∈N K
n
2j+1 are called 2j + 1-special functionals.

Finally, we set K =
⋃

nK
n and D =

⋃
nD

n. The space X(p) is defined as
the completion of c00 under the norm ‖x‖ = ‖x‖D = sup{〈f, x〉 : f ∈ D}.

Remarks 2.3. (i) It is easily verified that the sets K and D are symmetric
and closed under the projection of their elements on intervals. It follows that
the sequence (en)n∈N is a bimonotone basis of X(p).

(ii) A simple inductive argument shows that Kn ⊂ B`q
for every n ∈ N

and therefore D ⊂ B`q . It follows that, for every f ∈ D and
∑

i∈A aiei ∈ c00,
we have |f(

∑
i∈A aiei)| ≤ ‖(ai)i∈A‖`p

.
(iii) By the definition of the norm and since D is rationally convex it follows

that BX∗
(p)

= D
w∗

= D
p
, where D

p
is the pointwise closure of D.

(iv) The set D is closed under the (Sn2j
, 1/m2j)-operation for every j ∈ N,

i.e., if f1 < · · · < fd is an Sn2j -admissible sequence of elements of D and
(βi)d

i=1 is a rational q-convex combination, then 1/m2j

∑d
i=1 βifi ∈ K ⊂ D. If

some βi are not rational, then it follows by (iii) that 1/m2j

∑d
i=1 βifi ∈ BX∗

(p)
.

Definition 2.4 (The tree Tf corresponding to f ∈ D). Let f ∈ D. By
a tree analysis of f (or a tree corresponding to f) we mean a finite family
Tf = (ft)t∈T indexed by a finite tree T with a unique root 0 ∈ T such that
the following conditions are satisfied:

(1) f0 = f and ft ∈ D for all t ∈ T .
(2) If t ∈ T , then t is maximal if and only if ft ∈ K0.
(3) For every t ∈ T which is not maximal we denote by St the set of

immediate successors of t in T . Then exactly one of the following
three statements holds:
(a) St = {s1, . . . , sd}, where fs1 < · · · < fsd

and there exist j ∈ N
and (βi)d

i=1 ∈ B`q such that the family (fs1 , . . . , fsd
) is Sn2j -

admissible and

ft =
1
m2j

d∑
i=1

βifsi
.
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(b) There exist j ∈ N, a (σ, 2j + 1)-sequence with respect to the
family (L2i)i∈N, (g1, . . . , g2d), coefficients (γi)d

i=1 ∈ 1
21/qB`q and

an interval E such that

ft =
1

m2j+1
E

d∑
i=1

γi(g2i−1 + g2i);

in this case {fs : s ∈ St} = {Egi : i ≤ 2d, Egi 6= 0}.
(c) St = {s1, . . . , sd} and there exists a family of positive rationals

(ri)d
i=1 with

∑d
i=1 ri = 1 such that ft =

∑d
i=1 rifsi . Moreover,

for every i ≤ d, fsi ∈ K and ran fsi ⊂ ran ft.

An easy inductive argument shows that every f ∈ D admits a tree analysis.

Notation 2.5. For every f ∈ K\K0, if f is of the form f = 1
mj

∑d
l=1 βlfl,

where (fl)l≤d ⊂ D is Snj
-admissible and (βl)l≤d ∈ B`q

, then we say that
the weight of f is mj and denote it by w(f). Note that the weight of a
functional is not necessarily uniquely determined. However, when we refer to
a 2j + 1-special functional f = 1

m2j+1
E
∑d

l=1 γl(f2l−1 + f2l), then by w(fi)
we shall always mean w(fi) = mσ(f1,...,fi−1) for i ≥ 2 and w(f1) will satisfy
w(f1) ≥ m2j+4.

Lemma 2.6.

(a) Let f = 1
m2j

∑k
i=1 βifi ∈ K. Then, for every subset A of {1, . . . , k},

we have ∥∥∥∥∥ 1
m2j

∑
i∈A

βifi

∥∥∥∥∥ ≤ ‖(βi)i∈A‖`q
.

(b) Let f = 1
m2j+1

E
∑d

i=1 γi(f2i−1 + f2i) ∈ L2j+1 be a special functional.
Then, for every interval I ⊆ {1, . . . , d}, we have∥∥∥∥∥ 1

m2j+1
E
∑
i∈I

γi(f2i−1 + f2i)

∥∥∥∥∥ ≤ 21/q ‖(γi)i∈I‖`q
.

Proof. The proofs of (a) and (b) are similar, so we shall prove only (b).
We set

δi =
γi

21/q‖(γi)i∈I‖`q

, for i ∈ I,

and δi = 0 otherwise. Then we have (21/qδi)i∈I ∈ S`q and hence

1
m2j+1

E
∑
i∈I

γi

21/q ‖(γi)i∈I‖`q

(f2i−1 + f2i) =
1

m2j+1
E

d∑
i=1

δi(f2i−1 + f2i)



774 IRENE DELIYANNI AND ANTONIS MANOUSSAKIS

belongs to BX∗
(p)

. Therefore,∥∥∥∥∥ 1
m2j+1

E
∑
i∈I

γi(f2i−1 + f2i)

∥∥∥∥∥ ≤ 21/q ‖(γi)i∈I‖`q
. �

Remark 2.7. In the sequel, for a special functional

f =
1

m2j+1
E

d∑
i=1

γi(f2i−1 + f2i)

we shall also use the notation

f =
1

m2j+1
E

2d∑
i=1

βifi,

where β2i−1 = β2i = γi for i = 1, . . . , d. In this case, for every interval
I, denoting by I ′ be the smallest interval of positive integers of the form
[2n− 1, 2m] which contains I, it follows from the previous lemma that∥∥∥∥∥ 1

m2j+1
E
∑
i∈I

βifi

∥∥∥∥∥ ≤ ‖(βi)i∈I′‖`q
.

Notation 2.8. (a) Let (ak)k∈N be a non-zero element of `p. By the
conjugate sequence of (ak)k∈N we shall mean the unique sequence (βk)k∈N ∈
S`q which satisfies

∑
k akβk = (

∑
k |ak|p)1/p.

(b) We introduce the following general terminology, which will be used
repeatedly in the sequel. Let (X, (en)n) be a Banach space with a shrinking
basis, let (zk)m

k=1 be a block sequence in X and (gl)d
l=1 a block sequence of

(e∗n)n in X∗. For k = 1, . . . ,m we say that zk is split by the sequence (gl)d
l=1

if the set
Ak = {l = 1, . . . , d : ran zk ∩ ran gl 6= ∅}

has at least two elements. If on the contrary the set Ak is a singleton and
Ak = {l}, then we say that zk is covered by gl.

Proposition 2.9. For every block sequence (xr)r∈F in X(p) we have

(2.1)

∥∥∥∥∥∑
r∈F

xr

∥∥∥∥∥ ≤ 4

(∑
r∈F

‖xr‖p

)1/p

.

Moreover, if the sequence (xr)r∈F is Sn2j admissible for some j ∈ N, then

(2.2)
1
m2j

(∑
r∈F

‖xr‖p

)1/p

≤

∥∥∥∥∥∑
r∈F

xr

∥∥∥∥∥ .
In particular, X(p) is an asymptotic `p space.



ASYMPTOTIC `p HI BANACH SPACES 775

Proof. Let (xr)r∈F be a block sequence. To prove (2.1) we show by induc-
tion on n that, for every f ∈ Kn,

(2.3)

∣∣∣∣∣f
(∑

r∈F

xr

)∣∣∣∣∣ ≤ 4

(∑
r∈A

‖xr‖p

)1/p

,

where A = {r : supp f ∩ ranxr 6= ∅}. It is clear that if (2.3) holds for
every f ∈ Kn, then the same holds for every f ∈ Dn. (2.3) is trivially
true for every f ∈ K0. Assume that it holds true for every f ∈ Dn and let
f = 1

mj

∑d
l=1 βlfl ∈ Kn+1, j ∈ N. We set

F2 =
{
r ∈ A : xr is split by the family (fl)d

l=1

}
and F1 = A \ F2 .

For every l ≤ d we set

Gl = {r ∈ F1 : supp fl ∩ ranxr 6= ∅}

and

I = {l ≤ d : Gl 6= ∅} .

Then, since for every r ∈ F1, ranxr ∩ supp fl 6= ∅ for at most one l, from the
inductive hypothesis and the fact that 4 1

mj
≤ 1 for every j, we get∣∣∣∣∣ 1

mj

d∑
l=1

βlfl

(∑
r∈F1

xr

)∣∣∣∣∣ = 1
mj

∣∣∣∣∣∑
l∈I

βlfl

(∑
r∈Gl

xr

)∣∣∣∣∣(2.4)

≤ 1
mj

∑
l∈I

|βl| · 4

(∑
r∈Gl

‖xr‖p

)1/p

≤

(∑
r∈F1

‖xr‖p

)1/p

.

For every r ∈ F2 we set

Br = {l ≤ d : supp fl ∩ ranxr 6= ∅} .

Notice that #(Br1 ∩Br2) ≤ 1 for r1 6= r2 ∈ F2. From Remark 2.7 we get

1
mj

∣∣∣∣∣∑
l∈Br

βlfl(xr)

∣∣∣∣∣ ≤
∑

l∈B′
r

|βl|q
1/q

‖xr‖ ,

where B′
r is the smallest interval of the form [2n− 1, 2m] which contains Br.

It is easy to see that for every l ∈ N there exist at most three r ∈ F2 such
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that l ∈ B′
r, and hence by Hölder’s inequality,∣∣∣∣∣∑

r∈F2

1
mj

∑
l∈Br

βlfl(xr)

∣∣∣∣∣ ≤ ∑
r∈F2

∑
l∈B′

r

|βl|q
1/q

‖xr‖(2.5)

≤ 3

(∑
r∈F2

‖xr‖p

)1/p

.

From (2.4) and (2.5) it follows that∣∣∣∣∣f
(∑

r∈A

xr

)∣∣∣∣∣ ≤ 1
mj

∣∣∣∣∣
d∑

l=1

βlfl

(∑
r∈F1

xr)

)∣∣∣∣∣+ 1
mj

∣∣∣∣∣
d∑

l=1

βlfl

(∑
r∈F2

xr)

)∣∣∣∣∣
≤ 4

(∑
r∈F

‖xr‖p

)1/p

.

For the lower estimate, let ε > 0, let (βr)r∈F be the conjugate sequence of
(‖xr‖)r∈F , and let fr ∈ D be such that fr(xr) ≥ (1 − ε)‖xr‖ and ran fr ⊂
ranxr. It follows that the sequence (fr)r∈F is Sn2j -admissible and hence
f = 1

m2j

∑
r∈F βrfr ∈ BX∗

(p)
. Therefore,∥∥∥∥∥∑

r∈F

xr

∥∥∥∥∥ ≥ f

(∑
r∈F

arxr

)
=

1
m2j

∑
r∈F

βrfr(xr) ≥ (1− ε)

(∑
r∈F

‖xr‖p

)1/p

,

and since ε was arbitrarily chosen, (2.2) holds. �

For p = 1 it was proved in [2] that the space X(1) is reflexive. For 1 < p <
∞, every asymptotic `p space is reflexive and its dual is asymptotic `q, where
1
p + 1

q = 1 (see [18]). In particular, for our spaces we have:

Corollary 2.10. Let 1 < p <∞. Then X(p) is a reflexive Banach space
and its dual space X∗

(p) is asymptotic `q, where q is the conjugate of p. In
particular, for every S1-admissible block sequence (fi)i∈F in X∗

(p),

1
4

(∑
i∈F

‖fi‖q

)1/q

≤

∥∥∥∥∥∑
i∈F

fi

∥∥∥∥∥ ≤ m2

(∑
i∈F

‖fi‖q

)1/q

.

Corollary 2.11. For 1 < p < ∞ and q the conjugate of p, the spaces
X∗

(p) and X(q) are totally incomparable.

Proof. This is a consequence of the fact that X(q) satisfies an upper `q
estimate but does not contain `q. Assume on the contrary that there exist
subspaces Z of X∗

(p) and Y of X(q) which are isomorphic. By standard ar-
guments, there exist normalized block sequences (fn)n ⊂ X∗

(p), (yn)n ⊂ X(q)
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which are C-equivalent for some constant C. By Proposition 2.9, for every
k ∈ N, we have∥∥∥∥∥

k∑
n=1

bnyn

∥∥∥∥∥ ≤ 4

(
k∑

n=1

|bn|q
)1/q

, for every (bn) ⊂ R.

By the same proposition and standard duality arguments it follows that the
space X∗

(p) satisfies a lower `q estimate so that for every k ∈ N,

1
4

(
k∑

n=1

|bn|q
)1/q

≤

∥∥∥∥∥
k∑

n=1

bnfn

∥∥∥∥∥ , for every (bn) ⊂ R.

Therefore, for every (bn) ⊂ R and k ∈ N,

1
4

(
k∑

n=1

|bn|q
)1/q

≤

∥∥∥∥∥
k∑

n=1

bnfn

∥∥∥∥∥ ≤ C

∥∥∥∥∥
k∑

n=1

bnyn

∥∥∥∥∥ ≤ 4C

(
k∑

n=1

|bn|q
)1/q

,

which yields that `q is isomorphic to a subspace of X(q). Since, as proved in
Theorem 5.8, X(q) is an HI space, we have arrived at a contradiction. �

3. The auxiliary space T(p) = T(p)[(Snj+1, θ/mj)j ]

As in a series of papers which deal with the construction of HI spaces using
the mixed Tsirelson spaces as frame ([2], [6], [8], [9]), here we also use an
auxiliary space in order to obtain upper estimates for the norm of special
vectors. Our auxiliary space is the space T(p) = T(p)[(Snj+1,

θ
mj

)j ], where

θ = 41/q.
We fix p ≥ 1 and define the spaces T(p) = T(p)[(Snj+1,

θ
mj

)j ] and, if p > 1,
Z = T [(Snj+1, ( θ

mj
)p)j ], via their norming sets B(p) and W , respectively.

Let q be the conjugate exponent of p. We set B(p) =
⋃∞

n=0B
n and W =⋃∞

n=0W
n, where the sequences (Bn)∞n=0, (Wn)∞n=0 are recursively defined as

follows:

B0 = W 0 = {±el : l ∈ N} ,

and for n = 0, 1, . . . ,

Bn+1 =
{
θ

mj

d∑
i=1

βifi : j ∈ N, d ∈ N, (βi)d
i=1 ∈ B`q , fi ∈ Bn for i ≤ d

and the sequence (f1, f2, . . . , fd) is Snj+1 admissible
}
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and

Wn+1 =
{(

θ

mj

)p d∑
i=1

gi : j ∈ N, d ∈ N, gi ∈Wn for i = 1, 2, . . . , d

and the sequence (g1, g2, . . . , gd) is Snj+1 admissible
}
.

The space T(p) is defined to be the completion of c00 endowed with the norm

‖x‖(p) = sup
{
f(x) : f ∈ B(p)

}
and the space Z is the completion of c00 endowed with the norm

‖x‖Z = sup {g(x) : g ∈W} .

The weight of a functional f = θ
mj

∑d
i=1 βifi ∈ B(p) is defined as w(f) =

mj

θ and, similarly, for g = ( θ
mj

)p
∑d

i=1 gi ∈W , we define w(g) = (mj

θ )p.
The next lemma states in particular that T(p) is the p-convexification of Z.

Lemma 3.1. For every x =
∑

k akek ∈ c00 with ak ≥ 0 and every f ∈ B(p)

(respectively, W ) there exists g ∈ W (respectively B(p)) such that w(f)p =
w(g) and

(3.1)

∣∣∣∣∣f
(∑

k

akek

)∣∣∣∣∣ ≤
∣∣∣∣∣g
(∑

k

ap
kek

)∣∣∣∣∣
1/p

,

respectively ∣∣∣∣∣g
(∑

k

ap
kek

)∣∣∣∣∣
1/p

≤

∣∣∣∣∣f
(∑

k

akek

)∣∣∣∣∣ .
As a consequence,

(3.2)

∥∥∥∥∥∑
k

akek

∥∥∥∥∥
(p)

=

∥∥∥∥∥∑
k

ap
kek

∥∥∥∥∥
1/p

Z

.

Proof. We shall prove by induction on n that for every f ∈ Bn there exists
a functional g ∈Wn such that supp f = supp g, w(f)p = w(g) and∣∣∣∣∣f

(∑
k

akek

)∣∣∣∣∣ ≤
∣∣∣∣∣g
(∑

k

ap
kek

)∣∣∣∣∣
1/p

≤

∥∥∥∥∥∑
k

ap
kek

∥∥∥∥∥
1/p

Z

.

For f, g ∈ B0 = W 0 the conclusion is trivially true. Assume that it holds
true for every f ∈ Bn for some n ≥ 0. Let f = θ

mj

∑
i∈A βifi ∈ Bn+1, where

(fi)i∈A is Snj+1-admissible, (βi)i∈A ∈ B`q . For i ∈ A, set Fi = suppx∩supp fi
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and choose gi ∈ Wn to satisfy the inductive hypothesis for fi and xi =∑
k∈Fi

akek. Then we get, for appropriate εi = ±1, i ∈ A,∣∣∣∣∣f
(∑

k

akek

)∣∣∣∣∣ = θ

mj

∣∣∣∣∣∑
i∈A

βifi

(∑
k∈Fi

akek

)∣∣∣∣∣
≤ θ

mj

∑
i∈A

|βi| |gi

(∑
k∈Fi

ap
kek

)
|1/p

≤ θ

mj

(∑
i∈A

εigi

(∑
k∈Fi

ap
kek

))1/p

=

((
θ

mj

)p∑
i∈A

εigi

(∑
k∈Fi

ap
kek

))1/p

=

∣∣∣∣∣g
(∑

k

ap
kek

)∣∣∣∣∣
1/p

,

where g = ( θ
mj

)p
∑

i∈A εigi ∈Wn+1 since, for εi = ±1, εigi ∈Wn and (gi)i∈A

is Snj+1-admissible.
The proof of the symmetric statement is similar. �

Let us recall that we have set γ(j) = [3p log2(mj)] + 2 and by the choice of
the sequence (nj)j we have γ(j)(nj−1 + 1) < nj .

Definition 3.2 (Basic p-special combinations). Let ε > 0 and j ∈ N,
j ≥ 2. A basic combination

∑
k∈F akek is said to be an (ε, j) basic p-convex

special combination ((ε, j) basic p-convex s.c.), if it satisfies:

(1) F ∈ Snj
.

(2) ak is a positive real for every k ∈ F and
∑

k∈F a
p
k = 1.

(3) For every P ∈ Sγ(j)(nj−1+1) we have that
(∑

k∈P a
p
k

)1/p
< ε.

Remark 3.3. If ε > 0, j ∈ N with j > 1 and L ∈ [N] with minL ≥ 3
εp ,

then for each n ∈ N with γ(j)(nj−1 + 1) < n ≤ nj there exists an (ε, j) basic
p-convex s.c.

∑
k∈F akek with F ⊂ L and, moreover, F ∈ Sn.

Indeed, it was shown in Proposition 2.3 of [8] that there exists an (εp, j)
basic 1-convex special combination

∑
k∈F bkek, where F is the maximal Sn

initial segment of L. Setting ak = b
1/p
k we see that

∑
k∈F akek is an (ε, j)-basic

p-convex s.c.

The next proposition gives estimates for the action of functionals on p-
convex special combinations of the basis.
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Proposition 3.4 (Estimates on the basis of T(p)). Let ε > 0 and j ∈ N
with j > 1 such that ε ≤ θ

mj
, and let x =

∑
k∈F akek be an (ε, j) basic

p-convex s.c. Then:
(i) For every f ∈ B(p)

|f(x)| ≤



ε if f = ±e∗n,

θ

mi
if w(f) = mi/θ, i ≥ j,

2θ2

mimj
if w(f) = mi/θ, i < j,

and thus |f(x)| ≤ θ
mj
. It follows in particular that ‖x‖ = θ

mj
.

(ii) If ε ≤ 1
m3

j
and the functional f ∈ B(p) has a tree analysis Tf =

(fα)α∈T with w(fα) 6= mj/θ for all α ∈ T , then |f(x)| ≤ 2θ
m3

j
.

Proof. Let
∑

k∈F akek be a p-convex special combination and let f ∈ B(p).
Then we have that

∑
k∈F a

p
kek is an (εp, j) 1-special combination and from

Lemma 3.1 there exists g ∈W with w(f) = w(g)1/p such that∣∣∣∣∣f
(∑

k∈F

akek

)∣∣∣∣∣ ≤
∣∣∣∣∣g
(∑

k∈F

ap
kek

)∣∣∣∣∣
1/p

.

So it is enough to prove the result for the 1-special combination
∑

k∈F a
p
kek

in the space Z. The proof of this is given in Proposition 3.19 of [8] and we
omit it. �

4. Special vectors and the basic inequality

In this section we shall define the p-convex special combinations and the
rapidly increasing sequences (R.I.S.), and we shall prove that we can compare
the action of a functional on an R.I.S. to the action of a functional of the
auxiliary space on a p-convex special combination of its basis (basic inequality,
Proposition 4.9). The basic inequality will be an essential tool in the proof
that the spaces and their duals are HI as well as in the proof that c0 is finitely
disjointly representable in these spaces.

Definition 4.1 (p-convex special combinations). Let ε > 0 and j ∈ N
with j > 1, and let (xk)k∈N be a block sequence in X(p).

(a) A p-convex combination x =
∑

k∈F akxk of the sequence (xk)k∈N is
called an (ε, j) p-convex special combination ((ε, j) p-convex s.c.) of
(xk)k∈N if, for rk = min suppxk, k ∈ N,

∑
k∈F akerk

is an (ε, j) basic
p-convex special combination.
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(b) If, in addition, the sequence (xk)k∈N satisfies ‖xk‖ ≤ C for all k, and
there exists a functional f ∈ D with f(x) = 1 and ran f ⊂ ranx, then
we say that

∑
k∈F akxk is a C- seminormalized (ε, j) p-convex special

combination of (xk)k∈N.

Remark 4.2. Let (xk)k∈N be a block sequence in X(p), and let ε > 0 and
j ∈ N with j > 1. Then, for every n ∈ N such that γ(j)(nj−1 + 1) < n ≤ nj

there exists an (ε, j) p-convex s.c.
∑

k∈F akxk with the additional property
{min suppxk : k ∈ F} ∈ Sn.

Indeed, if rk = min suppxk for k = 1, 2, . . . , then by Remark 3.3, there
exists an (ε, j) basic p-convex s.c.

∑
k∈F akerk

with {rk : k ∈ F} ∈ Sn. Thus∑
k∈F akxk is the desired (ε, j) p-convex s.c.

The next proposition ensures that for every λ > 2 there exists a λ-semi-
normalized (ε, 2j)-p-convex s.c. in every block subspace.

Proposition 4.3. Let (xk)k∈N be a normalized block sequence in X(p),
and let ε > 0 and j ∈ N with j > 1. Then, there exist a block sequence (yk)k∈N
of (xk)k∈N with ‖yk‖ ≤ 1 for all k and an (ε, 2j) p-convex s.c.

∑
k∈F akyk

with the following properties:

(1) ‖
∑

k∈F akyk‖ ≥ 1
2 .

(2) The family {yk : k ∈ F} is Sγ(2j)(n2j−1+1)+1 admissible.

It follows that for every λ > 2 there exists a λ-seminormalized (ε, 2j)-p-convex
s.c.

The proof appears in [2] and [8] for p = 1, so we omit it. The next
proposition is the dual of the above proposition. It will be an essential tool
in the proof that X∗

(p) is HI as well as in the result concerning the structure
of the space of operators on X(p).

Proposition 4.4. Let (x∗k)k∈N be a normalized block sequence in X∗
(p)

such that x∗k ∈ D for all k, and let ε > 0 and j ∈ N with j > 1. Then, there
exists a finite block sequence (y∗k)k∈F of (x∗k)k∈N such that:

(1) There exists (βk)k∈F ∈ B`q such that
∑

k∈F βky
∗
k is an (ε, 2j) q-convex

special combination, i.e., if rk = minsupp y∗k, then
∑

k∈F βke
∗
rk

is an
(ε, 2j) basic q-convex special combination.

(2) The set {minsupp y∗k : k ∈ F} is a maximal Sγ(2j)(n2j−1+1)+1 set.
(3) We have ‖y∗k‖ > 1/2 and ‖

∑
k∈F βky

∗
k‖ ≤ 1.

Proof. Assume the contrary. We set r = γ(2j)(n2j−1 + 1) + 1 and m =
log2(m2j) + 1 and observe that m > 2 and mr ≤ n2j . We proceed by con-
structing, for every l = 0, . . . ,m, a block sequence (f l

k)k∈N of (x∗k)k satisfying
the following conditions:
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(i) For all l ≥ 1 and k ∈ N, f l
k =

∑
i∈Gl

k
βif

l−1
i is an (ε, 2j)- q-convex s.c.

of (f l−1
i )i∈Gl

k
.

(ii) The set {minsupp f l−1
i : i ∈ Gl

k} is a maximal Sr set.
(iii) 2l−1 < ‖f l

k‖ ≤ m2j for 1 ≤ l ≤ m and all k.
After the completion of the inductive construction, (iii) yields that 2m−1 <

m2j which contradicts the choice of m.
The construction is done by induction on l. We set f0

k = x∗k for all k.
Suppose that the sequences (fs

k)k∈N, s ≤ l − 1, have been chosen to satisfy
the inductive assumptions. From Remark 4.2 we may choose a block sequence
(f l

k)k such that, for each k, f l
k =

∑
i∈Gl

k
βif

l−1
i is an (ε, 2j) q-convex s.c. of

(f l−1
i )i∈N and {min supp f l−1

i : i ∈ Gl
k} is a maximal Sr set.

By our inductive assumptions (i), (ii) and the definition of f l
k we get that

each f l
k may be written as f l

k =
∑

i∈F l
k
γix

∗
i , where the set {minsuppx∗i :

i ∈ F l
k} is Slr maximal and (γi)i∈F l

k
∈ B`q

. Since lr ≤ n2j we get that
{minsuppx∗i : i ∈ F l

k} is Sn2j
admissible and hence

∥∥f l
k

∥∥ =

∥∥∥∥∥∥
∑
i∈F l

k

γix
∗
i

∥∥∥∥∥∥ ≤ m2j .

If ‖f l
k‖ ≤ 2l−1 for some k, then we get∥∥∥∥∥∥

∑
i∈Gl

k

βi

(
1

2l−1
f l−1

i

)∥∥∥∥∥∥ ≤ 1.

By our inductive condition (iii) we also have ‖ 1
2l−1 f

l−1
i ‖ > 1

2 for all i. This
leads to a contradiction since we have assumed that the proposition is not true.
Therefore, ‖f l

k‖ > 2l−1 for each k. This completes the inductive construction
and the proof of the proposition. �

Proposition 4.5. Let C > 0. Let (xk)k∈N be a block sequence in X(p)

with ‖xk‖ ≤ C for each k, let 1 < j ∈ N, and 0 < ε < 1/3mj and let
x =

∑
k∈F akxk be an (ε, j) p-convex s.c. Then for every i < j and

f =
1
mi

d∑
r=1

βrfr ∈ K

we have ∣∣∣∣∣f
(∑

k∈F

akxk

)∣∣∣∣∣ ≤ 5C
mi

(∑
r∈I

|βr|q
)1/q

,

where I is the smallest interval of the form [2n− 1, 2m] which contains {r ≤
d : ran fr ∩ ranx 6= ∅}.
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Proof. Fix i < j, let f1 < f2 < · · · < fd be an Sni
admissible sequence in

D and let (βr)d
r=1 ∈ B`q be such that

f =
1
mi

(β1f1 + β2f2 + · · ·+ βdfd) ∈ K.

Let I be the smallest interval of the form [2n− 1, 2m] which contains {r ≤ d :
ran fr ∩ ranx 6= ∅}.

We set

F2 = {k ∈ F : xk is split by the family (fr)r∈I} and F1 = F \ F2 .

Using the fact that X(p) satisfies an upper `p-estimate (Proposition 2.9) and
setting

Dr = {k ∈ F1 : ran fr ∩ ranxk 6= ∅}
for r ∈ I, we get∣∣∣∣∣

(
d∑

r=1

βrfr

)(∑
k∈F1

akxk

)∣∣∣∣∣ =
∣∣∣∣∣∑
r∈I

βrfr

(∑
k∈Dr

akxk

)∣∣∣∣∣(4.1)

≤
∑
r∈I

|βr| · 4

(∑
k∈Dr

‖akxk‖p

)1/p

≤ 4C

(∑
r∈I

|βr|q
)1/q

,

where the last inequality follows from Hölder’s inequality. To estimate the
action of f on

∑
k∈F2

akxk, we set lk = min suppxk for each k and observe
that min suppx1 ≥ 2. For each k ∈ F2 we choose rk ∈ {1, 2, . . . , d} such that

min suppxk ≤ min supp frk
≤ max suppxk.

Since {min supp fr : r = 1, 2, . . . , d} ∈ Sni , it follows that {min supp frk
:

k ∈ F2} ∈ Sni , and thus {lk : k ∈ F2 \ {minF2}} ∈ Sni . So the set
{lk : k ∈ F2} is Sni+1 admissible. Since ni + 1 ≤ γ(j)(nj−1 + 1), we get that
{lk : k ∈ F2} ∈ Sγ(j)(nj−1+1). The fact that

∑
k∈F akxk is an (ε, j) p-convex

s.c. yields that
∑

k∈F2
ap

k < εp.
For every k ∈ F2, let

Ak = {r ∈ I : ran fr ∩ ranxk 6= ∅} .

It is clear that Ak is an interval. Hence, letting A
′

k be the smallest interval of
the form [2n− 1, 2m] which contains Ak, it follows from Remark 2.7 that

(4.2)

∣∣∣∣∣ 1
mi

∑
r∈Ak

βrfr(xk)

∣∣∣∣∣ ≤
∑

r∈A′
k

|βr|q
1/q

‖xk‖ ≤ C

∑
r∈A′

k

|βr|q
1/q

.
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Since every r belongs to at most three A′k’s, by (4.2) and Hölder’s inequality
we get ∣∣∣∣∣

(
d∑

r=1

βrfr

)(∑
k∈F2

akxk

)∣∣∣∣∣ ≤ miC
∑
k∈F2

ak

∑
r∈A′

k

|βr|q
1/q

(4.3)

≤ Cmi

(∑
k∈F2

ap
k

)1/p

3

(∑
r∈I

|βr|q
)1/q

= (3Cmi · ε)

(∑
r∈I

|βr|q
)1/q

< C

(∑
r∈I

|βr|q
)1/q

.

From (4.1) and (4.3) we conclude that∣∣∣∣∣
(

d∑
r=1

βrfr

)(∑
k∈F

akxk

)∣∣∣∣∣ < 5C

(∑
r∈I

|βr|q
)1/q

.

This completes the proof. �

Definition 4.6 (Rapidly increasing sequences). Let C > 0 and (jk)k∈N
be an increasing sequence of positive integers. A block sequence (xk)k∈N in
X(p) is a (C, (jk)k∈N)-rapidly increasing sequence (R.I.S), if the following are
satisfied for every k ∈ N:

(a) ‖xk‖ ≤ C.
(b) 1

mjk+1
(max suppxk) < 1

mjk
.

(c) For every i < jk and every f ∈ K with w(f) = mi, we have
|f(xk)| ≤ C

mi
.

Remark 4.7. Let (xk)k∈N be a (C, (jk)k∈N)-rapidly increasing sequence
and k ∈ N. Note that if i < jk and

f =
1
mi

∑
r

βrfr ∈ K,

then by Lemma 2.6 we get that

|f(xk)| ≤ C

mi

(∑
r∈I

|βr|q
)1/q

,

where I is the smallest interval of the form [2n − 1, 2m] which contains {r :
supp fr ∩ ranxk 6= ∅}.
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Proposition 4.8 (Existence of an R.I.S.). Let C > 0 and (zl)l be a block
sequence in X(p) with ‖zl‖ ≤ C for every l. Suppose that (jk)k∈N is a strictly
increasing sequence of integers and (xk)k∈N is a block sequence such that each
xk is a (1/3mjk

, jk)- p-convex s.c. of the sequence (zl)l. Then there exists a
subsequence (xkn)n of (xk)k which is a (5C, (jkn)n∈N) R.I.S.

Proof. Choose a subsequence (xkn
)n of (xk)k such thatmjkn

max supp(xkn
)

< mjkn+1
for all n. From Proposition 4.5 we get that the sequence (xkn

)n

satisfies condition (c) of the definition of the R.I.S with constant 5C. Therefore
this subsequence is a (5C, (jkn

)n) R.I.S. �

Proposition 4.9 (The basic inequality). Recall that we have set θ = 41/q

and that B(p) is the norming set of the auxiliary space T(p). Let (xk)k∈N be a
(C, (jk)k∈N) R.I.S. in X(p). Then:

(a) For every sequence (λk)k of scalars and every f ∈ K, we can find
functionals g1 and g2 in c00, such that either g1 = h1 or g1 = e∗r + h1

with r 6∈ supph1, where h1 ∈ convQ{h ∈ B(p) : w(h) = w(f)/θ}, while
‖g2‖`q ≤ 2

mj1
, such that

(4.4)
∣∣∣f (∑λkxk

)∣∣∣ ≤ C(g1 + g2)
(∑

|λk|erk

)
,

where rk = min suppxk for each k = 1, 2, . . . .
(b) If in addition we assume that there exists j0 < j1 − 1 such that,

for every φ ∈ K with w(φ) = mj0 and every interval E of natural
numbers, we have

(4.5)

∣∣∣∣∣φ
(∑

k∈E

λkxk

)∣∣∣∣∣ ≤ C

max
k∈E

|λk|+
1

mj0+1

(∑
k∈E

|λk|p
)1/p

 ,

then h1 may be selected to have a tree analysis (ht)t∈T with w(ht) 6=
mj0

θ for all t ∈ T but this time the functional g2 satisfies
‖g2‖`q ≤ 2

mj0+1
.

The proof of the basic inequality is an adaptation of the proof of Proposition
4.3 in [8] and we omit it.

Proposition 4.10. Let C > 1, let (xk)k∈N be a (C, (jk)k∈N) rapidly in-
creasing sequence in X(p), j ∈ N with 1 < j < j1 and ε > 0 with ε ≤ 1

m3
j
.

(1) Let
∑

k∈F akxk be an (ε, j) p-convex s.c. of the sequence (xk)k∈N.
Then:
(a) For every f ∈ K with w(f) < mj we have∣∣∣∣∣f

(∑
k∈F

akxk

)∣∣∣∣∣ ≤ 33C
w(f)mj

.
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(b) For every f ∈ K with mj ≤ w(f) we have∣∣∣∣∣f
(∑

k∈F

akxk

)∣∣∣∣∣ ≤ C

(
4

w(f)
+

2
m3

j

)
.

In particular,

(4.6)

∥∥∥∥∥∑
k∈F

akxk

∥∥∥∥∥ ≤ 5C
mj

.

(2) If the sequence (ck)k∈F is such that
∑

k∈F |ck|xk is an (ε, j) p-
convex s.c. and assumption (b) of the basic inequality is fulfilled
for j0 = j and for the linear combination

∑
k∈F ckxk of (xk)k∈N,

then ∥∥∥∥∥∑
k∈F

ckxk

∥∥∥∥∥ ≤ 10C
m3

j

.

Proof. For the proof of (1a) and (1b), let f ∈ K. It follows from the basic
inequality that there exist h1 ∈ convQ

{
h ∈ B(p) : w(h) = w(f)/θ

}
, r ∈ N,

with r 6∈ supph1 and g2 ∈ c00 with ‖g2‖`q ≤ 2
mj1

such that∣∣∣∣∣f
(∑

k∈F

akxk

)∣∣∣∣∣ ≤ C ((h1 + e∗r) + g2)

(∑
k∈F

akerk

)
(4.7)

≤ C

(
h1

(∑
k∈F

akerk

)
+ max

k∈F
ak + ‖g2‖`q

‖(ak)k‖`p

)

≤ C

(
h1

(∑
k∈F

akerk

)
+ ε+

2
mj1

)
,

where rk = min suppxk for each k. From Proposition 3.4 we get

(4.8)

∣∣∣∣∣f
(∑

k∈F

akxk

)∣∣∣∣∣ ≤

C
(

θ
w(f) + 2

m3
j

)
≤ 4C
w(f)

+
2C
m3

j

if w(f) ≥ mj ,

C
(

2θ2

w(f)mj
+ 2

m3
j

)
≤ 33C
w(f)mj

if w(f) < mj ,

since θ = 41/q. From (4.8) we get (1a) and (1b) and moreover ‖
∑

k∈F akxk‖ ≤
5C
mj

.
We now pass to the proof of (2). Let f ∈ K. Assume first that w(f) 6= mj .

Since the linear combination
∑

k∈F ckxk satisfies assumption (b) of the basic
inequality for j0 = j, we may choose h1 and g2 to satisfy∣∣∣∣∣f

(∑
k∈F

ckxk

)∣∣∣∣∣ ≤ C

(
h1

(∑
k∈F

|ck|erk

)
+ max

k∈F
|ck|+ g2

(∑
k∈F

|ck|erk

))
,
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assuming in addition that h1 has a tree (ft)t∈T with w(ft) 6= mj

θ for all t ∈ T .
Using Lemma 3.4(ii), we conclude that∣∣∣∣∣f

(∑
k∈F

ckxk

)∣∣∣∣∣ ≤ C

(
2θ
m3

j

+ ε+ ‖g2‖`q

)
≤ 10C

m3
j

.

The case w(f) = mj follows immediately, since our assumption that part (b)
of the basic inequality is satisfied implies that∣∣∣∣∣f

(∑
k∈F

ckxk

)∣∣∣∣∣ ≤ C

max
k
|ck|+

1
mj+1

(∑
k∈F

|ck|p
)1/p


≤ C

(
1
m3

j

+
1

mj+1

)
≤ 2C
m3

j

.

This completes the proof of (2). �

5. The space X(p) is hereditarily indecomposable

Definition 5.1 (Exact pair). Let C > 33 and j ∈ N. A pair (x, φ) with
x ∈ X(p) and φ ∈ K is said to be a (C, 2j) exact pair if the following conditions
are satisfied:

(i) There exist a ( C
33 , (jk)k)−R.I.S. (yk)k with 2j < j1 and ‖yk‖ > 1,

for every k ∈ N, and a ( 1
m3

2j
, 2j) p-convex s.c.

∑
k∈F akyk such that

x = m2j

∑
k∈F akyk.

(ii) w(φ) = m2j .
(iii) φ(x) = 1 and ranx = ranφ.

Remark 5.2. Let C > 33, j ∈ N, and let (x, φ) be a (C, 2j) exact pair,
and let ψ ∈ K with w(ψ) = mi 6= m2j . Then, by Proposition 4.10, we have:

(a) 1 < ‖x‖ < C.
(b) If i < 2j, then |ψ(x)| ≤ C

mi
.

(c) If i > 2j, then |ψ(x)| ≤ C
m2

2j
.

Proposition 5.3. Let j = 2, 3, . . . and C > 330. Then every block sub-
space of X(p) contains a (C, 2j)-exact pair.

Proof. Let (xk)k∈N be a block sequence in X(p) and λ = C
165 > 2. It follows

from Proposition 4.3 that there exists a block sequence (zk)k∈N of (xk)k∈N
such that, for every k, zk is a λ-seminormalized ( 1

m2
2k
, 2k) p-convex s.c. (see

Definition 4.1 (b)). In particular, for every k, ‖zk‖ ≤ λ and there exists
z∗k ∈ D with z∗k(zk) = 1 and ran z∗k ⊂ ran zk. Using Proposition 4.8, we may
pass to a subsequence (yk)k of (zk)k which is a (5λ, (2jk)k∈N) R.I.S. for an
appropriate sequence (jk)k.
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Now let y =
∑

k∈F akyk be a ( 1
m3

2j
, 2j) p-convex s.c. of (yk)k. For every

k ∈ F , let y∗k ∈ D with y∗k(yk) = 1 and ran y∗k ⊂ ran yk and let (βk)k∈F be the
conjugate sequence of (ak)k∈F . We may assume that βk is rational for every
k ∈ F . Then φ = 1

m2j

∑
k∈F βky

∗
k belongs to K and φ(y) = 1

m2j
. After a small

perturbation we may also assume that ranφ = ran y. So setting x = m2jy,
we get that (x, φ) is a (C, 2j) exact pair. �

Lemma 5.4. Let C > 33 and let i, r and (jk)r
k=1 be positive integers with

i + 3 < 2j1 < 2j2 < · · · < 2jr. Let (xk)r
k=1 ⊂ X(p), (φk)r

k=1 ⊂ X∗
(p) be block

sequences such that, for every k ≤ r, (xk, φk) is a (C, 2jk) exact pair. Suppose
that, for some d ∈ N, (fl)d

l=1 is a Sni-admissible sequence of functionals in
K such that i + 3 < w(f1) < · · · < w(fd) and w(fl) 6= m2jk

for every l ≤ d
and k ≤ r. Then, for every choice of coefficients (ck)r

k=1, and (βl)d
l=1 with

(βl)d
l=1 ∈ B`q , we have

(5.1)

∣∣∣∣∣
(

d∑
l=1

βlfl

)(
r∑

k=1

ckxk

)∣∣∣∣∣ ≤ C

mi+2

(
r∑

k=1

|ck|p
)1/p

.

Proof. We start with the following remark which is needed for the proof of
Lemma 6.2: The result of the lemma remains true if the assumption that each
(xk, φk) is a (C, 2jk) exact pair is relaxed as follows: For every k = 1, . . . , r,
xk satisfies condition (i) of Definition 5.1 for j = jk. In other words, the
functionals φk, k = 1, . . . , r, do not play any role in the proof.

Set

J =

{
k : ran(xk) ∩

(
d⋃

l=1

ran (fl)

)
6= ∅

}
.

We partition the set J into two sets F and G as follows:

G =
{
k ∈ J : xk is split by the sequence (fl)d

l=1

}
and F = J \G .

We first consider
∑

k∈F ckxk. For each l = 1, . . . , d, let

Fl = {k ∈ F : xk is covered by fl} .

Suppose that

fl =
1

w(fl)

∑
i∈Al

γihi,

where w(fl) = mrl
, (hi)i∈Al

is a nrl
-admissible sequence of functionals in D

and (γi)i∈Al
∈ B`q . Partition the set Fl as follows:

F 1
l = {k ∈ Fl : xk is covered by some hi, i ∈ Al} ,
F 2

l = {k ∈ Fl : xk is split by the sequence (hi)i∈Al
and w(fl) < m2jk

} ,
F 3

l = {k ∈ Fl : xk is split by the sequence (hi)i∈Al
and m2jk

< w(fl)} .
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We first turn to the set
⋃d

l=1 F
1
l . If we set, for fixed l and i ∈ Al,

Bi =
{
k ∈ F 1

l : xk is covered by hi

}
,

then using Proposition 2.9 we get∣∣∣∣∣∣fl

∑
k∈F 1

l

ckxk

∣∣∣∣∣∣ ≤ 1
w(fl)

∑
i∈Al

|γi|

∣∣∣∣∣hi

(∑
k∈Bi

ckxk

)∣∣∣∣∣
≤ 4C
w(fl)

∑
i∈Al

|γi|

(∑
k∈Bi

|ck|p
)1/p

≤ 4C
w(fl)

∑
k∈F 1

l

|ck|p
1/p

,

where the last inequality follows by Hölder’s inequality. It follows that∣∣∣∣∣∣
d∑

l=1

βlfl

∑
k∈F 1

l

ckxk

∣∣∣∣∣∣ ≤ 4C
d∑

l=1

|βl|
1

w(fl)

∑
k∈F 1

l

|ck|p
1/p

(5.2)

≤ 4C
w(f1)

 ∑
k∈

S
l F 1

l

|ck|p
1/p

.

We now turn to
⋃d

l=1 F
2
l . For fixed l = 1, . . . , d and each k ∈ F 2

l , we set

Rk = {i ∈ Al : ranhi ∩ ranxk 6= ∅}

and we let R̃k be the smallest interval of the form [2n− 1, 2m] which contains
Rk. Note that each i ∈ Al belongs to at most three R̃k’s. Using this, for
k ∈ F 2

l , w(fl) < m2jk
, as well as Remark 5.2(b) and Lemma 2.6, we get∣∣∣∣∣∣fl

∑
k∈F 2

l

ckxk

∣∣∣∣∣∣ ≤
∑

k∈F 2
l

|ck|

∣∣∣∣∣ 1
w(fl)

(∑
i∈Rk

γihi

)
(xk)

∣∣∣∣∣
≤ C

w(fl)

∑
k∈F 2

l

|ck|

∑
i∈R̃k

|γi|q
1/q

≤ 31/qC

w(fl)

∑
k∈F 2

l

|ck|p
1/p

.
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It follows that∣∣∣∣∣∣
d∑

l=1

βlfl

∑
k∈F 2

l

ckxk

∣∣∣∣∣∣ ≤
d∑

l=1

|βl|
31/qC

w(fl)

∑
k∈F 2

l

|ck|p
1/p

(5.3)

≤ 31/qC

w(f1)

 ∑
k∈

S
l F 2

l

|ck|p
1/p

.

Next we turn to
⋃d

l=1 F
3
l . If k ∈ F 3

l for some l = 1, . . . , d, then by Remark
5.2(c) it follows that |fl(xk)| ≤ C

m2
2jk

. Hence,

∣∣∣∣∣∣
d∑

l=1

βlfl

∑
k∈F 3

l

ckxk

∣∣∣∣∣∣ ≤
d∑

l=1

|βl|
∑

k∈F 3
l

|ck|
C

m2
2jk

(5.4)

≤ C

d∑
l=1

|βl|

∑
k∈F 3

l

1
m2q

2jk

1/q∑
k∈F 3

l

|ck|p
1/p

≤ C

m2j1

d∑
l=1

|βl|

∑
k∈F 3

l

|ck|p
1/p

≤ C

m2j1

 ∑
k∈

S
l F 3

l

|ck|p
1/p

.

Finally, we turn to the set

G =
{
k ∈ J : xk is split by (fl)d

l=1

}
.

For every k ∈ G, let

Lk = {l = 1, . . . , d : ran fl ∩ ranxk 6= ∅} .

We partition Lk into

Mk = {l ∈ Lk : w(fl) < m2jk
} and Nk = Lk \Mk .

From Remark 5.2(b), we get |fl(xk)| ≤ C
w(fl)

for every l ∈ Mk. So, for fixed
k ∈ G,
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l∈Mk

βlfl(xk)

∣∣∣∣∣ ≤ C
∑

l∈Mk

|βl|
1

w(fl)

≤ C

(∑
l∈Mk

|βl|q
)1/q (∑

l∈Mk

1
w(fl)p

)1/p

≤ 2C
w(fl1k

)

(∑
l∈Mk

|βl|q
)1/q

≤ 2C
w(fl1k

)
,

where l1k = minMk. It follows that∣∣∣∣∣∑
k∈G

ck

(∑
l∈Mk

βlfl

)
(xk)

∣∣∣∣∣ ≤ 2C

(∑
k∈G

|ck|p
)1/p(∑

k∈G

1
w(flk1

)q

)1/q

.

Note that l1k 6= l1r , for k 6= r in G. Hence(∑
k∈G

1
w(flk1

)q

)1/q

≤
∑

j>i+3

1
mj

<
1

mi+3
.

So, ∣∣∣∣∣∑
k∈G

ck

(∑
l∈Mk

βlfl

)
(xk)

∣∣∣∣∣ ≤ 2C
mi+3

(∑
k∈G

|ck|p
)1/p

.(5.5)

Now we consider the set Nk for fixed k ∈ G. Let xk = m2jk

∑
t∈Ik

atyt,
where

∑
t∈Ik

atyt is a ( 1
m3

2jk

, 2jk) p-convex s.c. of a ( C
33 , (it)t) R.I.S. (yt)t as

in Definition 5.1. We set

T = {t ∈ Ik : yt is split by the family (fl)l∈Nk
}

and, for l ∈ Nk, we set

Jl = {t ∈ Ik : fl covers yt} .

Since the family (fl)d
l=1 is Sni-admissible, it follows that the family (yt)t∈T

is Sni+1-admissible, and since i+ 3 < 2jk, we get(∑
t∈T

ap
t

)1/p

<
1

m3
2jk

.

Note also that the functional 1
mi

∑d
l=1 βlfl may not belong to BX∗

(p)
(if i is

odd), but 1
mi+1

∑d
l=1 βlfl does belong to BX∗

(p)
. Using also Proposition 2.9
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and the fact that ‖yt‖ < C, it follows that∣∣∣∣∣
(∑

l∈Nk

βlfl

)(∑
t∈T

m2jk
atyt

)∣∣∣∣∣ ≤ 4Cmi+1m2jk

(∑
t∈T

|at|p
)1/p

(5.6)

≤ 4Cmi+1m2jk

m3
2jk

<
C

m2jk

.

It remains to estimate
∑

l∈Nk
βlfl(

∑
t∈Jl

atyt). By the basic inequality,

(5.7)

∣∣∣∣∣∑
l∈Nk

βlfl

(∑
t∈Jl

atyt

)∣∣∣∣∣ ≤ C
∑
l∈Nk

|βl|
(
h1

l + e∗rl
+ g2

l

)(∑
t∈Jl

atest

)
,

where st = min supp yt, and for every l, supp(h1
l + e∗rl

+ g2
l ) ⊂ {est : t ∈ Jl},

h1
l ∈ convQ

{
h ∈ B(p) : w(h) = w(fl)/θ

}
, rl ∈ N with rl 6∈ supph1

l and ‖g2
l ‖`q

≤ 2
m2jk+1

< 1
m3

2jk

. Since the sets Jl, l ∈ Nk, are pairwise disjoint, we get

(5.8)
∑
l∈Nk

|βl|g2
l

(∑
t∈Jl

atest

)
≤ 1
m3

2jk

(∑
t∈∪Jl

|at|p
)1/p

≤ 1
m3

2jk

.

Notice also that the set {e∗rl
: l ∈ Nk} is at most Sni+1-admissible, so, since∑

t∈Ik
atest

is a ( 1
m3

2jk

, 2jk) p-convex s.c., it follows that

(5.9)
∑
l∈Nk

|βl|e∗rl

(∑
t∈Jl

atest

)
≤ 1
m3

2jk

.

Moreover, ∑
l∈Nk

|βl|h1
l

(∑
t∈Jl

atest

)
≤
∑
l∈Nk

|βl|
θ

w(fl)
≤ θ

∑
l∈Nk

1
w(fl)

(5.10)

≤ θ
∑

j>2jk

1
mj

≤ 4
m2

2jk

.

Therefore, by (5.7), (5.8), (5.9) and (5.10), we get∣∣∣∣∣
(∑

l∈Nk

βlfl

)(
m2jk

∑
t∈∪Jl

atyt

)∣∣∣∣∣ ≤ Cm2jk

(
2

m3
2jk

+
4

m2
2jk

)
≤ 5C
m2jk

.

Combining this with (5.6), we get∣∣∣∣∣
(∑

l∈Nk

βlfl

)
(xk)

∣∣∣∣∣ ≤ 6C
m2jk

.
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So, ∣∣∣∣∣∑
k∈G

ck

(∑
l∈Nk

βlfl

)
(xk)

∣∣∣∣∣ ≤ 6C

(∑
k∈G

1
mq

2jk

)1/q (∑
k∈G

|ck|p
)1/p

(5.11)

≤ 6C
mi+3

(∑
k∈G

|ck|p
)1/p

.

Combining this with (5.5), we conclude that∣∣∣∣∣
(

d∑
l=1

βlfl

)(∑
k∈G

ckxk

)∣∣∣∣∣ ≤ 8C
mi+3

(∑
k∈G

|ck|p
)1/p

.(5.12)

Set now

ε =
4

w(f1)
+

3
w(f1)

+
1

m2j1

+
8

mi+3
<

9
mi+3

<
1

mi+2
.

It follows from (5.2), (5.3), (5.4) and (5.12), that∣∣∣∣∣
(

d∑
l=1

βlfl

)(
r∑

k=1

ckxk

)∣∣∣∣∣ ≤ εC

(
r∑

k=1

|ck|p
)1/p

.

This completes the proof of the lemma. �

Definition 5.5 (Dependent sequence). Let j ∈ N, d ∈ N and C > 33.
A double sequence (xk, x

∗
k)2d

k=1 with xk ∈ X(p) and x∗k ∈ K is said to be a
(C, 2j + 1) dependent sequence if there exists a sequence (2jk)2d

k=1 of even
integers such that the following conditions are fulfilled:

(i) (x∗k)2d
k=1 is a (σ, 2j + 1)- sequence with w(x∗k) = m2jk

for all k ≤ 2d.
(ii) Each (xk, x

∗
k) is a (C, 2jk) exact pair.

(iii) There exists a sequence (ai)d
i=1 of positive numbers such that∑d

i=1 ai(x2i−1 + x2i) is a ( 1
m2j+2

, 2j + 1) p-convex s.c. of (xk)2d
k=1.

Proposition 5.6. Let j ∈ N and C > 330. Then, for every pair of
block subspaces Y1, Y2 of X(p), there exists a (C, 2j + 1) dependent sequence
(xk, x

∗
k)2d

k=1 with x2i−1 ∈ Y1 and x2i ∈ Y2 for all i = 1, . . . , d.

Proof. By an inductive application of Proposition 5.3, we can choose a
double sequence (xk, x

∗
k)∞k=1 satisfying the following: (xk)∞k=1 is a block se-

quence with x2i−1 ∈ Y1 and x2i ∈ Y2 for all i = 1, . . . and each pair
(xk, x

∗
k) is a (C, 2jk) exact pair, where 2j1 ≥ 4j + 6 and, for all k ≥ 2,

2jk = σ(x∗1, . . . , x
∗
k−1).

By Remark 4.2 there exist d ∈ N and a ( 1
2m2j+2

, 2j + 1) p-convex s.c.∑2d
k=1 bkxk. For i = 1, . . . , d, we set ai = (

bp
2i−1+bp

2i

2 )1/p.
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It follows that (x∗k)2d
k=1 is a (σ, 2j + 1)-sequence and

∑d
i=1 ai(x2i−1 + x2i)

is a ( 1
m2j+2

, 2j + 1) p-convex s.c. of (xk)2d
k=1. Hence the sequence (xk, x

∗
k)d

k=1

is the desired dependent sequence. �

Proposition 5.7. Let j, d ∈ N and C > 33. Let (xk, x
∗
k)2d

k=1 be a (C, 2j+1)
dependent sequence and suppose that the positive coefficients (ai)d

i=1 are such
that

∑d
i=1 ai(x2i−1 + x2i) is a ( 1

m2j+2
, 2j + 1) p-convex s.c. Then∥∥∥∥∥

d∑
i=1

ai(x2i−1 − x2i)

∥∥∥∥∥ ≤ 10C
m3

2j+1

.

Proof. To simplify notation we set c2i−1 = ai and c2i = −ai, for i =
1, . . . , d, so that

d∑
i=1

ai(x2i−1 − x2i) =
2d∑

k=1

ckxk.

Since (x∗k)2d
k=1 is a (σ, 2j + 1)-sequence (Definition 2.2), it follows that

m2jk+1 = mσ(x∗1 ,...,x∗k) > m2jk
·max suppx∗k = m2jk

·max suppxk .

From the definition of exact pairs (Definition 5.1) and Remark 5.2 it follows
that

‖xk‖ ≤ C and |f(xk)| ≤ C

w(f)
for every f ∈ K with w(f) < m2jk

.

Hence (xk)2d
k=1 is a (C, (2jk)k∈N) R.I.S. (Definition 4.6).

The conclusion will follow from Proposition 4.10(2) provided that we show
that assumption (b) of the basic inequality (Proposition 4.9) is satisfied by
j0 = 2j+1 and by the linear combination

∑2d
k=1 ckxk. We need to show that,

for every interval E and for every φ ∈ K with w(φ) = m2j+1, we have∣∣∣∣∣φ
(∑

k∈E

ckxk

)∣∣∣∣∣ ≤ C

max
k∈E

|ck|+
1

m2j+2

(∑
k∈E

|ck|p
)1/p

 .

Let φ ∈ K with w(φ) = m2j+1. Then φ has the form

φ =
1

m2j+1
F
(
γ1(x∗1 + x∗2) + γ2(x∗3 + x∗4) + · · ·+ γr(x∗2r−1 + x∗2r)+

γr+1(f2r+1 + f2r+2) + · · ·+ γs(f2s−1 + f2s)
)
,

where (21/qγi)s
i=1 ∈ B`q , x

∗
1, x

∗
2, . . . , x

∗
2r, f2r+1, f2r, . . . , f2s is a (σ, 2j + 1)-

sequence, F is an interval of the natural numbers and either r = d or 0 ≤ r ≤
d− 1 and one of the following three cases holds:

(a) r ≥ 1, w(f2r+1) = w(x∗2r+1) and f2r+1 6= x∗2r+1 .
(b) r ≥ 0, f2r+1 = x∗2r+1, w(f2r+2) = w(x∗2r+2) and f2r+2 6= x∗2r+2.
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(c) r = 0 and f1 6= x∗1. In this case, it follows from the definition of
(σ, 2j + 1) sequences that w(f1) ≥ m2j+6.

Let E ⊂ {1, . . . , 2d} be an interval of integers. Without loss of generality
we may assume that r ≥ 1, F = [m,∞), where m ∈ ranx∗2t−1 for some t ≤ r
and that [2t− 1, 2r] ⊂ E. The other cases are treated similarly. We have the
following estimates:

(i) For k < 2t− 1, φ(xk) = 0.
(ii) |φ(x2t−1)| = 1

m2j+1
|γt||Fx∗2t−1(x2t−1)| ≤ C|γt|

m2j+1
.

(iii) |φ(x2t)| = 1
m2j+1

|γt|x∗2t(x2t) = |γt|
m2j+1

.
(iv) For i = t+ 1, . . . , r,

φ(c2i−1x2i−1 + c2ix2i) = aiφ(x2i−1 − x2i)

=
1

m2j+1
aiγi

(
x∗2i−1(x2i−1)− x∗2i(x2i)

)
= 0.

(v) |φ(x2r+1)| ≤ C
m2j+1

and |φ(x2r+2)| ≤ C
m2j+1

by Remark 5.2 on exact
pairs.

(vi) Finally,

φ

(
2d∑

k=2r+3

ckxk

)
=

1
m2j+1

(
s∑

i=r+1

γi(f2i−1 + f2i)

)(
2d∑

k=2r+3

ckxk

)
,

where, for 2r+3 ≤ k ≤ 2d and 2r+1 ≤ l ≤ 2s, we have w(fl) 6= w(x∗k)
by the injectivity of the function σ. It follows that the sequences
(xk)2d

k=2r+3 and (fl)2s
l=2r+1 satisfy the assumptions of Lemma 5.4 with

i = 2j + 1. So, for the given interval E, we get∣∣∣∣∣∣∣φ
 ∑

k∈E
k≥2r+3

ckxk


∣∣∣∣∣∣∣ =

1
m2j+1

∣∣∣∣∣∣∣
(

s∑
i=r+1

γi(f2i−1 + f2i)

) ∑
k∈E

k≥2r+3

ckxk


∣∣∣∣∣∣∣

≤ C

m2j+1m2j+3

(∑
k∈E

|ck|p
)1/p

.

Combining (i)–(vi) we conclude that∣∣∣∣∣φ
(∑

k∈E

ckxk

)∣∣∣∣∣ ≤ 4C
m2j+1

max
k∈E

|ck|+
C

m2j+3

(∑
k∈E

|ck|p
)1/p

≤ C

max
k∈E

|ck|+
1

m2j+3

(∑
k∈E

|ck|p
)1/p

 .

This shows that assumption (b) of the basic inequality is satisfied by the
sequences (xk)2d

k=1 and (ck)2d
k=1 and completes the proof of the proposition. �
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From the above proposition and Proposition 5.6 we get the following the-
orem.

Theorem 5.8. The space X(p) is hereditarily indecomposable.

Proof. Let Y, Z be infinite dimensional block subspaces of X(p). Choose
C > 330. By Proposition 5.6 for j ∈ N there exists a (C, 2j + 1) dependent
sequence (xk, x

∗
k)2d

k=1 with x2i−1 ∈ Y and x2i ∈ Z for every i = 1, . . . , d.
Let

∑d
i=1 ai(x2i−1 + x2i) be a ( 1

m2j+2
, 2j) p-convex s.c of (xk)2d

k=1. Then y =∑d
i=1 aiy2i−1 ∈ Y and z =

∑d
i=1 aix2i ∈ Z. Let (21/qβi)d

i=1 be the conjugate
sequence of (21/pai)d

i=1. Then 1
m2j+1

∑d
1=1 βi(x∗2i−1 + x∗2i) ∈ BX∗

(p)
, so

‖y + z‖ ≥ 1
m2j+1

d∑
i=1

βi(x∗2i−1 + x∗2i)

(
d∑

i=1

ai(x2i−1 + x2i)

)
=

1
m2j+1

.

On the other hand, it follows from Proposition 5.7 that

‖y − z‖ =

∥∥∥∥∥
d∑

i=1

ai(x2i−1 − x2i)

∥∥∥∥∥ ≤ 10C
m3

2j+1

.

Since j ∈ N was arbitrary, we conclude that X(p) is hereditarily indecompos-
able. �

6. The dual space X∗
(p) and the space of operators L(X(p))

In this section we shall present the following results concerning the struc-
ture of X(p), X∗

(p) and the spaces of operators L(Y,X(p)), where Y is a closed
subspace of X(p):

(1) For every closed subspace Y of X(p), every bounded linear operator
T : Y 7→ X(p) is of the form T = λIY + S, where λ ∈ R, IY is the
inclusion operator from Y to X(p) and S is a strictly singular operator.

(2) c0 is finitely representable in every infinite-dimensional subspace of
X(p). Therefore X(p) does not contain any uniformly convex subspace.

(3) The dual X∗
(p) of X(p) is an HI space.

An essential tool for the proofs of (1) and (3) is the fact that the set D
is rationally convex, so that BX∗

(p)
= D

p
. All results of the previous sections

could have been obtained without this condition. However, the rational con-
vexity of D seems essential in the proofs of the results about the dual of X(p)

and the structure of the spaces of operators L(Y,X(p)).
The proofs of these results follow the same lines as the proofs of the corre-

sponding results in [3] and [8]. Here we only outline the steps needed in order
to reduce the present cases to the already known cases. For complete proofs
we refer the reader to the corresponding papers.
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We proceed to the first result which concerns the spaces of operators
L(Y,X(p)).

Theorem 6.1. For every closed subspace Y of X(p), every bounded linear
operator T : Y 7→ X(p) is of the form T = λIY + S, where λ ∈ R, IY : Y 7→
X(p) is the inclusion operator and S is a strictly singular operator.

The main step of the proof is contained in the following lemma.

Lemma 6.2. Let jk ↗∞ and (xk)k be a block sequence in X(p) such that
each xk is a 4-seminormalized ( 1

m2
2jk

, 2jk) p-convex s.c. Suppose that Y is a

closed subspace of X(p) which contains the sequence (xk)k and T : Y 7→ X(p)

is a bounded linear operator. Then

lim
k

dist(Txk,Rxk) = 0 .

The proof of Lemma 6.2 is based on Proposition 5.3, Lemma 5.4 and part
(b) of the basic inequality, following the steps given in Chapter 9 of [8]. Lemma
6.2 combined with Propositions 4.3 and 5.7 yield a proof of Theorem 6.1
following the ideas used for the analogous results in [15] . We omit the proofs.

Let us note that Theorem 6.1 implies that the space X(p) is HI. However,
for its proof we need all the machinery that was used in the proof of Theorem
5.8.

In the next result we show that X(p) is not uniformly convex by proving
that c0 is finitely disjointly representable in every block subspace of X(p).
More precisely, the following is true.

Theorem 6.3. For every ε > 0, every infinite-dimensional block subspace
Y of X(p) contains, for every n ∈ N, a sequence of disjointly supported vectors
(yr)n

r=1 which is (1 + ε)-equivalent to the canonical basis of `n∞.

This theorem is similar to Theorem 1.6 of [3] and we shall only sketch its
proof.

Sketch of the proof of Theorem 6.3. We set θ = 41/q as in Section 3. Fix
n ∈ N and a block subspace Y of X(p). By standard arguments it suffices
to find a sequence (xr)n

r=1 of disjointly supported vectors in Y which is C-
equivalent to the canonical basis of `n∞, where C = 145 · 15 · 75.

Choose integers s0, i0 and jk, k = 1, . . . , n, such that

60n <
(m1

θ

)s0p

, mp
2i0

> 420n and s0i0 < j1 < j2 < · · · < jn.

Choose also sequences (ti)i∈N and (zi)i∈N such that (ti)i∈N is an increasing
sequence in N with

(6.1) m2t1 > 4nm2jn
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and (zi)i∈N is a (15, (2ti)i∈N) R.I.S. in Y , while each zi is a 3-seminormalized
( 1

m2
2ti

, 2ti) p-convex special combination. Such a choice is possible according

to Propositions 4.3 and 4.8.
Let li = minsupp zi, i ∈ N, and let L = {li : i ∈ N}. As in the proof

of Theorem 1.6 of [3] we can choose a finite tree T of height n, and two
corresponding trees (lβ)β∈T of integers in L and (aβ)β∈T of real numbers,
with the following properties:

(i) For 1 ≤ r < n and α ∈ T with length |α| = r we denote by Sα the set
of immediate successors of α in T , Sα = {β ∈ T : |β| = r + 1, α ≺ β}
(≺ is the natural partial order of T ). Then, if r < n and α, α′ ∈ T with
|α| = |α′| = r and lα < lα′ , we have: For every β ∈ Sα, lα < lβ < lα′ .

(ii) For each r = 1, . . . , n, we set

vr =
∑

β∈T ,|β|=r

∏
γ�β

aγ

 elβ .

Then, vr is a ( 1
m3

2jr

, 2jr)-basic p-convex s.c.

Let (zβ)β∈T ⊆ {zi : i ∈ N} be the corresponding tree of vectors, that is,
zβ = ziβ

, where lβ = minsupp ziβ
, for every β ∈ T .

For each r = 1, . . . , n, we set

yr =
∑

β∈T ,|β|=r

∏
γ�β

aγ

 zβ .

We have the following estimates:
(i) By Proposition 3.4,

‖vr‖T(p) =
θ

m2jr

.

(ii) By Proposition 4.10 and the fact that, for each i, 1 ≤ ‖zi‖ ≤ 3, we
get

1
m2jr

≤ ‖yr‖X(p) ≤
75
m2jr

.

We set
xr =

yr

‖yr‖
, r = 1, . . . , n,

and we show that the sequence (xr)∞r=1 is C-equivalent to the canonical basis
of `n∞.

Let (λr)n
r=1 be any reals. We note first that∥∥∥∥∥

n∑
r=1

λrxr

∥∥∥∥∥ ≥ 1
75

max
1≤r≤n

|λr|.
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To see this, fix r0 ≤ n. For every β ∈ T with |β| = r0, since zβ is a 3-
seminormalized ( 1

m3
2ti

, 2ti) p-convex s.c. (see Definition 4.1), there exists fβ ∈
D with fβ(zβ) = 1 and ran fβ ⊆ ran zβ .

Let µβ =
∏

γ�β aγ and take (ρβ)β∈T ,|β|=r0 to be the conjugate sequence of
(µβ)β∈T ,|β|=r0 . Then, the functional

ϕ = sign(λr0)
1

m2jr0

∑
β∈T ,|β|=r0

ρβfβ

belongs to BX∗
(p)

and∥∥∥∥∥
n∑

r=1

λrxr

∥∥∥∥∥ ≥ ϕ

(
n∑

r=1

λrxr

)
= ϕ(λr0xr0)

=
|λr0 |

m2jr0
‖yr0‖

∑
β∈T ,|β|=r0

ρβµβfβ(zβ)

=
|λr0 |

m2jr0
‖yr0‖

≥ 1
75
|λr0 |.

For the upper estimate, we use the basic inequality (Proposition 4.9). For
r = 1, . . . , n, we set ur = 1

‖yr‖vr and we note that

θ

75
≤ ‖ur‖T(p) ≤ θ .

Let f ∈ K. Then, there exist functionals g1, g2 such that∣∣∣∣∣f
(

n∑
r=1

λrxr

)∣∣∣∣∣ ≤ 15(g1 + g2)

(
n∑

r=1

|λr|ur

)
,

where ‖g2‖`q ≤ 2
m2t1

and g1 either belongs to B(p) ⊆ BT(p) or g1 = e∗l +h1 for
some l ∈ N and h1 ∈ B(p).

It follows that

1
15

∥∥∥∥∥
n∑

r=1

λrxr

∥∥∥∥∥
X(p)

≤ 2
m2t1

∥∥∥∥∥
n∑

r=1

|λr|ur

∥∥∥∥∥
`p

+

∥∥∥∥∥
n∑

r=1

|λr|ur

∥∥∥∥∥
∞

+

∥∥∥∥∥
n∑

r=1

|λr|ur

∥∥∥∥∥
T(p)

.

By our choice of t1 (equation (6.1)), we have 2
m2t1

< 1
2nm2jn

and since, for
every r = 1, . . . , n, ‖ur‖`p ≤ m2jr ≤ m2jn , we get

2
m2t1

∥∥∥∥∥
n∑

r=1

|λr|ur

∥∥∥∥∥
`p

=
2

m2t1

(
n∑

r=1

|λr|p‖ur‖p
`p

)1/p

≤ m2jn

2nm2jn

(
n∑

r=1

|λr|p
)1/p

≤ 1
2

max
1≤r≤n

|λr|.
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Also, clearly, ∥∥∥∥∥
n∑

r=1

|λr|ur

∥∥∥∥∥
∞

≤ 1
2

max
1≤r≤n

|λr|.

It remains to estimate ‖
∑n

r=1 |λr|ur‖T(p) . We set, for r = 1, . . . , n,

wr =
1

‖yr‖p

∑
β∈T ,|β|=r

∏
γ≤β

aγ

p

elβ .

Then, by Lemma 3.1,∥∥∥∥∥
n∑

r=1

|λr|ur

∥∥∥∥∥
T(p)

=

∥∥∥∥∥
n∑

r=1

|λr|pwr

∥∥∥∥∥
1/p

Z

.

But it follows from the proof of Theorem 1.6 of [3] that the sequence (wr)n
r=1

in Z is 36θp-equivalent to the canonical basis of `n∞. In particular,∥∥∥∥∥
n∑

r=1

|λr|pwr

∥∥∥∥∥
Z

≤ 36θp max
1≤r≤n

|λr|p.

It follows that∥∥∥∥∥
n∑

r=1

|λr|ur

∥∥∥∥∥
T(p)

≤ 36θ max
1≤r≤n

|λr| ≤ 144 max
1≤r≤n

|λr|.

We conclude that

1
75

max
1≤r≤n

|λr| ≤

∥∥∥∥∥
n∑

r=1

λrxr

∥∥∥∥∥ ≤ 145 · 15 max
1≤r≤n

|λr|.

So, setting C = 145 · 15 · 75, (xr)∞r=1 is C-equivalent to the canonical basis of
`n∞. �

Remark 6.4. Following [3], [4], modified versions of the spaces X(p) can
be defined. It follows readily from the definitions that c0 is not disjointly
finitely representable in the modified spaces. However it is not clear to the
authors whether modified versions of the X(p) spaces can provide uniformly
convex HI Banach spaces.

For the dual space X∗
(p) of X(p) we have the following result.

Theorem 6.5. The dual space X∗
(p) of X(p) is an asymptotic `q hereditar-

ily indecomposable Banach space.

We saw in Section 2 (Corollary 2.10) that X∗
(p) is asymptotic `q. The proof

that X∗
(p) is HI follows the arguments of Chapter 8 of [8], and it is based on

the following two lemmas.
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Lemma 6.6. Let f ∈ BX∗
(p)
∩ c00. Then, for every ε > 0, there exists

x∗ ∈ D such that ‖f − x∗‖ < ε and ran f = ranx∗.

Proof. Let f ∈ BX∗
(p)
∩ c00 and F = ran f . Since BX∗

(p)
= D

p
there exists

x∗ ∈ D such that |f(ek) − x∗(ek)| < ε
#F for every k ∈ F . Since the set D is

closed under interval projections we may assume that ranx∗ = F . Then x∗

is the desired functional. �

Lemma 6.7. Let (z∗k)k be a normalized block sequence in X∗
(p), ε > 0 and

j ∈ N. Then there exist a functional x∗ ∈ D and a 4-seminormalized ( 1
m2

2j
, 2j)

p-convex s.c. x ∈ X(p) such that, setting Z = 〈(z∗k)k〉, we have:
(i) dist(x∗, Z) < ε.
(ii) x∗(x) = 1 and ranx∗ = ranx.

For the proof we refer the reader to Lemma 8.2 of [8]. We note however
that the main step in our case is Proposition 4.4 of the present paper. We
proceed to the proof of Theorem 6.5.

Sketch of the proof of Theorem 6.5. (See also Theorem 8.3 of [8].) Let Y, Z
be a pair of block subspaces of X∗

(p), 0 < δ < 1/10 and C > 330. Let j ∈ N
be such that m2

2j+1 >
21C

δ .
By Lemma 6.7 and an argument similar to that of Theorem 8.3 [8], we can

choose a (C, 2j+1)-dependent sequence (xk, x
∗
k)2n

k=1 such that dist(x∗2i−1, Y ) <
1/22i−1 and dist(x∗2i, Z) < 1/22i for every i = 1, . . . , n.

Let x =
∑n

i=1 ai(x2i−1+x2i) be a (1/m2j+2, 2j+1) p-convex s.c. of (xk)2n
k=1.

We also consider the vector x′ =
∑n

i=1 ai(x2i−1 − x2i). From Proposi-
tion 5.7 we have ‖x′‖ ≤ 10C

m3
2j+1

. Let (21/qγi)n
i=1 be the conjugate sequence of

(21/pai)n
i=1 and define the functionals

fY =
1

m2j+1

n∑
i=1

γix
∗
2i−1 and fZ = − 1

m2j+1

n∑
i=1

γix
∗
2i.

We have fY −fZ = 1
m2j+1

∑n
i=1 γi(x∗2i−1+x∗2i) ∈ BX∗

(p)
by the choice of (γi)n

i=1

and (x∗k)2n
k=1. Hence ‖fY − fZ‖ ≤ 1. Also,

‖fY + fZ‖ =

∥∥∥∥∥ 1
m2j+1

n∑
i=1

γi(x∗2i−1 − x∗2i)

∥∥∥∥∥
≥

1
m2j+1

∑n
i=1 γi(x∗2i−1 − x∗2i) (

∑n
i=1 ai(x2i−1 − x2i))

‖
∑n

i=1 ai(x2i−1 − x2i)‖

≥
1

m2j+1

10C
m3

2j+1

=
m2

2j+1

10C
.
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By the choice of the sequence (x∗k)2n
k=1, we get

dist(fY , Y ) ≤ 1
m2j+1

n∑
i=1

γi dist(x∗2i−1, Y ) <
1

m2j+1
<

1
2

and also dist(fZ , Z) < 1
2 . Thus we may choose hY ∈ Y and hZ ∈ Z such that

(6.2) ‖fY − hY ‖ <
1
2

and ‖fZ − hZ‖ <
1
2
.

From the previous estimates we get that

‖hY − hZ‖ ≤ 2δ ‖hY + hZ‖ . �
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